Текст книги "Приключения Мистера Томпкинса"
Автор книги: Георгий Гамов
Жанры:
Физика
,сообщить о нарушении
Текущая страница: 5 (всего у книги 13 страниц)
Глава 6
Космическая опера
Когда утром за завтраком мистер Томпкинс поведал профессору о своем сне, приснившемся прошлой ночью, тот выслушал его весьма скептически.
– Коллапс нашей Вселенной, – заметил он, – разумеется, был бы весьма драматическим концом, однако скорости разбегания галактик настолько велики, что переживаемая нами стадия расширения никогда не перейдет в коллапс, наша Вселенная будет неограниченно расширяться, а распределение галактик в космическом пространстве становиться все более разреженным. Когда все звезды, образующие галактики, погаснут из-за исчерпания ядерного топлива, наша Вселенная превратится в набор холодных и темных скоплений небесных тел, рассеянных в бесконечных просторах.
Впрочем, некоторые астрономы думают иначе. Они выдвигают теорию так называемой космологии стационарного состояния, согласно которой Вселенная остается неизменной во времени: она существовала примерно в том же состоянии, в каком мы видим ее сегодня, в бесконечно далеком прошлом и будет существовать в таком же состоянии в бесконечно далеком будущем. Разумеется, такая теория великолепно согласуется со старым добрым принципом Британской империи – сохранять в мире статус кво, однако я склонен думать, что теория стационарного состояния неверна. Кстати сказать, один из создателей этой новой теории – профессор теоретической астрономии Кембриджского университета – написал оперу о стационарной Вселенной, премьера которой состоится в Ковент-Гарден на следующей неделе. Почему бы вам не заказать билеты для Мод и для себя и не послушать столь необычную оперу?
Через несколько дней после возвращения в Лондон с южного побережья, где, как это часто бывает, стало холодно и пошли дожди, мистер Томпкинс и Мод сидели в удобных креслах красного бархата, ожидая, когда взовьется занавес и начнется опера.
Прелюдия была исполнена в темпе precipitevol issimevolmente, и дирижер дважды менял свой воротничок, прежде чем прелюдия подошла к концу. Наконец, когда занавес рывком поднялся, все, кто находился в зале, вынуждены были закрыть глаза руками – столь ослепительно ярким светом была залита сцена. Потоки света, изливавшиеся со сцены, вскоре заполнили весь зрительный зал от партера до балкона самого верхнего яруса, превратив его в один ослепительный океан света. Но вот свет стал постепенно меркнуть, и мистер Томпкинс внезапно обнаружил, что как бы плавает в темном пространстве, освещенном множеством быстро вращающихся крошечных горящих факелов, напоминающих огненные колеса, используемые при фейерверках. Музыка невидимого оркестра сменилась звучанием органа, и мистер Томпкинс увидел неподалеку от себя человека в черной сутане и белом воротничке, который носят священнослужители. Взглянув в либретто, мистер Томпкинс узнал, что это был аббат Жорж Леметр из Бельгии, который первым предложил теорию расширяющейся Вселенной (эту теорию нередко называют теорией «Большого Взрыва»).
Первые куплеты из арии Леметра мистер Томпкинс помнит и поныне:
О, Aiome prreemorrdialel
All-containeeng Atome!
Deessolved eento fragments exceedeengfy small
Galaxies forrmeeng,
Each wizprrimal energy!
Ot rradioactif Atome!
Ot all-containeeng Atome!
O, Univairrsale Aiome —
Worrk of Z'Lorrd!
Z long evolution
Tells of mightyfirreworrks
Zat ended een ashes and smouldairreeng weesps.
We stand on z'ceendairres
Fadeengsuns confironteengus,
Attempteeng to rremembairre
Z'splendeurofz brigine,
Q, Univairrsale Atome —
Worrkof Z'Lorrd [5]5
Идя навстречу пожеланиям меломанов, предпочитающих слушать оперу в подлиннике, и ценителей стилистических красот английского текста, мы приводим все оперные арии на языке оригинала, а для тех, кто интересуется содержанием, приводим перевод, не искаженный погоней за рифмами. (Прим. пер.)
[Закрыть]
(О, Атом первичный!
Бессодержательный Атом!
Распавшись на мельчайшие осколки,
Ты образуешь галактики,
Каждую – со своей первичной энергией!
О, радиоактивный Атом!
Всесодержительный Атом!
О, Атом Единый —
Творение Господа!
Долгая эволюция
Говорит нам о чудовищных фейерверках,
Заканчивавшихся пеплом и тлеющими углями.
Мы стоим на пепелище,
И потухшие солнца смотрят на нас,
Стоим, пытаясь вспомнить
Великолепие начала мира.
О, Атом Единый —
Творение Господа!)
После того как отец Леметр закончил свою арию, откуда ни возьмись появился высокий мужчина, который (судя по либретто) оказался русским физиком Георгием Гамовым, вот уже три десятилетия проводящим свой отпуск в Соединенных Штатах. Вот что он запел:
Good Abbe, ourrunderrstandink
It is same in many ways.
Univerrse has been expandink
Frrom the crradle of its days.
Univerrse has been expandink
Frrom the crradle of its days.
You have told it gains in motion,
Irregrret to disagrree,
And we differr in ourr notion
As to how it came to be.
And we differr in ourr notion
As to how it came to be.
It was neutrron fluid-neverr
Primal Atom, as you told.
It is infinite, as everr
It was infinite of old.
It is infinite, as everr
It was infinite of old.
On a limitless pavilion
In collapse, gas met its fate,
Yearrs ago (some thousand million)
Having come to densest state.
Yearrs ago {some thousand million)
Having come to densest state.
All the Space was then rresplendent
At that crrucialpoint in time.
Light to matterr was trranscendent
Much as meterr is, to rrhyme.
Light to matterr was trranscendent
Much as meterr is, to rrhyme.
For each ton ofrradiation
Then of matterr was an ounce,
Till the impulse t 'warrd inflation
In thatgrreatprrimeval bounce.
Till the impulse t 'warrd inflation
In that grreat prrimeval bounce.
Light by then was slowly palink,
Hundrred million yearrsgo by…
Matterr, over lightprrevailink,
Is in plentiful supply.
Matterr, overlightpirevailink,
Is in plentiful supply.
Matterr then began condensink
(Such are Jeans 'hypotheses).
Giant, gaseous clouds dispensink
Known asprrotogalaxies.
Giant, gaseous clouds dispensink
Known as prrotogalaxies.
Prrotogalaxies were shatterred,
Flying outward thrrough the night
Starrs werreforrmedfrom them, andscattemd
And the Space was filled with light.
Starrs werreforrmedfrrom them, andscattered
And the Space was filled with light
Galaxies arre everrspinnink,
Starrs will burrn to final sparrk.
Till ourr univerrse is thinnink
And is lifeless, cold and dank.
Till ourr univerrse is thinnink
And is lifeless, cold and darrk.
(Славный отче, наши представления
Во многом совпадают.
Вселенная расширяется
С самого рождения.
Вселенная расширяется
С самого рождения.
Но вы утверждаете, что она все прибавляет в движении.
К сожалению, не могу с вами согласиться.
Расходимся мы и в наших представлениях
По поводу того, как это может произойти.
Расходимся мы и в наших представлениях
По поводу того, как это может произойти.
Сначала была нейтронная жидкость,
А не первичный Атом, как вы утверждаете.
Она простиралась бесконечно
И существовала бесконечно давно.
Она простиралась бесконечно
И существовала бесконечно давно.
Под бесконечным шатром
В коллапсе газ последовал своей судьбе,
И давным-давно (несколько тысяч миллионов лет назад)
Перешел в состояние с наибольшей плотностью.
И давным-давно (несколько тысяч миллионов лет назад)
Перешел в состояние с наибольшей плотностью.
Все космическое пространство наполнилось нестерпимым блеском
В той критической точке во времени.
Свет преобладал над материей,
Как метр над рифмой.
Свет преобладал над материей,
Как метр над рифмой.
На каждую тонну излучения
Приходилась унция материи,
Пока не последовал импульс к расширению —
Сильнейший первичный толчок.
Пока не последовал импульс к расширению —
Сильнейший первичный толчок.
Затем свет стал медленно меркнуть,
И длилось это сотни миллионов лет…
Материя стала преобладать над светом
И весьма основательно.
Материя стала преобладать над светом
И весьма основательно.
Затем материя начала конденсироваться
(Таковы гипотезы Джинса).
Образовались гигантские газовые облака,
Известные как протогалактики.
Образовались гигантские газовые облака,
Известные как протогалактики.
Протогалактики разбились вдребезги
И разлетелись в ночи.
Из них образовались звезды и рассеялись,
И все космическое пространство наполнилось светом.
Из них образовались звезды и рассеялись,
И все космическое пространство наполнилось светом.
Галактики будут безостановочно вращаться,
Звезды выгорят до последней искорки,
Вселенная наша будет становиться все разреженней,
Пока не превратится в безжизненную, холодную и темную пустыню.
Вселенная наша будет становиться все разреженней,
Пока не превратится в безжизненную, холодную и темную пустыню.)
Третью арию, запавшую в память мистеру Томпкинсу, исполнил автор оперы, внезапно материализовавшийся из ничего в пространстве между ярко сиявшими галактиками. Он вынул из кармана едва народившуюся галактику и запел:
The universe, by Heaven's decree,
Was never formed in time gone by,
But is, has been, shail ever be —
For so say Bondi, Gold and I.
Stay, О Cosmos, O Cosmos, stay the same!
We the Steady State proclaim!
The aging galaxies disperse,
Burn out, and exit from the scene.
But all the while, the universe
Is, was, shall ever be, has been.
Stay, О Cosmos, О Cosmos, stay the same!
We the Steady State proclaim!
And still new galaxies condense
From nothing, as they did before.
(Lemaitre and Gamow, no offence!)
All was, will be for evermore.
Stay, О Cosmos, О Cosmos, stay the same!
We the Steady State proclaim!
(Вселенная не возникла вдруг,
По велению небес, в прошлом.
Она есть, была и будет всегда,
Ибо так говорят Бонди, Голдия.
Оставайся, о Космос, о Космос, навсегда одним и тем же!
Мы провозглашаем стационарное состояние!
Стареющие галактики разбегаются,
Сгорают и сходят со сцены.
Но все равно Вселенная
Есть, была и будет всегда.
Оставайся, о Космос, о Космос, навсегда одним и тем же!
Мы провозглашаем стационарное состояние!
А между тем все новые галактики конденсируются
Из ничего, как это происходило в прошлом
(Леметр и Гамов – это не выпад против вас!)
Все было и будет навсегда.
Несмотря на столь вдохновляющие слова, все галактики в окружающем пространстве стали меркнуть. Наконец, бархатный занавес опустился, и в зрительном зале оперного театра зажглись канделябры.
– О, Сирил, – услышал мистер Томпкинс голос Мод, – я знаю, что ты способен уснуть где угодно и когда угодно, но засыпать в Ковент-Гарден тебе все-таки не следовало! Ты проспал весь спектакль!
Когда мистер Томпкинс проводил Мод до дома ее отца, старый профессор, удобно расположившись в кресле, просматривал только что доставленный выпуск «Monthly Notices» (журнала «Ежемесячные заметки»).
– Ну и как вам понравилась опера? – осведомился профессор.
– Великолепно! – отозвался мистер Томпкинс. – На меня особенно сильное впечатление произвела ария о вечно существующей Вселенной. Она звучит так успокаивающе!
– Поосторожней с этой теорией, – предостерег профессор. – Разве вы не знаете пословицу «Не все то золото, что блестит»? Я как раз читал статью кембриджского астронома Мартина Райла, который построил гигантский радиотелескоп, позволяющий обнаруживать галактики на расстояниях, в несколько раз превышающих радиус действия двухсотдюймового оптического телескопа обсерватории Маунт Паломар. Наблюдения Райла показывают, что очень далекие галактики расположены гораздо ближе друг к другу, чем соседние галактики.
– Вы хотите сказать, – попробовал уточнить мистер Томпкинс, – что область Вселенной, в которой мы обитаем, населена галактиками весьма редко и что плотность населения возрастает по мере того, как мы удаляемся от Земли?
– Ничего подобного, – возразил профессор. – Не следует забывать о том, что из-за конечности скорости света, когда вы смотрите далеко в глубь космического пространства, вы как бы заглядываете далеко назад во времени. Например, так как свету требуется восемь минут, чтобы дойти до нас от Солнца, вспышку на Солнце земные астрономы наблюдают с запозданием в восемь минут. Фотографии нашего ближайшего космического соседа – спиральной галактики в созвездии Андромеды (которую вы, наверное, видели в книгах по астрономии; она расположена от нас на расстоянии примерно в один миллион световых лет) – в действительности показывают, как эта галактика выглядела миллион лет назад. То, что Райл видит или, лучше сказать, слышит с помощью своего радиотелескопа, соответствует ситуации, существовавшей в той далекой части Вселенной многие тысячи миллионов лет назад. Если бы наша Вселенная находилась в стационарном состоянии, то картина не должна была бы изменяться во времени и очень далекие галактики, наблюдаемые с Земли, должны были бы быть распределены в космическом пространстве не плотнее и не реже, чем галактики в ближайшей космической окрестности Земли. Следовательно, если наблюдения Райла показывают, что далекие галактики расположены в космическом пространстве плотнее, чем более близкие галактики, то это эквивалентно утверждению о том, что в далеком прошлом, тысячи миллионов лет назад, галактики были распределены в пространстве плотнее, чем теперь. Ясно, что такое утверждение противоречит теории стационарного состояния Вселенной и подкрепляет первоначальную гипотезу, согласно которой галактики разбегаются и плотность их населения убывает. Но, разумеется, мы должны соблюдать осторожность и подождать, пока результаты Райла не будут подтверждены.
– Кстати сказать, – продолжал профессор, доставая из кармана сложенный листок бумаги, – один из моих ученых коллег, обладающий поэтическими наклонностями, недавно написал на эту тему стихотворение. Вот послушайте:
«Your years of toil»,
Said Ryle to Hoyle,
«Are wasted years, believe me.
The steady state
Is out of date.
Unless my eyes deceive me,
My telescope
Has dashed your hope;
Your tenets are refuted.
Let me be terse:
Our universe
Grows daily more diluted!»
Said Hoyle, «You quote
Lemaitre, I note,
And Gamow. Well, forget them!
That errant gang
And their Big Bang —
Why aid them and abet them?
You see, my friend,
It has no end
And there was no beginning,
As Bondi, Gold,
And I will hold
Until our hair is thinning.»
«Not sol «cried Ryle
With rising bite
And straining at the tether;
«Far galaxies
Are, as one sees,
More tightly packed together!»
«You make me boil!»
Exploded Hoyle,
His statement rearranging;
«New matter's born
Each night and morn
The picture is unchanging!»
«Come off it, Hoyle!
I aim to foil
You yet» (The fun commences)
«And in a while»,
Continued Ryle,
«I'll bring you to your sensed»
(«Все годы ваших хлопот, —
Сказал Райл Хойлу, —
Напрасная трата времени, поверьте.
Стационарное состояние
Ныне не в моде.
И если мои глаза не обманывают меня,
Мой телескоп
Вдребезги разбил ваши надежды;
Ваша теория опровергнута.
Позвольте мне сказать прямо:
Наша Вселенная
С каждым днем становится все более разреженной!»
«Вы ссылаетесь, – сказал Хойл, —
Как я погляжу, на Леметра
И Гамова. Выбросьте их из головы!
Ведь это заблуждающаяся банда
И их Большой Взрыв —
К чему помогать им и поощрять их?
Видите ли, друг мой,
Вселенная не имеет конца
И начала у нее также не было,
На чем Бонди, Голд
И я будем настаивать,
Покуда не поредеют наши волосы!»
«Неверно! – вскричал Райл,
Раздраженный и вне себя от ярости, —
Ибо галактики,
Как нетрудно убедиться,
Упакованы плотнее!»
«Вы просто выводите меня из терпения! —
Взорвался Хойл,
Формулируя свое утверждение по-иному. —
Новая материя рождается
Каждую ночь и каждое утро,
Но картина остается неизменной!»
«Да будет вам, Хойл!
Уж теперь я всерьез вознамерился
Разрушить ваши иллюзии (вот будет потеха!),
А пока, – продолжал Райл, —
Я приведу вас в чувство!» [6]6
Недели за две до выхода в свет первого издания этой книги появилась статья Фреда Хойла «Последние достижения в космологии» (Nature, October 9, 1965, p. Ill), в которой говорилось следующее: «Хойл и его сотрудники занимались подсчетом радиоисточников… Результаты подсчета радиоисточников указывают на то, что Вселенная в прошлом имела большую плотность, чем в настоящее время». Однако автор настоящей книги, поразмыслив, решил не вносить какие-либо изменения в текст арий «Космической оперы», памятуя о том, что оперы, единожды написанные, становятся классическими: например, даже сегодня Дездемона поет прекрасную арию перед тем, как умереть от рук Отелло.
[Закрыть])
– Мне очень хотелось бы узнать, – заметил мистер Томпкинс, – чем закончится этот не на шутку разгоревшийся спор.
С этими словами он, поцеловав на прощанье мисс Мод в щеку, пожелал ей и старому профессору спокойной ночи и отправился к себе домой.
Глава 7
Квантовый бильярд
Однажды мистер Томпкинс возвращался к себе домой страшно усталый после долгого рабочего дня в банке, где он служил. Проход мимо паба, мистер Томпкинс решил, что было бы недурственно пропустить кружечку эля. За первой кружкой последовала другая, и вскоре мистер Томпкинс почувствовал, что голова у него изрядно кружится. В задней комнате паба была бильярдная, где игроки в рубашках с засученными рукавами толпились вокруг центрального стола. Мистер Томпкинс стал смутно припоминать, что ему уже случалось бывать здесь и прежде, как вдруг кто-то из его приятелей-клерков потащил мистера Томпкинса к столу учиться играть в бильярд. Приблизившись к столу, мистер Томпкинс принялся наблюдать за игрой. Что-то в ней показалось ему очень странным! Играющий ставил шар на стол и ударял по шару кием. Следя за катящимся шаром, мистер Томпкинс к своему большому удивлению заметил, что шар начал «расплываться». Это была единственное выражение, которое пришло ему на ум при виде странного поведения бильярдного шара; который, катясь по зеленому полю, казался все более и более размытым, на глазах утрачивая четкость своих контуров. Казалось, что по зеленому сукну катится не один шар, а множество шаров, к тому же частично проникающих друг в друга. Мистеру Томпкинсу часто случалось наблюдать подобные явления и прежде, но сегодня он не принял ни капли виски и не мог понять, почему так происходит.
– Посмотрим, – подумал мистер Томпкинс, – как эта размазня из шара столкнется с другой такой же размазней.
Должно быть, игрок, нанесший удар по шару, был знатоком своего дела: катящийся шар столкнулся с другим шаром в лобовом ударе, как это и требовалось. Послышался громкий стук, и оба шара – покоившийся и налетевший (мистер Томпкинс не мог бы с уверенностью сказать, где какой шар) – разлетелись «в разные стороны». Выглядело это, что и говорить, весьма странно: на столе не было более двух шаров, выглядевших несколько размазанно, а вместо них бесчисленное множество шаров (все – с весьма смутными очертаниями и сильно размазанные) поразлеталось по направлениям, составлявшим от 0 o до 180 o с направлением первоначального соударения. Бильярдный шар скорее напоминал причудливую волну, распространяющуюся из точки соударения шаров.
Присмотревшись повнимательнее, мистер Томпкинс заметил, что максимальный поток шаров направлен в сторону первоначального удара.
– Рассеяние S-волны, – произнес у него за спиной знакомый голос, и мистер Томпкинс, не оборачиваясь, узнал профессора.
– Неужели и на этот раз что-нибудь здесь искривилось, – спросил мистер Томпкинс, – хотя поверхность бильярдного стола мне кажется гладкой и ровной?
– Вы совершенно правы, – подтвердил профессор, – пространство в данном случае совершенно плоское, а то, что вы наблюдаете, в действительности представляет собой квантовое явление.
– Ах, эти матрицы! – рискнул саркастически заметить мистер Томпкинс.
– Точнее, неопределенность движения, – заметил профессор. – Владелец этой бильярдной собрал здесь коллекцию из нескольких предметов, страдающих, если можно так выразиться, «квантовым элефантизмом». В действительности квантовым законам подчиняются все тела в природе, но так называемая квантовая постоянная, управляющая всеми этими явлениями, чрезвычайно мала: ее числовое значение имеет двадцать семь нулей после запятой. Что же касается бильярдных шаров, которые вы здесь видите, то их квантовая постоянная гораздо больше (около единицы), и поэтому вы можете невооруженным глазом видеть явления, которые науке удалось открыть только с помощью весьма чувствительных и изощренных методов наблюдения.
Тут профессор умолк и ненадолго задумался.
– Не хочу ничего критиковать, – продолжал он, – но мне очень хотелось бы знать, откуда у владельца бильярдной эти шары. Строго говоря, они вообще не могут существовать, поскольку для всех тел в мире квантовая постоянная имеет одно и то же значение.
– Может быть, их импортировали из какого-нибудь другого мира, – высказал предположение мистер Томпкинс, но профессор не удовлетворился такой гипотезой и не избавился от охвативших его подозрений.
– Вы заметили, что шары «расплываются», – начал он. – Это означает, что их положение на бильярдном столе не вполне определенно. Вы не можете точно указать, где именно находится шар. В лучшем случае вы можете утверждать лишь, что шар находится «в основном здесь» и «частично где-то там».
– Все это в высшей степени необычно, – пробормотал мистер Томпкинс.
– Наоборот, – возразил профессор, – это абсолютно обычно в том смысле, что всегда происходит с любым материальным телом. Лишь из-за чрезвычайно малого значения квантовой постоянной и неточности обычных методов наблюдения люди не замечают этой неопределенности и делают ошибочный вывод о том, что положение и скорость тела всегда представляют собой вполне определенные величины. В действительности же и положение, и скорость всегда в какой-то степени неопределенны, и чем точнее известна одна из величин, тем более размазана другая. Квантовая постоянная как раз и управляет соотношением между этими двумя неопределенностями. Вот взгляните, я накладываю определенные ограничения на положение этого бильярдного шара, заключая его внутрь деревянного треугольника.
Как только шар оказался за деревянным заборчиком, вся внутренность треугольника заполнилась блеском слоновой кости.
– Видите! – обрадовался профессор. – Я ограничил положение шара размерами пространства, заключенного внутри треугольника, т. е. какими-то несколькими дюймами. И в результате – значительная неопределенность в скорости, шар так бегает внутри периметра треугольника!
– А разве вы не могли бы остановить шар? – удивленно спросил мистер Томпкинс.
– Ни в коем случае! Это физически невозможно, – последовал ответ. – Любое тело, помещенное в замкнутое пространство, обладает некоторым движением. Мы, физики, называем такое движение нулевым. Таково, например, движение электронов в любом атоме.
Пока мистер Томпкинс наблюдал за бильярдным шаром, мечущимся в треугольной загородке, как тигр в клетке, произошло нечто весьма необычное: шар «просочился» сквозь стенку деревянного треугольника и в следующий момент покатился в дальний угол бильярдного стола. Самое странное было в том, что шар не перепрыгнул сквозь деревянную стенку, а прошел сквозь нее, не поднимаясь над уровнем бильярдного стола.
– Вот вам ваше «нулевое движение», – с упреком сказал мистер Томпкинс.
– Не успели оглянуться, а шар «сбежал». Это как, по правилам?
– Разумеется, в полном соответствии с правилами, – согласился профессор. – В действительности вы видите перед собой одно из наиболее интересных следствий квантовой теории. Если энергии достаточно для того, чтобы тело могло пройти сквозь стенку, то удержать его за стенкой невозможно: рано или поздно объект «просочится» сквозь стенку и будет таков.
– В таком случае я ни за что на свете не пойду в зоопарк, – решил про себя мистер Томпкинс, и его живое воображение тотчас же нарисовало ужасающую картину львов и тигров, «просачивающихся» сквозь стенки своих клеток. Затем мысли мистера Томпкинса приняли несколько иное направление: ему привиделся автомобиль, «просочившийся» из гаража сквозь стены, как доброе старое привидение во времена Средневековья.
– А сколько мне понадобится ждать, – поинтересовался мистер Томпкинс у профессора, – пока автомашина, сделанная не из того, из чего делают автомашины здесь, а из обычной стали, «просочится» сквозь стену гаража, построенного, скажем, из кирпичей? Хотел бы я своими глазами увидеть такое «просачивание»!
Наскоро произведя в уме необходимые вычисления, профессор привел ответ:
– Ждать вам придется каких-нибудь 1 000 000 000…000 000 лет.
Даже привыкший к внушительным числам в банковских счетах мистер Томпкинс потерял счет нулям в числе, приведенном профессором. Впрочем, он несколько успокоился: число было достаточно длинным для того, чтобы можно было не беспокоиться о том, как бы автомашина не сбежала, «просочившись» сквозь стенку в гараже.
– Предположим, что все, о чем вы мне рассказали, не вызывает у меня ни малейших сомнений. Однако мне все же остается непонятно, как можно было бы наблюдать такие вещи (разумеется, я не говорю об этих бильярдных шарах).
– Разумное выражение, – заметил профессор. – Конечно, я не утверждаю, будто квантовые явления можно было бы наблюдать на таких больших телах, с какими вам обычно приходится иметь дело. Действие квантовых законов становится гораздо более заметным применительно к очень малым массам – таким, как атомы или электроны. Для таких частиц квантовые эффекты настолько сильны, что обычная механика становится совершенно неприменимой. Столкновение двух атомов выглядит точно так же, как столкновение двух бильярдных шаров, которое вы здесь наблюдали, а движение электронов в атоме очень напоминает «нулевое движение» бильярдного шара, который я поместил внутрь деревянного треугольника.
– А часто ли атомы выбегают из своего гаража? – спросил мистер Томпкинс.
– О да, весьма часто. Вам, конечно, приходилось слышать о радиоактивных веществах, атомы которых претерпевают спонтанный распад, испуская при этом очень быстрые частицы. Такой атом или, точнее, его центральная часть, называемая атомным ядром, очень напоминает гараж, в котором стоят автомашины, т. е. другие частицы. И частицы убегают из ядра, просачиваясь через стенки, – порой внутри ядра они не остаются ни секунды! В атомных ядрах квантовые явления – дело совершенно обычное!
Мистер Томпкинс порядком устал от столь длинной беседы и рассеянно оглянулся по сторонам. Его внимание привлекли большие дедовские часы, стоявшие в углу комнаты. Их длинный старомодный маятник совершал медленные колебания то в одну, то в другую сторону.
– Я вижу, вы заинтересовались часами, – сказал профессор. – Перед вами не совсем обычный механизм, хотя ныне он несколько устарел. Эти часы могут служить прекрасной иллюстрацией того, как люди сначала мыслили себе квантовые явления. Маятник часов устроен так, что амплитуда его колебаний может возрастать только конечными шагами. Теперь все часовщики предпочитают пользоваться патентованными расплывающимися маятниками.
– О, как бы я хотел разобраться в столь сложных вопросах! – воскликнул мистер Томпкинс.
– Нет ничего проще, – ответствовал профессор. – Я зашел в паб по пути на свою лекцию о квантовой теории, потому что увидел в окно вас. А теперь мне пора отправляться дальше, чтобы не опоздать на лекцию. Не хотите ли пойти со мной?
– С превеликим удовольствием! – согласился мистер Томпкинс.
Большая аудитория как обычно была до отказа заполнена студентами, и мистер Томпкинс считал, что ему очень повезло, когда он кое-как примостился на ступенях прохода.
– Леди и джентльмены, – начал профессор. – В двух моих предыдущих лекциях я попытался показать вам, каким образом открытие существования верхнего предела всех физических скоростей и анализ понятия прямой привел нас к полному пересмотру классических представлений о пространстве и времени.
Однако критический анализ основ физики не остановился на этой стадии и привел к еще более поразительным открытиям и выводам. Я имею в виду раздел физики, получивший название квантовой теории. Этот раздел занимается изучением не столько самих пространства и времени, сколько взаимодействия и движения материальных объектов в пространстве и времени. В классической физике всегда считалось самоочевидным, что взаимодействие между любыми двумя материальными телами может быть сделано настолько малым, насколько это требуется по условиям эксперимента, и даже, если это необходимо, практически сведено к нулю. Например, если при исследовании тепла, выделяющегося в некоторых процессах, возникает опасение, что вводимый термометр может забрать на себя некоторое количество теплоты и тем самым внести возмущение в нормальное течение процесса, то экспериментатор пребывает в уверенности, что, используя термометр меньших размеров или миниатюрную термопару, он всегда сможет понизить вносимое возмущение до уровня, который укладывается в пределы допустимой точности измерений.
Убеждение в том, что любой физический процесс может быть в принципе наблюдаем с любой требуемой точностью без каких-либо возмущений, вносимых наблюдением, было весьма сильным, и никому даже в голову не приходило сформулировать столь очевидное допущение в явном виде. Все проблемы, связанные с вносимыми при наблюдении возмущениями, считались чисто техническими трудностями. Однако новые экспериментальные факты, накопленные с начала XX столетия, постоянно вынуждали физиков приходить к выводу, что в действительности все обстоит гораздо сложнее и в природе существует определенный нижний предел взаимодействия, который никогда не может быть превзойден. Этот естественный предел точности пренебрежимо мал для всевозможных процессов, с которыми мы сталкиваемся в повседневной жизни, но становится существенным при рассмотрении взаимодействий, происходящих в таких микроскопически-механических системах, как атомы и молекулы.
В 1900 г. немецкий физик Макс Планк, занимаясь теоретическими исследованиями условий равновесия между излучением и веществом, пришел к удивительному выводу: такое равновесие невозможно, если взаимодействие между излучением и веществом происходит не непрерывно, как всегда предполагалось, а в виде последовательности отдельных «соударений". При каждом таком элементарном акте взаимодействия от вещества излучению и от излучения веществу передается определенное количество – «порция» – энергии. Для достижения требуемого равновесия и согласия с экспериментальными фактами Планку понадобилось ввести простое математическое соотношение – предположить, что между количеством энергии, передаваемом при каждом элементарном акте взаимодействия, и частотой (величиной, обратной периоду) процесса, приводящего к передаче энергии, существует прямая пропорциональность.
Иначе говоря, если коэффициент пропорциональности обозначить через h, то, согласно принятой Планком гипотезе, минимальная порция, или квант, передаваемой энергии определяется выражением
E = hv, (1)
где v – частота. Постоянная Л имеет числовое значение 6,547 х 10^27 эрг.с и обычно называется постоянной Планка, или квантовой постоянной. Малое числовое значение постоянной Планка объясняет, почему квантовые явления обычно не наблюдаются в повседневной жизни.
Дальнейшее развитие идей Планка связано с именем Эйнштейна, который через несколько лет пришел к выводу, что излучение не только испускается определенными дискретными порциями, но и всегда существует в виде таких дискретных «порций энергии», которую Эйнштейн назвал квантами света.
Поскольку кванты света движутся, они помимо энергии hv должны обладать и определенным механическим импульсом, который, согласно релятивистской механике, должен быть равен их энергии, деленной на скорость света с. Вспоминая, что частота света связана с его длиной волны лямбда соотношением v = с/(лямбда), механический импульс кванта света можно записать в виде
(2)
Поскольку механическое действие, производимое соударением движущегося объекта, определяется его импульсом, мы заключаем, что действие квантов света возрастает при убывании длины волны.