Текст книги "Непознанное"
Автор книги: Фридрих Л. Бошке
Жанр:
Геология и география
сообщить о нарушении
Текущая страница: 13 (всего у книги 17 страниц)
Сенсацией прозвучало в конце 1961 года сообщение двух американских исследователей о том, что с помощью новейшей техники им удалось обнаружить в двух метеоритах «организованные элементы»! Они демонстрировали сотни, тысячи миниатюрных, размером в тысячную долю миллиметра, круглых и шестигранных частичек. Но это вызвало подозрение: почему их считают остатками прежних организмов? Если они и биологического происхождения, то, возможно, это просто загрязнения, внесенные в метеориты уже на Земле. Страницы научных журналов были заполнены аргументами «за» и «против», никто не мог решиться сказать последнего слова, ни один эксперимент не давал окончательного ответа. Ясно было только одно: метеориты приносят из космоса бесчисленное количество простых и сложных веществ, которые, с точки зрения нашей классификации, можно отнести к разряду растительной, а то и животной жизни. Возможно, эти вещества только первоначальные материалы, из которых в космосе вырастает жизнь, а может быть, среди метеоритов можно разыскать остатки погибшего космического тела, на котором существовала жизнь, ясно только, что космос таит значительно более благоприятные возможности для возникновения ее, чем мы некогда полагали. Проведем следующий расчет: предположим, что метеориты падают на Землю равномерно и постоянно с тех пор, как она возникла, и что их состав все время был одним и тем же. В этом случае для появления первых живых организмов на Землю должно было бы занесено 300 миллионов тонн аминокислот и 50 миллионов тонн формальдегида. Допустим, что эти количества следует уменьшить в два, а то в десять или сто раз, все равно они слишком велики.
Можно лишь сказать с определенностью, что метеориты могут заносить на планеты и звезды определенные соединения, которые имеются в космическом пространстве. Если они попадают там на благоприятную почву, вещества смогут послужить ступенькой становления жизни. Если метеориты приносят с собой аминокислоты, те могут стать основным материалом, из которого будет строиться белок, а если формальдегид – то сахара (углеводы).
Знаменитый шведский ученый, физик и химик, директор Нобелевского института физической химии в Стокгольме и сам лауреат Нобелевской премии 1903 года Сванте Аррениус (1859–1927) занимался проблемами возникновения и распространения жизни в космосе. В 1903 году он опубликовал фундаментальную работу «Учебник космической физики», где высказал предположение, что жизнь вначале могла распространяться во вселенной в виде спор, зародышевых клеток. Этот тезис Аррениуса был предметом ожесточенных споров, который перешел даже на страницы бульварной прессы.
Затем шум затих, в памяти потомства остались главным образом выдающиеся специальные работы Аррениуса, в частности, о происхождении оледенений. Аррениус полагал, что иногда вулканы выбрасывали огромные количества двуокиси углерода, в результате чего снижалось излучение Землей тепла в космическое пространство. Она нагревалась, растения начинали бурно разрастаться, возникавший при этом кислород действовал в обратном направлении, вызывая похолодание. Эта теория сомнительна, но интересна тем, что пытается показать взаимозависимость теплых и холодных периодов в истории Земли.
Что же касается провозглашенной Аррениусом «панспермической гипотезы», то в настоящее время мы считаем невероятным, что зародыши жизни могут существовать в космическом пространстве настолько долго, чтобы их можно было переносить от звезды к звезде, а вот мысль, что сырьевые материалы, необходимые для построения жизни, переносятся в космосе метеоритами (а может быть, и кометами), представляется не такой уж невероятной. В 1970 году был опубликован расчет, согласно которому в мировом пространстве имеется от 300 000 000 000 до 30 000 000 000 000 планет, на которых может существовать жизнь.
Такой подход влечет за собой бесчисленный ряд вопросов. Назовем только три из них:
1) Является ли возраст жизни старее возраста Земли?
2) Если есть планеты, на которых жизнь существует дольше, чем на Земле, как протекала там эволюция, были ли там люди, было ли что-то сменившее людской род на этих планетах?
3) Где же возникла жизнь впервые, существует ли на белом свете какой-то «космический рай» создателя? Может быть, и наш «рай» занесен из космоса?
Ясно, что на подобные и многие другие вопросы мы еще не можем ответить. Что бы мы тут ни сказали, это все будет умозрительным соображением, уводящим нас далеко за границы нынешних познаний. Но одно положение следует всегда иметь в виду: жизнь на Земле возникла в невероятно короткие сроки. Стоило планете приобрести твердую оболочку, и за какие-нибудь полтора миллиарда лет на ней появилась жизнь, то есть на земном шаре развитие шло очень быстрыми темпами, а затем замедлилось.
Может быть, в те древние времена все-таки пришла химическая помощь извне? Мы склоняемся к отрицательному ответу на этот вопрос, но тогда придется примириться с весьма неприятным признанием: возникновение жизни должно иметь высокую степень вероятности «повседневности», а это означает, в свою очередь, что «жизнь» столь тривиальное событие, что о ней не стоит и говорить. Не правда ли, довольно грустная картина?
Пытаясь не только прочесть и запомнить те цифры, те факты, которые приведены в настоящей главе, но и как-то осмыслить их, мы наталкиваемся на две трудности. Первая из них – это общее понятие времени. Хотя наши часы и показывают бег часов и дней, но это ничего не означает. Ни понятие дня, ни недели не может послужить единицей отсчета времени. Для школьника неделя – это утомительное отбывание уроков.
Для специалистов неделя бывает часто слишком мала, чтобы выполнить все намеченное, об отпуске и говорить нечего, тут время летит, только успевай оглядываться!
Еще хуже мы осмысливаем большие числа. Сотни или тысячи еще куда ни шло, но разница между ста тысячами и миллионом для большинства из нас заключается только в лишнем нуле, представить себе такие числа нам трудно.
Можно было бы, например, здесь провести длинную линию, надписать на ней числа, обозначающие годы, и пометить, что за эти годы произошло. Если длина линии для каждого года будет равна миллиметру и на каждой странице книги можно было бы провести линию длиной в метр, то для иллюстрации возраста Земли, который округленно составляет пять миллиардов лет, нам потребовалось бы пять миллионов страниц, толщина такой книги составила бы около 400 метров. Но и такие игры с числами ничего не прибавляют нашему сознанию.
Попробуем другой пример.
Предположим, что человек прожил 80 лет, это значит, что он жил 2 522 880 000 секунд, округлим это значение до 2,5 миллиарда секунд, сравним с пятью миллиардами лет – возраст Земли, тогда увидим, что одна секунда человеческого существования соответствует всего двум годам в истории Земли. Секунда как единица времени нам понятна, смена времен года весна – лето – осень – зима также вполне хорошо осознаваемый интервал времени. Если мы скажем, что полгода истории Земли равны секунде человеческой жизни, картина эволюции постепенно проясняется.
Предположим, что первая жизнь появляется на Земле, когда ей 1,5 миллиарда лет, то есть это человек в возрасте 23,7 года, это осень его 24-летия, и осенью зарегистрированы первые примитивнейшие живые организмы. А до этого не было ничего, кроме мертвого земного шара, окутанного облаками, оглушаемого грозами, – зрелище, которое со временем становится утомительным. Лишь в 60 лет на Земле появляется что-то новенькое, поверхность преобразуется, складывается в горы, изменяется форма океанов, наступает процесс, который геологи называют «алгомическим горообразованием».
Когда человек празднует 71-й год, своего рождения (примерно 600 миллионов лет тому назад), он видит на Земле, помимо растений, множество животных, пока беспозвоночных. Потом (спустя 300 миллионов лет) перед его глазами вырастают гигантские зеленые хвощи и папоротники. Вокруг летают насекомые, рептилии выходят на сушу и ползут через бесконечные леса. Нашему наблюдателю уже 75 лет, но тут он становится свидетелем еще более поразительных вещей, ведь по просторам земли начинают вышагивать неуклюжие ящеры, а оперенные чудища даже поднимаются в воздух.
Но как раз когда человеку стукнуло 78 лет, все эти животные так же внезапно, как они появились, вымирают, но в утешение нашему старцу на расколотых кусках суши расцветают пестрые растения: белые, розовые, желтые цветы.
А через год все в цвету: поднимаются пальмы, дубы, веллингтонии. Стало больше млекопитающих, можно даже увидеть полуобезьян, но вот птиц поубавилось.
Идут месяцы, и вот случается событие, которое способно взволновать даже такого убеленного сединой старика, как наш наблюдатель, – ему 79 лет, и через 4 месяца в праздничный торт будет воткнуто 80 свечей. На первый план пробиваются обезьяноподобные создания, качаясь на задних лапах, они меняют свой облик и все больше приобретают сходство с человеком. Вот уж они и совсем люди, такие же, как он сам.
Чудные дела творят эти существа. Час назад они начали складывать из камней высокие пирамиды, а через полчаса принялись выплавлять в печи железо. Вот уже засверкали атомные молнии, от которых у наблюдателя начали слезиться глаза, и ему вдруг становится скучно дальше смотреть на мир. Пусть ищет себе другого наблюдателя.
Глава 15
Мы узнаем все больше

В любом школьном учебнике написано, что вода представляет собой соединение, формула ее H2O. Но действительно ли мы знаем, что такое вода? Правильна ли эта формула? Ясно только одно: формула упрощена, а точнее сказать, вовсе неверна! Нас окружают океаны воды, а мы не знаем, откуда они взялись, что там за вода.
Древние греческие философы видели бесконечные потоки воды и пришли к выводу: вода – это элемент такой же, как земля, воздух и огонь. Из этих четырех элементов составлено все на Земле. Превосходная картина, и она продолжала считаться идеальной до XVII века.
Еще в 1770 году любимым зрелищем был взрыв газовых смесей. Поджигание и сгорание водорода и кислорода есть не что иное, как синтезирование воды, и никто не обращал внимания на некоторое количество влаги, которое при этом возникало. Спорили скорее, не может ли вода превратиться в «землю», притом настолько серьезно, что гениальный французский химик Антуан Лоран Лавуазье (1743–1794) в течение трех месяцев подряд дистиллировал воду, чтобы посмотреть, не произойдет ли это превращение.
Продвижению вперед мешала в те годы освященная большими именами и весьма стройная система, основанная на беспочвенных предположениях, так называемая «теория флогистона». Согласно этой теории из сгорающего материала выделяется вещество, субстанция под названием «флогистон». И хотя тот же Лавуазье обнаружил, например, что алмазы состоят из углерода, и исследовал минеральную воду, он тоже придерживался теории флогистона.
Первым, кто понял, что такое вода, был инженер и изобретатель паровой машины Джеймс Уатт, хотя он и не был химиком и не проводил соответствующих экспериментов, просто он был лишен предрассудков. Джеймс Уатт родился в Шотландии в 1736 году, он не без успеха пробовал себя в различных областях, строил математические аппараты, астрономические приборы, модели паровых машин, его увлекало то направление в технике, которое мы сейчас называем технологией. Уатт смог построить усовершенствованную паровую машину, но о воде он знал разве только то, что из нее можно получить пар. Его не тяготил груз предвзятых мнений, и поэтому Уатт первый понял смысл экспериментов, выполненных его современниками. 26 апреля 1783 года он пишет Дж. Пристли (1733–1804): «Разве нельзя считать, что вода состоит из флогистона (читай: водорода) и дефлогистонизированного воздуха (читай: кислорода)…»
Идею эту подхватили, и уже в июле того же года англичане настолько прониклись новой верой, что молодой ассистент, входивший в состав группы ученых, посетивших Францию, рассказал об этом Лавуазье. Тот повторил основные эксперименты, понял, что означает новое открытие, и немедленно сообщил о нем Французской академии наук, не упоминая об английских исследователях. Так что на континенте он, Лавуазье, считался великим первооткрывателем, и начался спор о приоритете, продолжавшийся десятки лет под названием «спор о воде». Уатт уже давно умер (1819 год), и лишь в 1835 году его приоритет был окончательно установлен.
Между тем Европу сотрясали революционные бури. Как генеральный королевский откупщик Лавуазье был казнен 8 мая 1794 года на гильотине – «чихнул в мешок», по тогдашнему выражению. Завязывались войны, рушились империи, реформировались школы и учебные планы, но в них не появилось ничего нового, кроме того, что открыл Уатт.
И все же вода совсем не такое простое соединение, как представлялось знаменитому изобретателю. Через 250 лет становится ясно, что при нормальной температуре вообще нет отдельных молекул воды и что хотя она, без сомнения, текучее вещество, но имеет и определенную структуру, некоторое количество H2O объединяется в хорошо организованные «сгустки». Вода представляет собой жидкость, составленную из кристаллообразно спеченных друг с другом групп H2O.
Хорошо бы иметь такую жидкость, в которой можно было бы растворить «водные кристаллы», как растворяют сахар или соль, тогда можно было бы повнимательней изучить ее, но никто не знает такого средства, и ученым до сих пор остается гадать, составлены ли эти «кристаллы» из 8 или 12, а может быть, и из 300 отдельных H2O. А может быть, из больших и малых групп? И как это все зависит от температуры воды? Каким методам измерений можно доверять? Все же мы надеемся, что «терпение и труд все перетрут», в том числе и молекулы воды.
В 1970 году в этот спор вмешался еще физикохимик Борис Дерягин, который провозгласил учение о совсем новой поливоде.
Опыты Дерягина как будто ничего особенного собой не представляли: он конденсировал водные пары в воду в тонкой капиллярной кварцевой трубочке. При этом ему показалось, что появляются следы совершенно нового типа воды, которая на 40 процентов тяжелее обычной, не изменяется при 500 °C, а при 700° может расплавиться в «нормальную» воду и, наконец, при –40° застывает в стекловидный лед. Ученые высказали свое мнение: нечистый опыт, ошибка, изъяны в эксперименте. Лишь когда в ежедневных газетах замелькали сообщения о поливоде, открытием ученого заинтересовались.
Теоретикам начало казаться, что поливода находит подтверждение в некоторых теоретических положениях и в расчетах, выполненных на ЭВМ. За эксперименты принимаются и другие, и, смотрите, некоторые обнаруживают, что Дерягин прав! Новый вид воды! И уже целые страницы научных журналов в Западной Европе заполнены сообщениями о поливоде. Находятся ее страстные сторонники и бурные отрицатели.
Поливода, да это ведь элементарно: так же как в пластмассе бесчисленные отдельные кирпичики образуют полимер, скажем, как молекулы этилена образуют полиэтилен, так же и вода составляет поливоду – ведь это так просто! Или все же нет?
Казалось бы, ученым легко разрешить подобный «простой» спор экспериментальной проверкой, но это отнюдь не так. Если вести опыт в точном соответствии с методикой, предложенной Дерягиным, получаются результаты, о которых он сообщил, но когда пытаются видоизменить эксперимент, они получаются совсем иными, а то и противоположными. В отчаянии предлагают компромиссное решение: если вода находится в капилляре, то она образует особый слой толщиной в несколько тысячных долей миллиметра, вот он-то причина своеобразного поведения воды. Но это не так, и достаточно провести тщательное исследование, чтобы в этом убедиться.
Летом 1973 года в Марбурге, небольшом университетском городе, собралась группа ученых из разных стран, чтобы провести дискуссию о воде. Были запланированы научные работы, в специальной литературе появились сообщения других исследователей о новой «воде». И тут вдруг приходит весть из Москвы – Дерягин больше не настаивает на своем открытии, возможно, оно не имеет ничего общего со структурой воды.
Так бывает в науке. На страницах школьных учебников об этих сложных и противоречивых поисках истины не пишут.
Кстати, спор по поводу поливоды на этом не закончился… Остаются необъясненными результаты измерений. Насколько можно судить, исследователи не собираются долго сидеть сложа руки. Уже через три месяца после «дела о поливоде» ученый в Филадельфии дал повод к новой дискуссии: он вспоминает о работах 1895 года, где говорилось о странной структуре, которую обнаруживает вода в мембранах организма. Вместо понятия поливода дискутируются теперь такие понятия, как «структурированная вода» и «поляризованные множественные водяные слои». В данном случае провести более или менее доказательные эксперименты будет еще сложнее, ведь в живом организме нельзя проводить опыты так же свободно, как в стеклянной пробирке.
Наверное, пришло время вспомнить, почему так необходимо побольше узнать о воде: из нее на 75–96 процентов состоит организм животных, растений и самого человека.
Нередко именно нарушения в балансе воды или в обмене солей, содержащихся в воде организма, становятся причиной заболеваний.
Нам известны тысячи вещей о нашем обмене веществ, о различных продуктах питания, о фармацевтических препаратах, витаминах и гормонах, мы можем обеспечивать космонавтов в течение многих недель их полета искусственной едой и все еще недостаточно знаем о воде, составляющей основную массу нашего тела.
Или вот другой пример – наши кости. На 85 процентов они состоят из неорганического соединения – фосфата кальция. И тут химики разводят руками, они лишь весьма неопределенно могут ответить на такие вопросы: какими путями фосфат кальция откладывается в костях, как он образуется, как приобретает прочную структуру. Если у больного «размягчение костей» – остеопороз, то врач не знает толком ни причины его болезни, ни как ее лечить, здесь тоже пора провести фундаментальные исследования.
Подобно тому как для человека и животных кости составляют опорный скелет, для растений такую роль играет лигнин. В них до 33 процентов этого желтоватого порошка.
Но так ли это? Специальные работы о лигнине составляют целые тома. И все же мы знаем разве только химический состав его и имеем очень остроумные гипотезы, как он мог бы появиться в растении. На Земле огромные площади лесов, каждый день в них вырастают тысячи тонн лигнина, а детальная структура этого важнейшего для нашей флоры материала все еще неясна. Некоторые ставят под сомнение вообще его существование в природе. Может быть, тот материал, который химия искусно извлекает из древесины, приобрел свою химическую форму именно в результате этого процесса. При переработке древесины на целлюлозу, например, получают гигантские количества лигнина, до 40–50 миллионов тонн в год. Может показаться невероятным, но мы до сих пор не знаем, что же отделяется от древесины и, что хуже, куда эти миллионы тонн девать. Уже хорошо, когда удается избавиться от них, не нарушая правил экологии.
Мы упомянули о целлюлозе. Она для растений важнее лигнина. Целлюлоза, чаще всего встречающееся в природе органическое соединение, – важный материал, из которого строится скелет растения. Может быть, мы знаем, как это вещество появляется в них? Ничего подобного!
Не хотелось бы, чтобы читатель, основываясь на скудости наших знаний о таких субстанциях, как вода, кости, лигнин или целлюлоза, пришел к заключению, что химия и медицина – отсталые науки. В других областях положение дел не лучше, там тоже горы фундаментальных проблем, которые остаются нерешенными.
Более того, именно в медицине и химии за последние десятилетия наблюдается огромный прогресс. Из животного и растительного сырья выделены важные природные вещества, которые имеют лечебное значение, они исследованы, синтезированы, притом в нескольких вариантах, и нередко улучшены настолько, что относятся к золотому фонду лекарственных препаратов. Если мы потеряли страх перед простудами, воспалением легких, заболеваниями половых органов, даже перед такими тяжелыми болезнями, как диабет и туберкулез, то только благодаря исключительным успехам медиков и химиков, которые нередко выступают единым фронтом. Мы значительно превысили тот запас лекарств, которым снабдила нас природа!
Так же обстоит дело в области продовольствия. Мы сейчас получаем большие урожаи и более здоровые продукты питания от улучшенных и выращенных искусственным путем растений, чем когда-либо. Ими можно накормить гораздо больше людей, чем казалось несколько десятилетий назад. С тех пор как химия, биология и медицина достигли современного уровня, в Европе в мирное время больше не было ни эпидемий, ни голода, и лишь в сказках или в таких названиях на географических картах, как «пустынь», остались упоминания о целых местностях, которые некогда вымирали.
Никогда еще люди не жили так уверенно и беззаботно, как в наши дни, против каждой маленькой хвори есть снадобье. Мы удивляемся, когда таблетка не помогает немедленно, вовсе не удивляясь тому, что она существует. Мы настолько привыкли к тому, что вокруг нас решаются различные проблемы, преодолеваются затруднения, что считаем «чудом», когда какие-то вопросы в данный момент оказываются неразрешимыми. Стоит нам столкнуться с чем-то необъяснимым и странным, как мы немедленно объявляем это «чудом» и нередко спешим приписать его делу рук «сверхъестественных сил» или «космических пришельцев», вместо того чтобы воспользоваться собственным разумом. Культ Денекена, процветавший некоторое время тому назад, не что иное, как попытка профанов прояснить те проблемы, для познания которых не хватает пока опыта и сведений. Две тысячи лет назад, чтобы объяснить молнию и гром, придумали бога Донара, а чтобы уяснить причины восхода и заката солнца – бога света.
Для тех, кому не по душе кропотливые исследования, может показаться приемлемым и приятным нереальный, населенный духами и украшенный хитроумными словесами мир. Оставим в нем мечтателей и лентяев. Тот же, кто принадлежит нашему времени и хотел бы жить в нем, должен попытаться понять мир, даже если это окажется труднее, чем строить воздушные замки. Точные науки смогли объяснить уже так много божественных чудес, что сама наука представляется теперь сказочным великаном, который раньше показывал фокусы, а теперь подробно объясняет зрителям, как они делаются.
Одним из самых распространенных суеверий остается представление, будто прежние поколения жили-де «здоровее». Между тем все археологические и исторические памятники неопровержимо свидетельствуют, что они страдали от болезней, голода, нищеты и грязи.
«Высокая культура» Древнего Египта была эпохой невероятно грязной, люди тесно жались друг к другу в своих лачугах по краю немощеных улиц. Огромные семьи жили вместе со своими слугами, а заодно и со всеми видами «казней египетских»: вшами, мышами, блохами, комарами, мухами, другими паразитами всякого рода, змеями. Вши были распространены невероятно, их яйца обнаруживают даже в волосах мумий «высокопоставленных» персон. Чтобы избавляться от вшей, священники через день сбривали все волосы. Нужду справляли в любом месте, особенно охотно в различных водотоках, и то, что не уносили потоки воды в ручьях, реках и арыках, испарялось на солнце. По земле бродили инфекционные, глистные болезни, а также заболевания, связанные с обменом веществ. Голод был частым гостем, ремесленники понятия не имели о самых простейших способах защиты от ядовитых паров, например, при обработке металлов.
Немногим лучше дело обстояло на Американском континенте во времена мексиканской культуры. Есть, например, свидетельство одного географа: в 1542 году, когда он высадился в бухте Сан-Педро, он хорошо видел две горы, но долину, лежавшую перед ними, полностью окутывал дым от костров, разложенных туземцами. В легких одной мумии на Канарских островах обнаружены толстые отложения сажи… «Загрязнение окружающей среды», ныне притча во языцех, и прежде приобретала весьма заметные масштабы.
Для боевых отрядов древних римлян существовало правило, что даже самые отборные дисциплинированные отряды не должны были задерживаться на одном месте более пяти дней, иначе среди них из-за сопутствовавшей грязи вспыхивали болезни (по-видимому, тиф и дизентерия). Известный полководец киргизов Тамерлан запретил своим солдатам пить некипяченую воду, а Александр Македонский пил воду только из серебряных бокалов, а серебро, как мы теперь знаем, имеет бактерицидное действие. Там, где стояли лагерем армии, свивали гнезда эпидемии, и нередко положение осаждавших становилось настолько тягостным, что осажденные спокойно выжидали за крепостной стеной, когда солдаты, измотанные болезнями, отступят.
Немногим лучше выглядели средневековые города Европы. «Культурный слой» откладывался за «культурным слоем», и нередко посещавшие город пожары были, с медицинской точки зрения, единственным спасением. Запах городов разносился на многие километры от городской стены. И мастерские ремесленников, и крестьянские дворы, и домашнее хозяйство – все они выкидывали отбросы и распространяли отнюдь не ароматные запахи.
Из времен турецких войн осталось описание осады, когда после нескольких бесплодных атак турки начали строить большие осадные башни, чтобы с их помощью преодолеть валы и бастионы. Как только осажденные увидели, что башни выстроены во впадине перед воротами, они начали собирать по городу все нечистоты. Когда турки пошли в атаку, шлюзы открылись и осадные машины действительно застряли в вязкой коричневой жиже.
Когда Генрих V в 1415 году пересек Ла-Манш, чтобы завоевать Францию, его войско насчитывало 15 тысяч человек, а к моменту решающей битвы при Азенкуре он мог выставить только девять тысяч, остальные были поражены дизентерией.
Не так уж радикально изменилась ситуация и в наши дни. С 1 июня 1940 по 1 июня 1941 в итальянской Восточной Африке союзники выставили против немцев 100 тысяч человек; из них заболели 74 250; а было ранено во время военных операций только 834 человека.
Да и сейчас мы нередко еще по уши находимся в собственной грязи, вспомните наши поезда, автобусы, трамваи, которые представляют собой прямо-таки инфекционные отделения на колесах. Наши деревни и города воздвигнуты на старых отбросах, и мы непрестанно пополняем их отходами, сточными водами, фекалиями и разными нечистотами; их увозят подальше от глаз; раз мы их не видим, значит, все в порядке.
Запах поуменьшился, но «хорошего» воздуха почти не осталось в населенных, как военный лагерь, областях планеты. Через некоторое время он, возможно, станет чуть ли не основным жизненным продуктом. Воздушные массы ограничены, в то время как воду еще можно очищать или черпать из океанских запасов. Когда школьникам и студентам рассказывают, насколько мала молекула, не мешало бы рассказать им заодно, насколько ограничены запасы воздуха. Английский химик, лауреат Нобелевской премии 1947 года сэр Роберт Робинсон любил приводить наглядный пример:
«Когда Шекспир написал первую строчку второго акта Гамлета, он вздохнул и выдохнул. С той поры ветер смешал этот воздух с остальным воздухом. Так что, когда вы теперь вдыхаете, вам в легкие попадают две молекулы того воздуха, который некогда выдохнул Шекспир».
В правильности этого расчета не приходится сомневаться. Мы вдыхаем воздух, который уже побывал в человеческих легких, так же как мы пьем воду, которую уже пили другие, как мы принимаем пищу, выросшую на почве, гумус которой образовался из остатков прежних поколений. Земля много раз переживает саму себя, да и мы лишь продукты регенерации прежних поколений.
Задержимся еще на некоторое время на воздухе, нас окружающем, на атмосфере. Своими основными знаниями о воздухе мы обязаны самому чудаковатому ученому, который когда-либо жил на белом свете, Генри Кавендишу. О юности Генри известно немного. Он родился 10 октября 1731 года в Ницце. Его отцом был лорд Чарльз Кавендиш, болезненная мать была дочерью герцога Кентского. Кавендиш учился в школе, посещал Кембриджский университет, но не сдавал в нем экзаменов, стал членом Королевского общества, а потом о нем известно только, что он постоянно работал, не прерываясь даже на воскресенье.
Он унаследовал огромное состояние, но был очень скромным в одежде и еде, охотно приглашал друзей, но и их потчевал простыми блюдами. Его большая научная библиотека была открыта для всех. Если ему нужна была книга, он самому себе выписывал читательскую карточку. По сей день верны, по-видимому, слова из некролога – Кавендиш умер 24 февраля 1810 года: «Он был самым богатым из ученых и ученейшим из богачей». Возможно, он вообще не очень понимал, что такое деньги. Услышав, что один из его бывших библиотекарей оказался в затруднительном положении, Кавендиш, запинаясь, промолвил: «Как бы мне хотелось ему помочь! Как Вы думаете, чека на 10 тысяч фунтов хватит?»
Кавендиш был бы более известен в истории науки, если бы быстрее публиковал результаты своих исследований. Пожалуй, самая важная его работа – это «Эксперименты о воздухе» (1784 г.). За год до нее он описал аудиометр – прибор для определения качества воздуха. В четырехстах экспериментах Кавендиш установил: чистый воздух содержит 20,84 процента кислорода, в наши дни, спустя двести лет, мы приводим количество 20,946 процента – результаты Кавендиша улучшены всего на одну десятую.
На счету ученого еще одно эпохальное открытие: он смог показать правильность предположения Джеймса Уатта, что вода состоит из кислорода и водорода. Именно ассистент Кавендиша Бленджен сообщил в 1783 году Лавуазье этот основополагающий результат.
О воздушной оболочке Земли нам известно очень многое. Мы распределили ее на слои, измерили их химический состав, зарегистрировали температуру, исследовали влияние солнечного света, зафиксировали и использовали явления приливных и отливных течений в воздухе. Казалось бы, мы накопили уйму знаний, чтобы ответить на любые вопросы, но это не так.
Вот, скажем, проблема очистки воздуха, которая чрезвычайно интересует нас. При обсуждении возникают числа с невероятным количеством нулей. Пугает не их число, мы ведь всегда можем найти какой-то эквивалент измерениям, скажем, вместо количества тонн приводить вес соответствующего количества Эйфелевых башен, что резко снизит число нулей. Беда в том, что они показывают, как близки к нулю наши истинные знания.
Считают, что вся природа (сюда включена и деятельность человека) отдает в окружающую атмосферу 1 000 000 000 000 тонн материалов. 500 000 000 тонн из них – продукты техники и хозяйства, то есть нашего непосредственного существования. В общем, это небольшое количество – всего лишь 0,05 процента от той массы газов, которую выбрасывает в воздух природа.








