355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Галина Железняк » Параллельные миры » Текст книги (страница 7)
Параллельные миры
  • Текст добавлен: 17 сентября 2016, 22:14

Текст книги "Параллельные миры"


Автор книги: Галина Железняк


Соавторы: Андрей Козка

Жанр:

   

Эзотерика


сообщить о нарушении

Текущая страница: 7 (всего у книги 16 страниц)

Уже в XX веке вокруг исторических хроник, повествующих о пане Твардовском, снова возникли ожесточенные споры. Некоторые историки утверждали, что хитроумный пан изобрел проекционный фонарь и с его помощью вызвал образ умершей жены короля. Но из других хроник было известно, что первый проекционный фонарь запатентовал в 1799 году физик Робертсон. И он же с помощью проекций начал на платных сеансах «вызывать духов».

Побывал этот гастролер и в России. Когда он возвращался через Полоцк, воспитатели местного иезуитского колледжа попросили его устрашить одного из воспитанников. С помощью изобретения Робертсона пареньку продемонстрировали «душу» его отца, которую черти тащат в ад за то, что тот был православным, а не католиком.

Тогда возникла дискуссия: не был ли пан Твардовский задолго до Робертсона изобретателем «волшебного фонаря»? На всякий случай еще раз тщательно осмотрели знаменитое зеркало. И обнаружили на нем выгравированные тончайшими линиями фигурки, среди которых оказались портрет королевы и изображение черта! Чтобы эти изображения «проявлялись» перед зрителями, надо было на определенном расстоянии перед зеркалом поместить свечу, а в нужном месте образовать полупрозрачный экран, например с помощью дыма из кадильницы. Передвигая источник света и по-разному наклоняя зеркало, можно было «оживить» ту или иную фигуру, которая двигалась и колебалась в воздухе вместе с клубами дыма.

Вот как объясняет появление черта в костеле популяризатор науки В. Мезенцев: «Каким мог быть в то время экран? Например, дым из кадильниц. Удобно и, главное, устрашающе. Появление же именно черта – случайность. По-видимому, готовясь к праздничной службе, монахи очистили зеркало от пыли. В тот день костел был ярко освещен, к потолку поднимался кадильный дым. В его клубах и проявился перед молящимися «упрятанный» в зеркале чертик. Точно так же появился он и перед монахом, проходившим мимо со свечой. Испуганный монах запустил в него связку ключей, они попали в зеркало и повредили тончайшую гравюру».

Аналогично все происходило и в доме отставного полковника Жака Герье. В комнате, где находились гости, было накурено, облака табачного дыма послужили прекрасным экраном. И когда хозяин поднес к зеркалу канделябр со свечами, то вызвал к жизни «запрятанное» в поверхности зеркала, еще египетскими жрецами выгравированное тончайшими линиями изображение божества. Когда же он на следующий день повторил эксперимент, дыма уже не было и изображение не проявилось.

Впрочем, умение вызывать различные видения с помощью зеркал известно давно. Ученый В. Фульк в 1640 году просвещал массы: «Призраки могут быть вызваны двумя путями: искусственным и естественным. Искусственно они вызываются с помощью определенных зеркал и инструментов, изготовленных по тайным законам науки, именуемой катоптрика (наука о зеркалах и отражении света)».

Так что непростая это вещь – привычное всем зеркало!

КТО ТЫ, ДВОЙНИК?

Глядя на свое отражение, мы видим себя совсем не так, как нас видят другие. К такому выводу однажды случайно пришел американский подросток Джон Уолтерс. Этого смышленого и симпатичного парня девчонки почему-то считали зубрилой и мямлей. Джон не мог с ними согласиться и, критически разглядывая себя однажды в зеркале, неизвестно почему решил слегка изменить прическу и сделал пробор не справа, как обычно, а слева.

Результат намного превзошел ожидания. Неожиданно для себя Джон стал самым популярным кавалером не только в своей школе, но и во всей округе. Насладившись успехом, но вскоре порядком устав от него, Джон в конце концов стал зачесывать волосы назад, что сделало его жизнь вполне уравновешенной. Но о магии пробора и о своем зеркальном отражении юноша задумался всерьез.

И понял, что подобное восприятие правого и левого связано с работой полушарий головного мозга и с их традиционным доминированием у мужчин и женщин. Выяснилось, что пробор слева служит подсознательным знаком успеха для мужчин, так как левое полушарие мозга отвечает за логику, математику и другие традиционно «мужские» сферы деятельности. Пробор справа как бы намекает на то, что у его носителя – а еще лучше носительницы – доминирует часть мозга, связанная с воображением, художественным творчеством, музыкой и т. п.

Повзрослев, Джон стал физиком, но открытую им «теорию пробора» взяли на вооружение психологи и стилисты. А сам он с помощью сестры-антрополога Кэтрин развил свои наблюдения и сделал вывод о связи зеркала с интеллектуальной асимметрией.

Оказалось, что нашего зеркального двойника в природе вообще не существует. Переворачивая изображение, зеркало выдает сходство за тождество. Да, левое похоже на правое, но не равно ему. Чтобы убедиться в этом, достаточно поставить два зеркала под прямым углом друг к другу и взглянуть не на первое, а на второе свое отражение. Быть может, проделав этот нехитрый опыт, вы будете несказанно удивлены новой встрече с самим собой. Теперь уже доподлинно с тем самым человеком, которого давно знают ваши знакомые и друзья.

А что находится за зеркалом? Существует ли там ка-кой-либо иной мир, тесно взаимосвязанный с нашим? Почему работе с зеркальными поверхностями придавали такое значение маги и колдуны во все времена? Может, не зря считается, что зеркало – полоса отчуждения на границе параллельных миров?

Сохранилась легенда, что накануне решающего сражения Александр Македонский, сосредоточившись, увидел в зеркальной поверхности своего бронзового зеркала… себя самого в блистающем золотом шлеме, тогда как на самом деле никакого шлема не было. Спустя какое-то время видение в зеркале исчезло. Старик-мудрец, объясняя увиденное, предсказал Александру победу.

Возможно ли такое? И если возможно, то почему?

Эзотерическое знание считает зеркало изобретением Люцифера, созданным с целью блокировать развитие и совершенствование астрального тела человека, способного выходить за пределы физического и наблюдать себя со стороны.

Исследователи же объясняют возникающие эффекты тем, что в зеркалах образуется астральный коридор. И при гадании в зеркале проявляется астральный двойник того, на кого гадают.

Если допустить, что астральный мир существует и каждый из нас имеет там своего двойника, то получается, что таким образом мы можем заглянуть в будущее. Кстати, при подобном гадании увидел свою суженую и известный писатель, исследующий непознанное, В. Сафонов. Через много лет он наяву встретил ту, которую впервые увидел в зеркале.

Так что же за зеркалом?

В любом случае почти всегда считалось, что подобные встречи опасны и энергия из тонких миров может оказаться губительной для человека. Причем сами зеркала обладают свойством накапливать большое количество астральных энергий, помогающее через чакру, находящуюся на уровне верхней части зрачков глаз в районе переносицы, увидеть невидимый мир и материализовать его образ.

Физика параллельных миров

Мысль о существовании параллельного мира владеет человеком с незапамятных времен. Пожалуй, первыми, кого посетила эта мысль, были кроманьонцы. Они оставили тысячи наскальных рисунков, которые отражают их отношение к неведомым силам параллельного мира, того мира, куда уходят души умерших соплеменников и погибших на охоте животных.

Позже потомки этих древних обитателей нашей планеты строили дольмены, пирамиды и мавзолеи с одной лишь целью – обеспечить общение с обитателями параллельного мира.

Жизнь современного человека, конечно, несравнимо более сложна и многогранна, чем жизнь наших доисторических предков. И все-таки мы по-прежнему верим в существование параллельного мира. Называем мы его по-разному: загробный, потусторонний, мир высших сфер и т. д. Однако, как и тысячи лет назад, современный человек пытается установить контакт с этим миром.

Обычно эти слова упоминаются как само собой разумеющиеся, без каких-либо разъяснений и уточнений. Общепринятые понятия пространство, время, материя, поле, взаимодействиеи некоторые другие, на которых базируются фундаментальные науки, уже прочно вошли в нашу жизнь.

Существует четыре разновидности взаимодействий: гравитационное, электромагнитное, слабое и сильное. Последние разновидности проявляются только на внутриядерном уровне и только на очень малых расстояниях, но по интенсивности на несколько порядков превосходят гравитационные и электромагнитные.

Предполагается, что существуют какие-то неизвестные силы, действующие на расстоянии между физическими телами, которые мы можем не только наблюдать, но и математически описывать и рассчитывать. Эта концепция оказалась очень удобной, поскольку позволяла ответить на многие вопросы. Появились производные понятия. Такие, например, как полевые структуры, полевые образования, полевые формы жизнии т. п.

Говоря о взаимодействиях, мы подразумеваем взаимосвязи, существующие в материальных образованиях и доступные нашему восприятию. Наше понимание окружающего мира формируется на восприятии электромагнитных взаимодействий. Но представим себе существ, назовем их условно гравитониками,обладающих вместо хорошо известного нам оптического зрения какими-то органами чувств, которые способны «видеть» только гравитационные взаимодействия, обладающие, как мы знаем, способностью беспрепятственно проникать через многие среды, непрозрачные для оптического луча.

Правда, гравитационные взаимодействия, хотя и обладают высокой проницаемостью, все же тоже могут в какой-то степени экранироваться. Примером этого является аномалия колебания маятника Фуко во время солнечных затмений. Сравнительно большая гравитационная масса Луны все же в какой-то степени препятствует гравитационному воздействию Солнца на предметы, находящиеся на поверхности нашей планеты. Каким будет мир для тех существ, которые воспринимают окружающее пространство через гравитацию?

Для гравитоников окружающий мир будет представляться совсем не таким, каким его видим мы. Нам иногда удается с помощью приборов или новинок бытовой техники расширить возможности своих органов чувств.

Как известно, спектральная чувствительность фотоматериалов отлична от спектральных характеристик человеческого глаза, поэтому фотоаппарат иногда может фиксировать то, чего не видит наш глаз. Известны многочисленные случаи, когда на фотоснимках обнаруживаются какие-то удивительные образования, которые не были видны, когда делался снимок. Такие фотоснимки часто публикуются в уфологической литературе. На некоторых кадрах можно видеть темные или светлые образования, которые никак нельзя объяснить браком на фотопленке или в фотоаппарате.

В большинстве случаев подобные фотоэффекты не находят объяснений и воспринимаются как какие-то нематериальные образования. В действительности фотокадры фиксируют вполне материальные структуры, которые реально существуют и проявляются в виде электромагнитных взаимодействий, но в той части спектра, которая не фиксируется нашими глазами. Однако здесь может иметь место и проявление другого эффекта, на котором следует остановиться подробнее.

Вполне оправданно предположение, что в отдельных случаях параллельные миры могут все же определенным образом взаимодействовать – иметь определенные связи в виде общих или близких взаимодействий. В этом случае возможны некоторые проявления одного мира в другом. Конечно, это только теоретические построения, основанные на предположительных суждениях, но некоторые соображения по этому поводу можно высказать, основываясь на экспериментальных данных.

Если предположить, что существуют некоторые общие взаимодействия, проявляющиеся в параллельных мирах, то должны быть и какие-то носители этих взаимодействий. Допустим, что такими носителями могут оказаться некие частицы, обладающие какими-то необычными свойствами. Природа этой необычности вполне понятна. Поскольку такие образования принадлежат чуждому миру, они обладают некоторыми уникальными свойствами, не характерными для образований нашего мира, но вместе с тем должны проявляться и в нашем мире.

Современной науке подобные образования известны. Э го элементарные частицы, названные нейтрино.Впервые обнаруженные в 1953 году, эти частицы, а уже известны три их разновидности, отличаются большой стабильностью, почти не взаимодействуют с веществом, а потому свободно преодолевают любые преграды и расстояния. Для них не существует экранов. При прохождении нейтрино через вещество обычной плотности длина пути до гипотетического непосредственного столкновения с частицами вещества составляет 100 000 млрд км.

Такая исключительная проницаемость нейтрино позволяет предположить, что мы имеем дело с «чужими» или «совместимыми» образованиями, которые могут проявляться в соседних, по нашим понятиям, мирах. Может быть, нейтрино и им подобные, еще не известные нам элементарные частицы помогут перебросить мост в те неизведанные миры и позволят нам познать то, чего мы никогда не сможем познать непосредственно.

До появления микроскопа человечество не знало о существовании мира бактерий и микробов, хотя в своей повседневной деятельности оно постоянно сталкивалось с результатами их деятельности. Но и человек, и мельчайшие биологические образования представляют собой однородные структуры, базирующиеся на одних и тех же разновидностях физических взаимодействий. В таких случаях подобные структуры познаваемы и требуют только расширения разрешающей способности тех органов и средств, которые у нас имеются. Не вызывает сомнения, что очень многие тайны еще остаются непознанными и их раскрытие станет возможным благодаря совершенствованию нашего мозга как механизма осознания полученной информации и технических средств, которыми мы располагаем.

Однако все, что еще предстоит познать человечеству в рамках воспринимаемого нами трехмерного мира, не может рассматриваться как проникновение в параллельный мир. Действительно, существование параллельных миров принципиально возможно только при сосуществовании многомерности пространства и времени и невоспринимаемых нами взаимодействий или при сочетании обоих этих факторов.

Вероятность существования параллельных миров может быть обоснована и с точки зрения физической многомерности. Однако объяснение этого феномена с таких позиций требует, прежде всего, рассмотрения концепции физической многомерности пространства и времени.

Вселенная представляет некое гигантское образование, в котором существует весь материальный мир и каждое физическое тело объемно, то есть трехмерно. Четвертой координатой является время. Оно едино и однонаправленно для всей Вселенной. Вот в этом-то четырехмерном континууме и рассматриваются все процессы.

ПУТЕШЕСТВИЯ ПО ПАРАЛЛЕЛЬНЫМ МИРАМ

В настоящее время стала популярной тема путешествий по параллельным мирам. При этом предполагается, что существует множество параллельных трехмерных слоев в непрерывном четырехмерном пространстве и один из этих слоев – наше пространство. Переход из одного слоя в другой является той основой, на которой раскручивается вся дальнейшая интрига.

В качестве примера возьмем так называемые летающие тарелки. Множество людей видели летающие тарелки, или НЛО, и абсолютно уверены в их существовании. Но еще больше людей не сомневаются в том, что летающие тарелки – лишь некие оптические эффекты, помноженные на богатое воображение наблюдающих. Летающая тарелка в данном случае символизирует прибор, могущий двигаться в пространстве четырех измерений.

По словам людей, видевших летающие тарелки, они появляются внезапно, как будто ниоткуда, в каком-то месте пространства и исчезают так же неожиданно, без следов. Одна из версий, объясняющих это внезапное исчезновение, заключается в том, что тарелка приходит в наш трехмерный слой пространства из другого, параллельного, слоя пространства. При этом, естественно, считается, что физическое пространство четырехмерно. Эта версия выглядит привлекательно своей необычностью, тем, что выходит за рамки обыденных представлений, пересекаясь в своей основе с научной фантастикой. Примем эту версию, но посмотрим, что из нее следует.

Рассмотрим движение трехмерного материального объекта (летающей тарелки) в четырехмерном пространстве, предполагая, что пространство, в котором мы существуем, непрерывно. Предположение, что трехмерный объект может двигаться в непрерывном четырехмерном пространстве, сравнимо с предположением, что тени на стене, являющиеся двухмерными объектами, могут вдруг начать летать по комнате, отделившись от стены.

Напрашивается вывод: если материальное тело трехмерно, то его движение в непрерывном четырехмерном пространстве невозможно. Ведь материальные объекты (например, летающие тарелки) трехмерны. Возникает, казалось бы, тупиковое положение, при котором существование параллельных миров и путешествующих по ним объектов совершенно невозможно. Однако все не так драматично, как может показаться.

Предположим, что пространства – как наше трехмерное, так и гипотетическое четырехмерное – являются дискретными, а не непрерывными. Непрерывность пространства фактически никем и никогда серьезно не оспаривалась. Даже в математике, наиболее абстрактной из наук, до последних лет не существовало теории дискретного пространства.

Непрерывность пространства была и есть точкой зрения здравого смысла, которая, однако, не всегда верна. Например, здравый смысл говорит нам, что кусок железа является сплошным, но мы-то еще со школьных времен знаем, что он состоит из атомов кристаллической решетки. Поэтому будем считать, что пространство четырехмерно и дискретно, т. е. состоит из атомов пространства, как кристалл состоит из атомов кристаллической решетки. Вообще говоря, идея дискретности как абстрактного, так и физического пространства привлекала внимание не только выдающихся мыслителей, но и простых людей с незапамятных времен.

Дискретность в наиболее простой форме означает, что пространство строится из некоторых одинаковых неделимых конечных элементов. Казалось бы, все просто: приставляя элементы один к другому, мы получаем прямую, плоскость, трехмерное пространство и так далее, в зависимости от нашего желания или необходимости. Однако при размышлениях на эту тему возникают психологические противоречия.

Выдающийся немецкий математик Г. Вейль так сказал о гипотезе дискретности: «Как следует понимать согласно этой идее существующие в пространстве отношения мер длин? Если сложить из камешков квадрат, то на диагонали будет лежать столько же камешков, сколько их имеется в направлении стороны. Таким образом, диагональ должна иметь ту же длину, что и сторона». Вейль наивно применяет непрерывную меру к дискретному пространству, чего делать нельзя. Дискретное расстояние нужно мерить дискретной мерой, т. е. числом камешков. С этой точки зрения диагональ действительно имеет ту же длину, что и сторона.

Впервые упоминание о дискретном представлении непрерывного множества встречается у средневековых арабских философов, с точки зрения которых для образования квадрата (или границы квадрата, т. е. окружности) требуются четыре точки. Много размышлял над идеей дискретного пространства Альберт Эйнштейн. В одной из своих статей он писал: «Я придерживаюсь представлений о континууме не потому, что исхожу из некоторого предрассудка, а потому, что не могу придумать ничего такого, что могло бы органически заменить эти представления. Каким образом следует сохранить наиболее существенные черты четырехмерности, если отказаться от этого представления?»

Решение проблемы создания дискретного пространства, как это часто бывает, пришло с неожиданной стороны. И это решение – наглядный пример того, как потребности практики влияют на науку. Сравнительно недавно были разработаны математические основы многомерной компьютерной графики, называемой также дигитальной топологией.Дигитальные, т. е. выстроенные из одинаковых неделимых единых элементов, образы различных объектов появляются в силу особенностей компьютера, где такими элементами являются, прежде всего, ячейки памяти. Кроме того, в любом компьютере образ объекта состоит всегда из конечного числа элементов, ограниченного объемом памяти машины. В многомерной компьютерной графике имеется несколько альтернативных подходов. Один из подходов называется теорией молекулярных пространств– ТМП. В рамках ТМП строятся дискретные многомерные евклидовы и кривые пространства, изучаются их деформации, сохраняющие и меняющие пространственные инварианты.

Применение молекулярной модели к физическому пространству означает следующее:

1. Физическое пространство состоит из неделимых элементов, которые условно названы атомами пространства, или кирпичами (kirpich).

2. Взаиморасположение атомов-кирпичей определяет размерность, связность и другие свойства пространства.

3. Отдельно взятый атом-кирпич не имеет размерности (наиболее удобной и логически непротиворечивой геометрической аналогией кирпича является бесконечномерный единичный куб в бесконечномерном евклидовом пространстве; отсюда и название кирпич).

Полученное пространство весьма напоминает кристаллическую решетку твердого тела, в узлах которой расположены атомы. Сразу же возникает вопрос: если атомы кристаллической решетки расположены в физическом пространстве, то в чем находятся атомы пространства? Ответа на вопрос нет. Тем не менее можно считать, что атомы пространства «плавают» в некой «среде», к которой в принципе не применимы привычные для нас понятия и определения и о которой мы не знаем вообще ничего. Однако такой подход, хоть и в малой мере, но позволяет ученым использовать аналогии и с привычными объектами, понятиями и подходами.

Теперь рассмотрим движение трехмерных объектов в четырехмерном дискретном пространстве.

В бильярде шары от ударов кия катятся по поверхности стола, сталкиваются друг с другом и отталкиваются от стенок. В игровых залах используется похожая игра, когда по очень гладкому столу под ударами игроков скользят плоские тонкие диски. Эго классические примеры двухмерного движения. Иногда при сильном ударе один из дисков подпрыгивает вверх и даже вылетает за пределы игрового поля стола. В этом случае двухмерное движение переходит в трехмерное.

Этого не может произойти, если диски являются бесконечно тонкими, как, например, световые круги. Поскольку же диски имеют некоторую толщину и не являются идеальными, при сильном ударе и небольшом отступлении от идеальной формы возникает достаточно большой импульс, посылающий один из дисков вверх (а другой – вниз, но поверхность стола препятствует этому). Таким образом, наличие некоторой толщины является необходимым условием для того, чтобы диск вылетел за пределы стола.

Тот же самый подход мы можем использовать при описании движения трехмерных объектов в четырехмерном пространстве. Как мы уже говорили, если пространство непрерывно, трехмерные объекты являются бесконечно тонкими в направлении четвертого измерения и не могут покинуть тот трехмерный слой, в котором они находятся в данный момент. И никаких разумных физических допущений, позволяющих объяснить переход из слоя в слой, просто не существует. Если же пространство дискретно, то трехмерные объекты уже не являются бесконечно тонкими в направлении четвертого измерения и могут покинуть тот трехмерный слой, в котором они находятся в данный момент, при возникновении определенных физических условий.

Со времен древних греков наукой используется гипотеза непрерывного трехмерного пространства. Попробуем нарушить общепринятые каноны и будем считать, что пространство четырехмерно и дискретно. Следует при этом отметить, что вся физика основывается на гипотезе непрерывного пространства и поэтому некоторые физические законы, особенно в микромире, могут или нарушаться, или вообще быть неверными в применении к дискретному пространству.

В отличие от непрерывного пространства при столкновении двух трехмерных частиц, движущихся в трехмерном слое дискретного четырехмерного пространства, существует реальная возможность разлета этих частиц в направлении четвертого измерения. Это вызвано тем очевидным обстоятельством, что четырехмерная толщина трехмерных объектов в дискретном пространстве не равна нулю.

Наиболее привлекательной выглядит возможность убедиться в том, что летающие тарелки прилетают в наше трехмерное пространство из параллельного слоя. Это само по себе свидетельствует о существовании четырехмерного пространства и дает возможность путешествовать по параллельным мирам.

Еще лучше было бы заполучить летающую тарелку и самим совершать увлекательные путешествия. К сожалению, такие перспективы пока что призрачны, поскольку никаких других фактов, кроме рассказов очевидцев, мы не имеем. Другой путь состоит в более тщательном анализе уже имеющихся данных наблюдений и постановке экспериментов, направленных непосредственно на проверку дискретности и четырех – мерности физического пространства.

Идея таких экспериментов достаточно проста. В физических взаимодействиях, в которых участвуют частицы, движущиеся с большими скоростями, возможны столкновения, при которых они получат импульсы в четвертом измерении и, следовательно, покинут наше трехмерное пространство. В результате параметры физической системы, участвующей в процессе, изменятся в сторону уменьшения. Например, уменьшится число частиц или общая энергия системы и т. п.

Подобные процессы происходят при ядерных взрывах на Земле, внутри нашего Солнца, при взрывах сверхновых звезд. Возможно, что некоторые из таких экспериментов могут быть проведены на уже работающих ускорителях элементарных частиц или в ядерных реакторах. Более того, вполне вероятно, что физики уже сталкивались с подобными явлениями, но, не сумев их объяснить, отбрасывали полученные результаты как ошибочные. С большой долей вероятности можно предположить также существование на уровне макромира процессов и явлений, подтверждающих правомерность изложенного выше подхода.

В любом случае обсуждение с привлечением специалистов, а не замалчивание этих вопросов безусловно принесет пользу науке и будет интересно самым широким кругам общественности.

ПАРАЛЛЕЛЬНЫЙ МИР СУПЕРСИММЕТРИИ

Существование параллельного мира всегда было связано с тем, верит ли человек в параллельный мир или нет. Но материальных доказательств никто предъявить не мог. Однако в последние годы положение начало кардинально меняться. Академическая наука постепенно приходит к выводу о том, что невозможно объяснить и понять реальный окружающий нас мир без признания существования параллельного ему невидимого мира.

По мнению Виктора Новикова, экспедиции в параллельный мир дадут мощный толчок развитию военных технологий, а при истощении природных запасов планеты человечество сможет уйти в параллельный мир и там продолжать развитие. В. Новиков – изобретатель и исследователь, область научных интересов которого – генерация и трансформация энергии в различных природных структурах. Выдвигая свою гипотезу о параллельных мирах, он предлагает вспомнить историю физики.

В 20-е годы прошлого века научный мир буквально потрясли классические работы известного физика Теодора Калуцы. Люди узнали о существовании многочисленных и невидимых измерений, которые проявляются в трехмерном пространстве в виде четырех фундаментальных типов сил: электромагнитных, гравитационных, сильных и слабых. Эти силы ответственны за поведение любых форм вещества – от субатомных частиц до галактик – и являются лишь различными проявлениями единого силового поля. Например, согласно Калуце, электромагнитные взаимодействия представляют собой пульсации гравитационного скалярного поля, действующего в невидимом нами пятом, дополнительном, измерении.

Разумеется, наука всегда стремилась выявить родство и взаимосвязь различных сил в природе. Исторически первой попыткой создания единой теории поля были уравнения Максвелла, составленные им в 50-х годах XIX века. Эти уравнения объединили электрические и магнитные силы в единую теорию электромагнитных взаимодействий. Важным свойством этой теории является наличие в ней калибровочной симметрии.

Например, если электрический заряд движется в электрическом поле, то затрачиваемая им энергия зависит только от разности потенциалов между конечной и начальной точками его движения. При этом если к системе приложить дополнительное постоянное напряжение, то энергия, затрачиваемая на перемещение электрического заряда в поле, все равно не изменится. Любая симметрия является отражением какого-либо закона сохранения. При калибровочной симметрии происходит калибровка, т. е. изменения масштаба, однако при этом сохраняются все пропорции и соотношения между различными элементами системы.

Эта симметрия, известная также под названием калибровочная инвариантность,была обнаружена очень давно – еще во времена первых исследований электромагнитных явлений. Однако вначале ей не придавали большого значения. Но после работ немецкого физика Генриха Вейля, которого в шутку называют крестным отцом симметрии, интерес к ней пробудился. А после успехов в создании теории объединенного электрослабого взаимодействия и квантовой хромодинамики – теории сильного взаимодействия – среди специалистов возникло твердое убеждение, что калибровочная инвариантность и есть основной динамический принцип при создании единой теории поля.

Сравнительно недавно существовала лишь одна калибровочная теория – квантовая электродинамика. Объединение в 1967 году слабого и электромагнитного взаимодействия (теория Глешоу – Вайнберга – Салама) привело к тому, что рассматриваемая ранее изолированно некалибровочная теория слабого взаимодействия оказалась лишь частью целого – калибровочной теории слабого взаимодействия.

В 70-х годах была создана калибровочная теория сильного ядерного взаимодействия на базе объединения теории кварков М. Гелмана и Г. Цвейга с калибровочными уравнениями Ч. Янга и Ф. Милса. В 1954 году работающие в США физики Ч. Янг и Ф. Миллс создали новый тип уравнений, описывающих безмассовые поля на основе калибровочного принципа. Но поскольку единственной в те времена известной безмассовой частицей – переносчиком взаимодействия – был фотон (основная частица электромагнитного взаимодействия), то уравнения Янга – Миллса посчитали физико-математической экзотикой.

Однако позже оказалось, что теория Янга – Миллса составляет основу интерпретации взаимодействия кварков. По аналогии с квантовой электродинамикой она получила название квантовой хромодинамики. Замена электро-на хромо-объясняется тем, что кварки (как и любые сильно взаимодействующие внутри нуклонов частицы) обладают цветовым (chromo) зарядом, подобно тому, как электроны и протоны характеризуются электрическим зарядом.


    Ваша оценка произведения:

Популярные книги за неделю