355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Галина Железняк » Параллельные миры » Текст книги (страница 11)
Параллельные миры
  • Текст добавлен: 17 сентября 2016, 22:14

Текст книги "Параллельные миры"


Автор книги: Галина Железняк


Соавторы: Андрей Козка

Жанр:

   

Эзотерика


сообщить о нарушении

Текущая страница: 11 (всего у книги 16 страниц)

Основу модели физического пространства составляют две дополняющие друг друга гипотезы, смысл которых состоит в обеспечении образования и сохранения материи без привлечения неопределенной энергии и третьих сил.

ГИПОТЕЗА СИММЕТРИИ

В пространстве существуют только две среды, одна из которых имеет положительную плотность (Р т) и называется материей, а другая имеет отрицательную плотность (Р а= – Р т) и называется антиматерией. Эти среды состоят из неделимых частиц, которые образуются и исчезают (аннигилируют) парами.

Современное представление о Вселенной предполагает существование в пространстве только одной среды – материи и множества различных полей, природа которых в большинстве случаев неизвестна (например, гравитационное или магнитное поле, вакуум и т. д.). В принципе, можно постулировать любое количество различных сред, заполняющих пространство, но эта переопределенность свидетельствует только о недостатках модели. Главный смысл гипотезы симметрии состоит в предположении, что для описания всех явлений реального мира достаточно именно двух сред (или полей).

В соответствии с гипотезой симметрии имеет место количественная эквивалентность между средами, которая обеспечивается парностью образования (исчезновения) и неделимостью частиц. А это означает, что не возникает вопроса о происхождении материи и антиматерии, так как две частицы с противоположными характеристиками, согласно соотношению Р а+ Р т= О, могут возникать из ничего, т. е. из пустоты.

Эта возможность требует причинного обоснования, которого, кстати, нет в теории Большого Взрыва. Избежать необходимости внешнего воздействия можно, предположив, что пустота в физическом пространстве неустойчива, т. е. любой образующийся в результате аннигиляции частиц объем пустоты становится источником материи и антиматерии.

Образование и аннигиляция пар частиц не объясняет длительного существования материи во Вселенной. По гипотезе симметрии, обе среды равноправны, из каждой можно построить свой мир, подобно миру и антимиру, но длительное существование этих миров невозможно, так как образование пар частиц может происходить с такой же интенсивностью, что и их аннигиляция. Эта неопределенность, а также реальность окружающего мира обосновывают необходимость еще одной гипотезы.

ГИПОТЕЗА АСИММЕТРИИ

Неделимые частицы антиматерии образуют непрерывную среду, которая, в свою очередь, образует физическое пространство, а неделимые частицы материи объединяются в элементарные частицы, из которых состоит вся известная материя. В окружающей антиматерии сохраняется не любое количество объединившихся частиц материи, а существует дискретный ряд чисел, который определяется волновыми свойствами антиматерии и соответствует известному ряду элементарных частиц.

Материя, которая состоит из элементарных частиц, существует только на волнах антиматерии. Для аннигиляции необходимо лишить материю ее несущей волны. Это и происходит при столкновении частицы и античастицы, несущие волны которых равны по величине и противоположны по фазам, т. е. исчезают при наложении.

Реальным способом, обеспечивающим сохранение и распространение элементарных частиц, является возбуждение волн в окружающей антиматерии в процессе их образования. Следовательно, этот процесс имеет волновую природу и является поверхностным по отношению к пустоте, т. е. образование материи и антиматерии происходит на поверхности пустоты. Если учитывать, что размеры пустоты конечны, то и сингулярности в данной модели не имеют места.

Известно, что каждая элементарная частица материи имеет свою античастицу. При их аннигиляции, в соответствии с законом сохранения массы, образуется эквивалентное по массе количество элементарных частиц. Но действие закона сохранения массы в физике неопределенно, так как процессы аннигиляции и образования элементарных частиц разнесены во времени, а механизм передачи количественной информации неизвестен.

В рассматриваемой модели частицы и античастицы при столкновении распадаются, аннигилируют с окружающей антиматерией, и образуется определенный объем пустоты, который затем переходит в эквивалентное количество материи и антиматерии. В этом состоит принцип действия закона сохранения массы.

Что такое пустота? Сам термин пустотав настоящее время свободен, так как в свое время был заменен термином вакуум.Но вакуум впоследствии стал обитаемым, в нем появились виртуальные частицы, тонкая материя и т. д. В настоящей модели, где материя существует только на волнах антиматерии, под пустотой понимается ограниченная область в пространстве, где нет ни материи, ни антиматерии.

Пустота неустойчива в том смысле, что на ее поверхности, граничащей с окружающей антиматерией, всегда происходит вол нов oil процесс образования материи и антиматерии. То есть пустота постоянно «выгорает» подобно любому другому топливу и является источником энергии во Вселенной. Образование пустоты связано с аннигиляцией материи и антиматерии, т. е. с поглощением энергии. Причем чем больше аннигилирующие массы, тем больше образующийся объем пустоты.

Типичным примером пустоты является шаровая молния, которая образуется при аннигиляции разнозаряженных частиц и постепенно «выгорает» по поверхности. По такому же принципу устроены и звезды, разница только в объемах, интенсивности процесса «горения», размерах и структуре слоя материи на поверхности пустоты.

Очевидной особенностью пустоты является то, что она не обладает массой. Поэтому ее перемещение в пространстве определяется массой поверхностного слоя материи и течением окружающей антиматерии.

Из гипотезы модели следует, что материя во всех ее проявлениях существует в пространстве, заполненном антиматерией, т. е. в физическом пространстве. Свободные и вынужденные колебания, излучение и течение антиматерии объясняют такие явления, как свет, атом, магнетизм, инерция, гравитация, скрытая масса и другие, о которых в настоящее время доподлинно известно только то, что они существуют. По этому поводу Эйнштейн писал, что «…требование сведения явлений к физическим причинам выдвигаются пока еще недостаточно требовательно, и будущим поколениям эта нетребовательность покажется непонятной».

Применение физической модели Вселенной к трактовке различных явлений реального мира является увлекательным занятием, как и все новое. Но в ограниченном объеме публикации это можно продемонстрировать только на примерах, в которых проявляются различные свойства физического пространства.

МИКРОМИР

Из волнового характера процесса «горения» пустоты, когда на поверхности одновременно образуются элементарные частицы и возбуждаются волны колебания плотности антиматерии, следует, что известная корпускулярно-волновая природа элементарных частиц не является выбором между волной и частицей, а представляет собой движение частиц одной среды (материи) на волнах другой среды (антиматерии). Причем длина волны количественно характеризует элементарную частицу, так как она ограничивает ее размеры.

Распространение элементарных частиц в пространстве со скоростью света означает, что скорость света – это скорость распространения возмущений в антиматерии. Следовательно, уравнение состояния антиматерии имеет вид Р = с 2,где Р– и давление и плотность в антиматерии. Если учесть, что для материи справедливо уравнение Эйнштейна Е= тс 2,где Еи т– энергия и масса, то получается, что материя и антиматерия имеют определяющие уравнения с одинаковым коэффициентом с 2.

Волны в антиматерии могут возбуждаться и другими способами, например вращением материальных тел, но это не приводит к распространению излучения, так как отсутствует источник излучения, т. е. процесс «горения» пустоты. Природа вынужденных колебаний антиматерии, окружающей вращающееся тело (в том числе и с переменным направлением вращения), сложна и многообразна. Здесь возможны радиальные, тангенциальные, спиральные волны и их наложения, вихри и т. д. Вопрос только в том, какому реальному физическому процессу соответствуют эти явления?

Очевидно, что вынужденные колебания антиматерии можно связать с магнитным полем (радиальные волны), структурой атома (наложение спиральных волн), электрическими зарядами (вихри) и т. д. Не вдаваясь в подробности, можно утверждать, что в модель Вселенной с антиматерией гармонично вписываются различные явления микромира.

МИР

Из всех явлений реального мира наиболее таинственной до сих пор остается гравитация. Вопрос о том, почему подброшенный камень падает на землю, занимает человечество на всем протяжении его существования и не имеет однозначного ответа до сих пор.

Гравитация также является пробным камнем для различных альтернативных моделей Вселенной, в которых никогда не было недостатка. И несмотря на то что многие физические явления в этих моделях становятся более простыми и понятными, авторы сознательно обходят толкование гравитации. Это в полной мере относится и к физической науке. Объяснение гравитации воздействием потока антиматерии в модели физического пространства не является тривиальным, но может быть последовательно осуществлено, исходя из свойств микромира.

Во-первых, почему все материальные тела излучают антиматерию? Излучение материи материальными телами известно, так как почти вся информация о материальных телах основана на регистрации излучения материи. Но если в модели образование материи и антиматерии происходит в равных количествах, то очевидно, что тела излучают в пространство и антиматерию. Кстати, избыточная антиматерия проясняет и сам факт расширения Вселенной: увеличение количества антиматерии (или пустоты) при неизменной плотности невозможно без увеличения объема.

Во-вторых, если связывать величину гравитации со скоростью потока антиматерии, то необходимо объяснить, почему она не зависит от скорости самого тела? Или почему тела могут двигаться с постоянной скоростью относительно антиматерии, т. е. по инерции? Действительно, при взаимодействии тела, движущегося с постоянной скоростью, с любым внешним потоком, в том числе и с отрицательной плотностью, оно должно изменять скорость.

Но поток антиматерии не является чисто внешним по отношению к телу, так как антиматерия излучается и самим телом. Величина и направление этого излучения изменяют характер движения. Для того чтобы привести в движение покоящееся тело, необходимо затратить энергию.

В данном случае энергия расходуется на изхменение направления потока антиматерии внутри тела. То есть собственное выделение антиматерии является для тела движущей реактивной силой, которая нейтрализует воздействие внешнего потока при движении по инерции. Само же изменение направления потока антиматерии в теле может происходить в результате изменения внутренней структуры атомов, ее симметрии, например эллиптичности орбит электронов.

Таким образом, инерционное движение тела происходит с фиксированной внутренней структурой ее атомов, а при воздействии внешних сил изменяются структура и скорость относительно окружающей антиматерии. Следовательно, изменение скорости внешнего потока также равнозначно приложению внешней силы. Это следствие решает проблему эквивалентности гравитационной и инертной масс тела.

Известно, что скорость антиматерии от центрального источника уменьшается пропорционально квадрату расстояния, т. е. так же, как и сила притяжения. И то, что называется гравитационным полем, оказывается полем скоростей течения антиматерии от множества источников, которыми являются звезды, планеты и другие материальные тела.

МАКРОМИР В ОКРУЖЕНИИ АНТИМАТЕРИИ

Влияние антиматерии на движение материи имеет три существенно отличающихся уровня, у которых и различное математическое описание. На уровне элементарных частиц это влияние описывается волновыми уравнениями для антиматерии, так как движение элементарных частиц сопровождается распространением волн плотности в антиматерии.

Механика Ньютона, справедливая в неподвижной антиматерии, дополненная силами гравитации, эквивалентными полю скоростей течения антиматерии, является приближенным методом для исследования движения материальных тел в физическом пространстве. Третий уровень влияния антимагерии на движение материи значительно отличается от первых двух. Здесь уже расстояния между галактиками таковы, что определяющая роль в их взаимодействии принадлежит силам отталкивания антиматерии. Движение галактик основывается не на инерции и гравитации, а на течении идеальной среды, каковой является антиматерия.

Направление гравитационной силы в каждой точке пространства совпадает с направлением течения антиматерии. Это не соответствует положениям классической механики о том, что гравитационная сила всегда направлена в сторону притягивающего центра.

Отклонение течения антиматерии от радиального направления происходит вследствие вращения источника и оказывает заметное влияние, в частности, на движение материи вокруг звезд и ядер галактик. Однако эти материальные образования имеют различное внутреннее строение, в результате чего для ядра галактики отклонение течения антиматерии от радиального нарастает при удалении от центра, а для звезды, наоборот, с приближением к поверхности.

Иными словами, ядро галактики вращается вместе с антиматерией, а звезда при вращении увлекает поверхностный слой антиматерии. Этим и обусловлено незатухающее движение материи при удалении от ядра галактики, которое трактуется в современной космологии как влияние скрытой массы, и ускоренное движение материи с приближением к поверхности звезды, примером которого является смещение перигелиев планет Солнечной системы.

Из уравнения состояния антиматерии следует, что физическое пространство постоянно находится в условиях однородного сжатия а0, Р а<0).В любом ограниченном объеме это невозможно, потому что давление и плотность на границе равны нулю. Поэтому можно утверждать, что в модели физического пространства Вселенная является неограниченной. Более того, ограниченность Вселенной означала бы, что ее границей является пустота и по всей границе происходит непрерывный процесс образования материи и антиматерии, т. е. излучение от границы намного превосходило бы излучение от всей материи внутри Вселенной.

Альтернативой Большому Взрыву или причиной расширения в модели физического пространства являются местные аннигиляции больших объемов материи и антиматерии, в частности взрывы сверхновых звезд. Поскольку объем образующейся пустоты значительно меньше эквивалентного объема антиматерии, при взрывах происходит местное сжатие Вселенной.

Таким образом, медленное и всеобщее расширение Вселенной сопровождается быстрыми местными сжатиями. Образующийся при этом ограниченный объем пустоты в результате деления на множество более мелких пустот и их «горения» вновь превращается в галактику. Известно же, что взрывы сверхновых сопровождаются образованием туманностей. Одной из проблем современной физики является объяснение образования звезд, планет и т. д. из протоматерии, равномерно распыленной в пространстве Большим Взрывом и находившейся в состоянии расширения, т. е. уменьшения плотности и притяжения между частицами.

В модели физического пространства почти вся материя образуется на поверхности ограниченного объема пустоты и находится в состоянии постоянного притяжения к ее центру. В этом процессе можно выделить две стадии. Первая – это деление исходной пустоты, образовавшейся в результате крупномасштабной аннигиляции, когда «осколки» удаляются друг от друга под действием сил отталкивания антиматерии. И вторая – это превращение «осколков» в сферы путем отделения выступающих частей.

Так как эти стадии разнесены во времени, на «осколках» уже имеется поверхностный слой материи, и на отделяющиеся части действуют не только силы отталкивания, но и силы притяжения, которые превращают их в естественные спутники. В реальном мире с этими стадиями связано образование звездной системы галактики (первая стадия) и образование планетных систем (вторая стадия).

Очевидно, что введение физического пространства в корне изменяет представление о Вселенной. Между тем в специальной и научно-популярной литературе современные основы физики не подвергаются сомнению. Утверждение, что материя бесконечна «и вширь и вглубь», является весомым аргументом в пользу бесконечности процесса познания.

Но если предположить, что модель физического пространства верна, то очевидно, что в больших масштабах Вселенная квазипериодична, т. е. ничего существенно нового увидеть уже не удастся, а при выделении малых объемов материя просто исчезает.

От всех других моделей Вселенной, в том числе и от модели Большого Взрыва, модель физического пространства М. Гаджиева отличается простотой, которая свойственна природе и является одним из критериев истинности. О неизбежности такого упрощения говорил выдающийся физик Стивен Хокинг: «Если мы действительно откроем полную теорию, то со временем ее основные принципы будут доступны пониманию каждого, а не только нескольких специалистов».

КВАНТОВАЯ ТЕЛЕПОРТАЦИЯ

Это одно из наиболее интересных и парадоксальных проявлений квантовой природы материи, вызывающее в последние годы огромный интерес специалистов и широкой публики. Имеется большое число теоретических и экспериментальных работ, исследующих различные аспекты квантовой телепортации.

Термин телепортациявзят из научной фантастики, однако в настоящее время широко используется в научной литературе. Квантовая телепортация означает мгновенный перенос квантового состояния из одной точки пространства в другую, удаленную на большое расстояние. Впервые эффект квантовой телепортации был предложен в работе С. Bennett, G. Brassard с соавторами.

Что такое квантовая телепортация и возможно ли ее применить для мгновенного переноса макрообъектов? Не противоречит ли квантовая телепортация принципам релятивистской причинности? О связях классической и квантовой реальности делают выводы профессор Римского университета Луиджи Аккарди и доктор физико-математический наук Игорь Волович.

Л. Аккарди – один из наиболее известных итальянских ученых, создатель квантовой теории вероятностей, руководит рядом европейских научных проектов, включающих, в частности, теоретическое и экспериментальное исследование квантовой телепортации. И. Волович – известный российский ученый, специалист в области математической физики и р-адического анализа, исследовал роль пространственно-временных параметров в описании зацепленных состояний, что привело к новому подходу в телепортации квантовых состояний.

Первые идеи зародились сразу же после работ Планка, Эйнштейна, де Бройля, Бора и других основателей квантовой физики. Существенное развитие эти идеи получили с созданием квантовой механики в представлениях Шредингера и Гейзенберга. Всевозможные мысленные эксперименты, проводимые с квантовыми объектами, зачастую вели к явным парадоксам.

В 1935 году А. Эйнштейн и его сотрудники Б. Подольский и Н. Розен высказали идею, суть которой на примере элементарных частиц сводится к тому, что квантовые объекты, в качестве которых могут быть, например, два связанных фотона, в процессе разделения сохраняют некое подобие информационной связи (эффект «спутывания», «связывания» – entangled).При этом квантовое состояние одного, например поляризация или спин, может мгновенно передаваться на другой фотон, становящийся при этом аналогом первого, который коллапсирует, исчезает. И наоборот. Расстояние между фотонами может быть любым.

Это было названо эффектом, парадоксом,или каналом, Эйнштейна – Подольского – Розена(ЭПР). В качестве синонима этого феномена принят также термин квантовая нелокалъностъ(Quantum NonLocality), подчеркивающий мгновенную распределенность, нелокальность в пространстве состояний связанных по квантовым состояниям элементарных частиц.

Стоит подробнее пояснить, что подразумевается под словами зацепленное состояние,о котором пойдет речь ниже. Имеется в виду система, состоящая из двух взаимодействующих подсистем (например, частиц), которая в какой-то момент времени распадается на две невзаимодействующие подсистемы.

Для такого зацепленного состояния значение какой-либо физической величины (например, проекции спина электрона на какую-то ось или поляризации фотона) не определено ни для одной из подсистем. Однако если мы произведем измерение одной из подсистем и определим значение выбранной физической величины, то с достоверностью будем знать значение этой физической величины и для другой подсистемы.

Примером системы, находящейся в зацепленном состоянии, являются два фотона, появившиеся в результате спонтанного параметрического распада фотона, распространяющегося в среде с квадратичной нелинейностью (например, в кристалле ВаВ 2О 4). Для зацепленных фотонов нельзя указать, какова поляризация каждого из фотонов пары. Если же произвести измерения одного фотона и тем самым определить его поляризацию, то и поляризация другого фотона также станет определенной. Стоит подчеркнуть, что производя измерения одной частицы, мы в тот же момент определяем и состояние другой, как бы далеко эти частицы друг от друга ни находились. Таким образом, связь между частицами носит принципиально нелокальный характер.

С позиций квантовой механики эту связанную систему можно описать некой волновой функцией. Когда взаимодействие прекращается и частицы разлетаются очень далеко, их по-прежнему будет описывать та же функция. Но состояние каждой отдельной частицы не известно в принципе: это вытекает из соотношения неопределенностей. И только когда одна из них попадает в приемник, регистрирующий ее параметры, у другой появляются (именно появляются, а не становятся известными) соответствующие характеристики. То есть возможна мгновенная «пересылка» квантового состояния частицы на неограниченно большое расстояние. Телепортации самой частицы, передачи массы при этом не происходит.

Похожим образом ведет себя разорвавшийся на две части снаряд: если до взрыва он был неподвижен, суммарный импульс его осколков равен нулю. «Поймав» один осколок и измерив его импульс, можно мгновенно назвать величину импульса второго осколка, как бы далеко он ни улетел.

Казалось бы, нарушается принцип причинности – следствие и причина не разделены временем, если понимать время как способ организации последовательности событий. Поэтому Эйнштейн и соавторы оценивали свою чисто теоретическую модель как неприложимую к практике, эксперименту. Это противоречие теории и видимой физической реальности длилось около 30 лет, хотя Н. Бор и многие другие физики полагали, что никакой проблемы здесь вообще нет.

Действительно, в рамках классического подхода, после того как система распалась на составные части, никакое воздействие на одну из частей не может изменить состояние другой части, если частицы не взаимодействуют. И более того, поскольку скорость распространения сигнала не может превышать скорости света, то при определенных условиях – в рамках классического подхода – воздействие на одну часть системы никоим образом не может повлиять на другую часть системы.

В математическом виде это утверждение было сформулировано Дж. Беллом в 1964 году в виде так называемых неравенств Белла,нарушение которых означает невозможность описать систему классическим образом и свидетельствует в пользу вероятностной трактовки квантовой механики.

Вопрос о квантовой телепортации впервые был поставлен в 1993 году группой Ч. Беннета, которая, используя парадокс ЭПР, показала, что в принципе сцепленные частицы могут служить своего рода транспортом. Посредством присоединения третьей – информационной – частицы к одной из сцепленных частиц можно передавать ее свойства другой, причем даже без измерения этих свойств.

Экспериментальная реализация ЭПР-канала была осуществлена работами двух групп ученых – австрийскими исследователями из университета в Инсбруке, возглавляемыми Антоном Цойлингером, и итальянскими, из университета «La Sapienza» в Риме, под руководством Франческо Де Мартини. Опыты групп Цогшингера и Де Мартини доказали выполнимость принципов ЭПР на практике для передачи через световоды состояний поляризации между двумя фотонами посредством третьего на расстояниях до 10 километров.

ФАНТАСТИЧЕСКИЙ ЭКСПЕРИМЕНТ

В эксперименте неполяризованный свет, проходящий через кристалл, расщепляется на два поляризованных во взаимно перпендикулярном направлении луча. В оптическом смесителе фотон взаимодействовал с одним из пары связанных фотонов. Между ними, в свою очередь, возникала квантово-механическая связь, приводящая к поляризации новой пары.

Согласно законам квантовой механики, фотон не имеет точного значения поляризации, пока она не измерена детектором. Таким образом, измерение преобразует набор всех возможных поляризаций фотона в случайное, но совершенно конкретное значение. Измерение поляризации одного фотона связанной пары приводит к тому, что у второго фотона, как бы далеко он ни находился, мгновенно появляется соответствующая – перпендикулярная ей – поляризация.

Если к одному из двух исходных фотонов «подмешать» посторонний фотон, образуется новая пара, новая связанная квантовая система. Измерив ее параметры, можно мгновенно передать сколь угодно далеко – телепортировать – направление поляризации уже не исходного, а постороннего фотона. В принципе, практически все, что происходит с одним фотоном пары, должно мгновенно влиять на другой, меняя его свойства вполне определенным образом. Однако на практике такая связь достаточно чувствительна к внешним воздействиям, поэтому необходимо изолировать частицы от внешних влияний.

В результате измерения второй фотон первоначальной связанной пары также приобретал некоторую фиксированную поляризацию: копия первоначального состояния фотона-посланника передавалась удаленному фотону. Наиболее сложно было доказать, что квантовое состояние действительно телепортировано: для этого следовало точно определить, как установлены детекторы при измерении общей поляризации, и тщательно синхронизовать их.

Достигнув успехов в телепортации фотонов, экспериментаторы уже планируют работы с другими частицами – электронами, атомами и даже ионами. Это позволит передавать квантовое состояние от короткоживущей частицы к более стабильной. Таким способом можно будет создавать запоминающие устройства, где информация, принесенная фотонами, хранилась бы на ионах, изолированных от окружающей среды.

После разработки надежных методов квантовой телепортации возникнут реальные предпосылки для создания квантовых вычислительных систем.

Есть ли польза от телепортации?

Телепортация обеспечит надежную передачу и хранение информации на фоне мощных помех, когда все другие способы оказываются неэффективными, и может быть использована для связи между несколькими квантовыми компьютерами. Кроме того, и сами разработанные исследователями методы имеют огромное значение для будущих экспериментов по квантовой механике, для проверки и уточнения целого ряда современных физических теорий.

В различных странах обсуждаются программы по применению эффекта квантовой телепортации для создания квантовых оптических компьютеров, где носителями информации будут фотоны. Первые электронные компьютеры потребляли десятки киловатт энергии. Скорость работы квантовых компьютеров и объемы информации будут на десятки порядков превосходить таковые у существующих компьютеров.

В будущем сети квантовой телепортации получат такое же распространение, как современные телекоммуникационные сети. Кстати, квантовые вирусы будут гораздо опаснее нынешних сетевых, так как после своей телепортации они смогут существовать вне компьютера. Квантовые компьютеры будут реализовывать холодные вычисления, работая практически без затрат энергии.

Можно ли узнать все?

К настоящему времени квантовая информатика обрела все признаки точной науки, включая систему определений, постулатов и строгих теорем. К числу последних относится, в частности, теорема о невозможности клонирования кубита (no-cloning theorem), строго доказанная с применением теории унитарного оператора квантовой эволюции. Это значит, что невозможно, получив полную информацию о квантовом объекте А (изначально его состояние не известно), создать второй, точно такой же объект, не разрушив первый.

Дело в том, что создание двух кубитов, абсолютно копирующих друг друга, приводит к противоречию, которое можно было бы назвать парадоксом квантовых близнецов.Однако и без того ясно, что создание двух электронов в одном и том же квантовом состоянии невозможно в силу ограничения, накладываемого принципом Паули.

Парадокс близнецов не возникает, если при клонировании снабжать копии отличительными признаками: пространственно-временными, фазовыми и др. Тогда генерацию лазерного излучения можно понимать как процесс клонирования фотона-затравки, попавшего в среду с оптическим усилением. Если же к квантовому копированию подходить строго, то рождение клона должно сопровождаться уничтожением прототипа. А это и есть телепортация.

Согласно принципу неопределенности, чем больше получено информации о некоем объекте, тем больше искажений вносится в этот объект. И так до тех пор, пока исходное состояние объекта не будет нарушено полностью, но в то же время точная копия все-таки не получится. Это звучит как весомое возражение против телепортации: если для создания точной копии из объекта невозможно извлечь достаточно информации, то похоже, что точная копия не может быть создана.

Единственный способ – извлечь часть информации, необходимой для передачи от объекта А объекту С, который никогда не был в контакте с объектом А. Затем, обрабатывая объект С в зависимости от полученной информации, возможно привести его точно в то состояние, в каком находился объект А до того, как из него была извлечена информация. Сам объект А уже не находится в прежнем состоянии, поскольку вследствие извлечения из него информации его состояние было нарушено. Так что в результате происходит не дупликация, а телепортация.

Итак, оставшаяся часть информации передается от А к С через опосредующий объект В, который взаимодействует сначала с С, а потом с А. Правильно ли говорить «сначала с С, а потом с А»? Безусловно, для того чтобы передать нечто от А к С, носитель должен сначала контактировать с А и только потом с С, а не наоборот.

Однако существует некая удивительная, несчиты-ваемая часть информации, которая – в этом ее отличие от любого материального объекта и даже от обычной информации – ив самом деле может быть отправлена таким «обратным» путем.


    Ваша оценка произведения:

Популярные книги за неделю