355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Федор Жигарев » Мотоциклы » Текст книги (страница 12)
Мотоциклы
  • Текст добавлен: 12 марта 2018, 19:30

Текст книги "Мотоциклы"


Автор книги: Федор Жигарев


Соавторы: Сергей Карзинкин

Жанры:

   

Руководства

,

сообщить о нарушении

Текущая страница: 12 (всего у книги 21 страниц)

6. Воздухоочистители

Мотоциклы наиболее часто используются в теплое время года, когда, как известно, дороги, особенно грунтовые, покрыты пылью. Дорожная пыль, поступая с воздухом в цилиндры двигателя, способствует быстрому увеличению износа цилиндров, поршней и поршневых колец, а также образованию нагара в цилиндрах. Пыль, попадающая внутрь картера двигателя, увеличивает износ подшипников и, загрязняя масло, затрудняет подачу его к подшипникам.

Для предотвращения попадания пыли в цилиндры двигателя применяются воздухоочистители.

Воздухоочистители должны обеспечивать: высококачественную очистку поступающего в цилиндр воздуха от содержащейся в нем пыли; незначительное сопротивление прохождению воздуха через воздухоочиститель.

Качество очистки воздуха, прошедшего через воздухоочиститель, оценивается содержанием в нем пыли. Принято считать, что количество пыли не должно превышать 0,001 г/мвоздуха.

Качество очистки воздуха зависит от степени загрязненности воздухоочистителя. Своевременная очистка воздухоочистителя от пыли и устранение неплотностей в соединениях обеспечивают высокое качество очистки воздуха.

Несвоевременная очистка воздухоочистителя приводит к снижению его пропускной способности, а также к уменьшению мощности двигателя, вследствие того, что при загрязнении воздухоочистителя уменьшается подача воздуха и увеличивается разрежение в карбюраторе, рабочая смесь обогащается и процесс горения ухудшается.

Воздухоочистители, применяемые на мотоциклетных двигателях, могут быть центробежными, контактно-масляными или инерционно-масляными.

На рис. 73 представлен центробежный воздухоочиститель, применяемый на мотоциклах ИЖ-350 и ИЖ-49.


Рис. 73. Центробежный воздухоочиститель: 1 – горловина; 2 – защитный колпак; 3 – направляющие лопатки; 4 – кожух; – отверстия; 5 – пылесборник.

Внешний воздух поступает под защитный колпак 2 на направляющие лопатки 3, которые создают вихревой поток воздуха в кожухе 4. Под действием центробежной силы пыль отбрасывается к стенкам кожуха и, опускаясь вниз, попадает через отверстия 5 в крышке в пылесборник 6.

Контактно-масляный воздухоочиститель показан на рис. 74.


Рис. 74. Контактно-масляный воздухоочиститель: 1 – корпус; 2 – сетка; 3 – воздушная заслонка.

Подобные воздухоочистители устанавливаются на двигателе мотоциклов М1А, К-125.

В корпусе воздухоочистителя устанавливаются две металлические сетки 2, между которыми находится набивка. Набивка периодически смачивается маслом.

Поступающий в цилиндр воздух проходит через сетку 2 и набивку, разбиваясь там на мелкие струи и оставляя на набивке частицы пыли.

На двигателе мотоцикла М-72 устанавливается инерционно-контактно-масляный воздухоочиститель (рис. 75).


Рис. 75. Инерционно-контактно-масляный воздухоочиститель: 1 – корпус воздухоочистителя; 2 – масляная ванна; 3 – фильтрующая набивка.

Воздух поступает под крышку корпуса 7, затем, опускаясь вниз, проходит над поверхностью масла в масляной ванне, оставляя там наиболее тяжелые частицы пыли. После этого воздух проходит через набивку сетчатого фильтра, смоченную маслом, и очищенный поступает в карбюратор.

Уход за воздухоочистителями заключается в периодической их очистке, пропитке маслом набивки и замене масла.

Периодичность очистки зависит от условий эксплуатации.

Фильтрующая набивка после промывки чистым бензином пропитывается моторным маслом. На место воздухоочиститель устанавливается только после того, как все избыточное масло из набивки вытечет.

Глава IX
ЭЛЕКТРООБОРУДОВАНИЕ МОТОЦИКЛА

1. Аккумуляторные батареи

Электрооборудование мотоцикла включает источники электрического тока и потребители.

К источникам электрического тока относятся аккумуляторная батарея и генератор. В некоторых случаях источником тока для зажигания рабочей смеси является магнето.

Аккумуляторная батарея питает электрическим током потребителей в том случае, когда двигатель мотоцикла работает на малых оборотах или не работает.

Генератор вырабатывает электрический ток для питания потребителей на всех режимах работы двигателя, кроме работы на малых оборотах.

К потребителям электрического тока в электрооборудовании мотоцикла относятся: приборы зажигания, обеспечивающие воспламенение рабочей смеси в цилиндре двигателя; приборы освещения, обеспечивающие освещение дороги во время движения мотоцикла; приборы сигнализации, звуковые (гудки) и световые (стоп-сигнал); контрольные приборы (контрольные лампы и амперметры).

Электрическая энергия может быть получена в результате преобразования химической или механической энергии. В свою очередь электрическая энергия может быть преобразована в химическую или механическую энергию. Примером преобразования химической энергии в электрическую и электрической в химическую служит аккумуляторная батарея, устанавливаемая на мотоциклах.

Аккумуляторная батарея обладает свойством накапливать электрическую энергию (зарядка) и отдавать ее потребителям (разрядка).

Мотоциклетная аккумуляторная батарея (рис. 76) состоит из трех аккумуляторов, соединенных последовательно.


Рис. 76. Мотоциклетная аккумуляторная батарея: 1 – банка аккумуляторной батареи; 2 – отрицательные пластины; 3 – положительные пластины; 4 – сепараторы; 5 – зажимы; 6 – пробки заливных отверстий.

Каждый аккумулятор состоит из банки 1, положительных 3 и отрицательных 2 пластин и крышки с заливной пробкой 6.

Пластины аккумулятора выполнены из свинца в виде решетки, отверстия которой заполнены активной массой, состоящей из смеси сурика и глета, замешанной на серной кислоте и вмазанной в решетки аккумулятора. Активная масса имеет пористое строение, что обеспечивает большую поверхность соприкосновения пластин с электролитом (раствором серной кислоты в воде). Положительные и отрицательные пластины разделены сепараторами 4.

Положительные пластины соединены перемычкой, которая имеет вывод, расположенный снаружи банки. Отрицательные пластины также соединены перемычкой и имеют свой общий вывод. Внизу пластины и сепараторы опираются на выступы, имеющиеся на дне банки. Выступы устраняют возможность замыкания расположенных рядом пластин выпавшей из пластин активной массой.

Если пропускать электрический ток, соединив положительный полюс источника тока с выводом положительных пластин, а отрицательный полюс – с выводом отрицательных пластин аккумулятора, под действием электрического тока активная масса отрицательной пластины превращается в губчатый свинец, а активная масса положительной пластины – в перекись свинца. В результате этого плотность электролита повышается и происходит накапливание электрической энергии.

При включении аккумулятора в цепь потребителей снова происходит взаимодействие активной массы с электролитом. На положительных и отрицательных пластинах образуется сернокислый свинец, и плотность электролита уменьшается.

Каждый аккумулятор независимо от величины числа пластин дает напряжение, равное примерно 2 в.

На большинстве мотоциклов принята шестивольтовая система электрооборудования. Чтобы от аккумуляторной батареи получить напряжение 6 в, аккумуляторную батарею составляют из трех аккумуляторов, соединенных последовательно.

Количество электричества, получаемое от полностью заряженной аккумуляторной батареи при разрядке в течение 10 часов током постоянной величины, носит название емкости аккумуляторной батареи.

Емкость аккумуляторной батареи измеряется в ампер-часах. Число ампер-часов представляет собой произведение принятого для данной аккумуляторной батареи разрядного тока на время, в течение которого будет происходить разрядка.

На мотоциклах устанавливаются аккумуляторные батареи, имеющие обозначение ЗМТ-7 и ЗМТ-14. Первый знак – цифра 3 обозначает количество аккумуляторов в батарее, а следовательно, и напряжение батареи. Второй знак – буква М и третий знак – буква Т обозначают, что аккумуляторная батарея мотоциклетного типа. Последняя цифра обозначает емкость аккумулятора при 10-часовом разряде.

2. Генераторы

Генератор служит для питания электрическим током потребителей и для зарядки аккумуляторной батареи.

Генератор на мотоцикле работает в условиях переменного числа оборотов коленчатого вала и изменяющейся нагрузки, но для нормальной работы всех приборов системы электрооборудования генератор на всех рабочих режимах должен поддерживать постоянное напряжение.

Генератор, устанавливаемый на мотоциклах, должен иметь небольшие размеры, небольшой вес и надежно работать в различных условиях эксплуатации.

Основой работы генератора является наведение тока в проводнике, который пересекает магнитное поле.

Схема генератора представлена на рис. 77.


Рис. 77. Схема генератора: 1 – корпус; 2 – полюсные башмаки; 3 – обмотка возбуждения; 4 – якорь; 5 – щетка; 6 – коллектор.

Генератор состоит из корпуса 1 с полюсными башмаками 2. На полюсных башмаках намотана обмотка возбуждения 3, которая своими концами соединяется со щетками 5. От щеток провода выходят наружу для соединения с потребителями.

Корпус и полюсные башмаки выполнены из стали, обладающей остаточным магнетизмом. На якоре 4 намотаны проводники, концы которых крепятся к пластинам коллектора 6. Каждая пластина изолирована от соседних пластин.

Когда во время работы двигателя якорь начинает вращаться, проводники якоря пересекают магнитное поле между полюсными башмаками корпуса. При этом в проводниках наводится электрический ток, который частично идет по цепи обмотки возбуждения и частично поступает на питание потребителей. Ток, проходящий по обмотке возбуждения, превращает полюсные башмаки в электромагниты, магнитное поле между башмаками усиливается, и на обмотки якоря генератора наводится большее напряжение.

Таким образом, с увеличением возбуждения растет и напряжение, снимаемое со щеток генератора.

На мотоциклах применяются генераторы как постоянного, так и переменного тока.

Генератор Г-11 (рис. 78). Устанавливается он на двигателе мотоцикла М-72.


Рис. 78. Генератор Г-11: 1 – корпус генератора; 2 – обмотка возбуждения; 3 – полюсный башмак; 4 – передняя крышка корпуса; 5 – защитная лента; 6 – якорь; 7 – коллектор; 8 – задняя крышка корпуса; 9 – щетки.

Корпус генератора 1 имеет один полюсный башмак 3, на котором намотана обмотка возбуждения 2. Роль второго полюсного башмака выполняет углубление на противоположной башмаку стенке корпуса.

Внутри корпуса эксцентрично размещен якорь 6 генератора, концы обмоток которого выведены на коллектор 7. Электрический ток с коллектора снимается щетками 9, установленными в щеткодержателях на задней крышке 8 корпуса. Вал якоря опирается на шариковые подшипники, установленные в передней 4 и задней крышках корпуса генератора. Один конец обмотки возбуждения подсоединен к зажиму Ш, а второй конец – с одной щеткой генератора, которая имеет вывод, к зажиму Я. Другая щетка генератора соединена с массой корпуса генератора. В задней крышке корпуса генератора имеются окна, закрываемые лентой 5.

На валу якоря устанавливается шестерня, которая входит в зацепление с шестерней распределения двигателя. Эксцентричное расположение вала якоря в корпусе позволяет регулировать зазор между зубьями шестерен привода.

Правильная установка зазора достигается поворотом корпуса генератора по часовой стрелке до отказа и последующим перемещением корпуса на 2–3 мм в обратную сторону.

Мощность генератора Г-11 равна 45 вт при 7500 оборотов в минуту и напряжении 6 в.

На мотоциклах M1А устанавливается генератор Г-35, а на мотоциклах ИЖ-350 – генератор Г-36. Генераторы Г-35 и Г-36 принципиального отличия в устройстве от генератора Г-11 не имеют.

3. Реле-регуляторы

Во время работы двигателя обороты якоря генератора изменяются в больших пределах, а следовательно, изменяется и напряжение тока, вырабатываемого генератором. Значительное увеличение напряжения тока во время работы двигателя может привести к перегоранию нитей ламп в системе освещения, к чрезмерному повышению силы зарядного тока и т. д.

С целью поддержания постоянства напряжения при изменении оборотов якоря генератора в систему электрооборудования включен специальный прибор – реле-регулятор (реле-регулятор состоит из двух самостоятельно работающих приборов – регулятора напряжения и реле обратного тока).

Но при постоянном напряжении, поддерживаемом регулятором, сила тока, снимаемая с генератора, при увеличении нагрузки будет увеличиваться. Поэтому регулятор предназначен также ограничивать силу тока, вырабатываемого генератором. Таким образом, регулятор напряжения предохраняет генератор от перегрузки, приводящей к перегреву обмоток генератора и выходу их из строя.

Реле обратного тока служит для соединения цепи генератор – аккумуляторная батарея, когда напряжение тока, вырабатываемого генератором, выше напряжения аккумулятора (зарядка аккумулятора), и для размыкания цепи генератор – аккумуляторная батарея, когда напряжение тока, вырабатываемого генератором, ниже напряжения аккумуляторной батареи, так как при падении напряжения генератора ток из «аккумуляторной батареи может пойти на массу по обмоткам генератора и перегреть их.

Реле-регулятор РР-30. На мотоциклах М1А и М-72 устанавливаются реле-регуляторы РР-30 и РР-31. Поскольку они имеют одинаковое устройство, ограничимся описанием работы реле-регулятора РР-30 (рис. 79).


Рис. 79. Реле-регулятор РР-30: 1 – сердечник реле обратного тока; 2 – ярмо реле обратного тока; 3 – якорь реле обратного тока; 4 – неподвижный контакт (стойка) реле обратного тока; 5 – сердечник регулятора напряжения; 6 – ярмо регулятора напряжения; 7 – якорь регулятора; 8 – неподвижный контакт регулятора напряжения; 9 – замок зажигания; 10 – контрольная лампочка; 11 – обмотка возбуждения генератора; 12 – якорь генератора; 13 – щетки; 14 – аккумулятор; С – толстая сериесная обмотка реле обратного тока; Ш – шунтовая обмотка; С' – сериесная обмотка регулятора напряжения; Ш' – шунтовая обмотка регулятора напряжения; К – выравнивающая обмотка; Р – сопротивление реле-регулятора; Б – контакт; Я и П – зажимы.

Он состоит из реле обратного тока и регулятора напряжения.

Реле обратного тока состоит из сердечника 1 с ярмом 2. Над сердечником расположен якорь 3. На якоре и на стойке 4 имеются контакты. На якорь действует пружина, которая стремится держать контакты в разомкнутом состоянии.

На сердечнике намотаны две обмотки: тонкая Ш (шунтовая), один конец которой соединен с ярмом, а другой – с массой реле, и толстая (сериесная) обмотка С, один конец которой также соединяется с ярмом, а другой – с толстой обмоткой С' регулятора напряжения. Неподвижный контакт (стойка) 4 соединен проводом с контактом Б на коробке реле-регулятора.

Рядом с реле обратного тока расположен регулятор напряжения. Сердечник регулятора 5 соединен с ярмом 6. На ярме установлен якорь 7, контакт которого пружиной прижимается к неподвижному контакту 8 регулятора напряжения.

На сердечнике имеются три обмотки: шунтовая Ш', сериесная С' и выравнивающая К.

Шунтовая обмотка Ш' регулятора соединена одним концом с массой коробки регулятора, а другим концом – с параллельно включенными сопротивлениями Р в 15 ом и 4 ом.

Сериесная обмотка С' регулятора одним концом соединена с зажимом Я на коробке, а другим концом – с сериесной обмоткой С реле. Выравнивающая обмотка К соединена одним концом с контактом Ш на коробке реле-регулятора, а другим концом – с проводником, соединяющим сопротивление в 15 ом с неподвижным контактом регулятора напряжения.

При работе двигателя на малых оборотах ток, вырабатываемый генератором, поступает к зажиму Я реле-регулятора и через сериесную обмотку С, ярмо и шунтовую обмотку Ш реле идет на массу коробки. По массе коробки и соединительному проводу ток возвращается в генератор.

Кроме того, ток, поступая на ярмо реле, проходит далее по ярму регулятора. С ярма через контакты регулятора ток поступает к зажиму Ш и затем проходит в обмотку возбуждения генератора. С ярма генератора ток также поступает через сопротивление 4 ом в шунтовую Ш обмотку регулятора и далее на массу.

Таким образом, выравнивающая обмотка включена последовательно в цепь возбуждения и ток в шунтовую обмотку поступает через сопротивление 4 ом. При этом сила тока в шунтовой обмотке регулятора зависит от напряжения генератора.

При увеличении числа оборотов напряжение генератора достигает 6,2–6,8 в, превышая напряжение аккумуляторной батареи, и контакты реле замыкаются. С этого момента ток через замкнутые контакты реле поступает к зажиму Б реле-регулятора и далее идет на зарядку аккумуляторной батареи.

При напряжении генератора 6,7 в ток, проходящий через шунтовую обмотку, намагничивает сердечник, в результате чего якорь регулятора притягивается к сердечнику и контакты регулятора размыкаются. При разомкнутых контактах ток с ярма регулятора поступает в обмотку возбуждения последовательно через сопротивления в 4 и 15 ом. Сила тока в обмотке возбуждения уменьшается, магнитное поле ослабевает и напряжение генератора падает. При падении напряжения генератора сердечник регулятора размагничивается и контакты снова замыкаются.

При замкнутых контактах регулятора ток возбуждения растет и контакты снова размыкаются.

Замыкание и размыкание контактов происходят с большой частотой, и поэтому колебание напряжения не влияет на работу потребителей. Однако с увеличением числа оборотов при наличии в регуляторе одной шунтовой обмотки напряжение генератора будет несколько возрастать.

Для сохранения постоянного напряжения выравнивающая обмотка включена последовательно обмотке возбуждения. Выравнивающая обмотка наложен на сердечник так, что она размагничивает сердечник. При наличии одной шунтовой обмотки напряжение генератора несколько растет, а ток возбуждения падает. Таким образом, размагничивающее действие выравнивающей обмотки с увеличением числа оборотов также падает, а контакты регулятора размыкаются раньше.

Сериесная обмотка регулятора служит для предохранения генератора от перегрузки; она ограничивает силу отдаваемого генератором тока. Когда за счет увеличения нагрузки сила тока, отдаваемого генератором, достигнет 5,5 в, ток, проходящий по сериесной обмотке регулятора, намагнитит сердечник и контакты регулятора разомкнутся. Ток в обмотку возбуждения пойдет через сопротивления в 4 и 15 ом, и сила тока генератора упадет. Падение силы тока вызовет размагничивание сердечника и замыкание контактов.

При уменьшении числа оборотов генератора сила тока, отдаваемая им, понизится. При понижении силы тока до 0,5–3,5 а ток от аккумуляторной батареи пройдет через замкнутые контакты и сериесную обмотку реле обратного тока и размагнитит сердечник. При этом контакты реле разомкнутся и генератор прекратит подачу тока к потребителям.

В фаре мотоцикла расположена контрольная лампа. При включении замка зажигания 9 ток от аккумуляторной батареи идет к катушке зажигания, а также через контрольную лампу к зажиму Я генератора и через обмотку якоря генератора и массу возвращается в аккумуляторную батарею. Лампа при этом горит. После того как контакты реле замкнутся, ток к контрольной лампе будет подходить от генератора через зажим Я и от аккумуляторной батареи через зажим Б. Лампа при этом гаснет.

4. Зажигание

Известно, что рабочая смесь воспламеняется в цилиндре двигателя электрической искрой. Эта искра возникает между электродами свечи при подведении к ним тока высокого напряжения: 7000—15 000 в.

На мотоциклетных двигателях применяется батарейное зажигание, в котором источником тока является аккумуляторная батарея, и зажигание от магнето, где источником тока является само магнето.

Батарейное зажигание применяется на мотоциклах М-72, М1А, К-125 и ИЖ-350. Мотоцикл К1Б имеет зажигание от магнето.

Батарейное зажигание

Батарейное зажигание включает источник тока, катушку зажигания, прерыватель, конденсатор, запальную свечу и замок зажигания.

Катушка зажигания преобразует ток низкого напряжения в ток высокого напряжения. На мотоциклах М-72 и М1А применяется катушка зажигания КМ-01 (рис. 80).


Рис. 80. Катушка зажигания КМ-01: 1 – корпус; 2 – сердечник; 3 – вторичная обмотка, 4 – первичная обмотка; 5 – магнитопровод; 6 – зажимы первичной обмотки; 7 – карболитовая крышка; 8 – центральный зажим вторичной обмотки.

На сердечнике 2 катушки намотана вторичная обмотка 3, состоящая из 12 000—13 000 витков эмалированной проволоки сечением 0,1 мм. Поверх вторичной обмотки намотана первичная обмотка 4, имеющая 250 витков проволоки сечением 0,8 мм. Первичная и вторичная обмотки с сердечником помещены в металлический корпус 1. Между корпусом и вторичной обмоткой установлены две пластины из мягкого железа, которые ограничивают магнитное поле сердечника в пространстве. Корпус закрыт карболитовой крышкой 7, на которой имеются три зажима: два зажима 6 для вывода концов первичной обмотки и центральный зажим 8 для вывода одного конца вторичной. Другой конец вторичной обмотки соединен с одним из зажимов 6.

Прерыватель предназначен для прерывания тока низкого напряжения, поступающего в первичную обмотку катушки зажигания.

На мотоциклах с одноцилиндровым двигателем устанавливаются прерыватели различной конструкции, но в принципе они не отличаются один от другого.

На мотоциклах, двигатели которых имеют два и более цилиндров, прерыватель объединен с распределителем тока и называется он прерывателем-распределителем. Этот прибор служит для прерывания тока низкого напряжения и распределения тока высокого напряжения между запальными свечами.

На рис. 81 показан прерыватель-распределитель мотоцикла М-72.


Рис. 81. Прерыватель-распределитель ПМ-05: 1 – диск прерывателя; 2 – корпус; 3 – рычаг с подвижным контактом; 4 – конденсатор; 5 – эксцентрик; 6 – винт крепления; 7 – пластина с неподвижным контактом; 8 – ротор; 9 – крышка; 10 – боковые контакты; 11 – центральный контакт; 12 – зажимы проводов к свечам; 13 – зажим провода от катушки зажигания.

В корпусе прерывателя 2 расположен диск прерывателя 1.

Возвратная пружина, действующая на упор диска прерывателя, поворачивает его по часовой стрелке до тех пор, пока стопор не дойдет до корпуса. На диске расположены рычаг 3 с подвижным контактом и текстолитовой пяткой, неподвижный контакт с опорной пластиной 7, винт крепления 6 неподвижного контакта и эксцентрик 5, регулирующий величину зазора между толкателями. На текстолитовую пятку рычага подвижного контакта воздействует кулачковая шайба, выполненная на конце распределительного вала двигателя. В корпусе прерывателя расположен конденсатор 4, включенный параллельно контактам прерывателя.

На конце распределительного вала устанавливается ротор 8 распределителя. На ободе ротора имеется латунный сектор, а в центре его расположен латунный контакт с пружиной. Корпус прерывателя закрывается крышкой 9 распределителя. На боковой части крышки расположены зажимы 12 и 13 провода высокого напряжения. Зажим 13 соединяется шиной с центральным контактом 11, а зажимы 12 – с боковыми контактами 10.

Ток высокого напряжения, подводимый от катушки зажигания к зажиму 13 через центральный контакт 11, поступает на центральный контакт ротора. С центрального контакта ротора ток высокого напряжения поступает на сектор ротора, который поочередно направляет ток через боковые контакты 10 и зажимы 12 к запальным свечам.

Запальные свечи служат для воспламенения сжатой в цилиндрах рабочей смеси. Свечи бывают разборные и неразборные. В стальной корпус 1 свечи (рис. 82) устанавливается изолятор 3, с закрепленным внутри него центральным электродом 7, в верхней части которого имеется резьба для гайки 4.


Рис. 82. Запальная свеча: 1 – корпус свечи; 2 – зажимная гайка; 3 – изолятор; 4 – гайка; 5 – прокладки; 6 – боковые электроды; 7 – центральный электрод.

Изолятор закрепляется на медных прокладках 5 или при помощи зажимной гайки 2, или путем завальцовки бортов корпуса на прокладке изолятора. На нижней части изолятора выполнена резьба для ввертывания свечи в головку цилиндра и боковой электрод. Зазор между боковым и центральном электродами устанавливается в пределах 0,6–0,7 мм.

Длина ввертной части запальной свечи должна быть такой, чтобы нижняя часть корпуса находилась на уровне стенок головки. Если ввертная часть выступает внутрь корпуса, отвод тепла от бокового электрода затрудняется и раскалившийся электрод может служить источником воспламенения смеси. Кроме того, у двигателей с боковыми клапанами при большом выходе ввертной части свечи внутрь цилиндра возможно повреждение свечи клапаном.

Запальная свеча во время работы двигателя подвергается охлаждению свежей горючей смесью, поступающей в цилиндр, а затем нагреванию во время сгорания рабочей смеси в цилиндре двигателя. Для обеспечения нормальной работы двигателя необходимо, чтобы отдельные элементы свечи имели определенную температуру. Средняя температура нижней части изолятора и электродов должна колебаться в пределах 550–700 °C. Эта температура изолятора называется температурой самоочищения, так как при этой температуре попадающее на электроды масло сгорает, не образуя смолистых отложений. При более низкой температуре нижней части изолятора масло, попадающее на него, коксуется, образуя токопроводящий слой кокса. При температуре выше 750 °C изолятор и электроды могут сами явиться источником зажигания.

Свеча с небольшой поверхностью нижней части изолятора воспринимает мало тепла и быстро его отводит через корпус и верхнюю часть изолятора наружу. Такая свеча носит название «холодной». Она может быть использована на двигателях, работающих с большой тепловой напряженностью (высокая степень сжатия, большие обороты и большая нагрузка двигателя).

Свеча с большой поверхностью нижней части изолятора называется «горячей». Она может быть использована на двигателях с малой тепловой напряженностью.

Заводы, выпускающие мотоциклы, в своих инструкциях рекомендуют, каких марок свечи необходимо применять для данного мотоцикла при эксплуатации его в обычных условиях.

При использовании мотоцикла для соревнований свечи подбираются в зависимости от условий работы двигателя и напряженности теплового режима.

Конденсатор (рис. 83) служит для уменьшения искрообразования при размыкании контактов в прерывателе.


Рис. 83. Конденсатор: 1 – вывод; 2 изоляционная бумага; 3 – станиоль; 4 – корпус; 5 – общий вид конденсатора.

Он состоит из двух лент из алюминиевой фольги, разделенных листом бумаги, пропитанной парафином. Свернутые в трубку ленты и лист бумаги укладываются в металлический корпус так, чтобы одна алюминиевая лента касалась корпуса, а другая имела вывод наружу.

При размыкании контактов прерывателя возникающий в первичной цепи ток самоиндукции идет на зарядку конденсатора. При этом образование искры устраняется.

Работа системы зажигания

При включении замка зажигания (рис. 84) ток из аккумуляторной батареи поступает в первичную обмотку катушки зажигания и далее идет к контактам прерывателя.


Рис. 84. Схема зажигания мотоциклетного двигателя: 1 – аккумуляторная батарея; 2 – замок зажигания; 3 – катушка зажигания; 4 – конденсатор; 5 – кулачковая шайба; 6 – запальная свеча.

При прохождении тока по первичной обмотке сердечник намагничивается и вокруг него возникает магнитное поле.

Во время работы двигателя кулачковая шайба прерывателя, набегая на пятку подвижного контакта, размыкает контакты. Когда контакты размыкаются, магнитное поле начинает исчезать, пересекая при этом первичную и вторичную обмотки катушки зажигания. В результате в первичной обмотке наводится ток самоиндукции, направленный в ту же сторону, что и основной ток.

Напряжение тока самоиндукции в первичной обмотке достигает 200 в, и ток самоиндукции образует электрическую дугу между контактами прерывателя. Вследствие образования дуги скорость убывания тока замедляется. Это замедляет исчезновение магнитного поля. Магнитные силовые линии, убывая, медленно пересекают вторичную обмотку, в которой вследствие этого наводится незначительное напряжение.

Чтобы получить со вторичной обмотки катушки зажигания высокое напряжение, необходимо ускорить исчезновение магнитного поля. Для этого параллельно контактам прерывателя включают конденсатор. При размыкании контактов прерывателя ток самоиндукции поступает в конденсатор и заряжает его. При этом искра между контактами почти не возникает и магнитное поле исчезает быстро.

Быстрое пересечение магнитными силовыми линиями вторичной обмотки вызывает появление в ней тока высокого напряжения.

Заряженный при размыкании контактов прерывателя конденсатор немедленно разряжается через первичную обмотку. Разрядка конденсатора происходит в направлении, обратном движению основного тока, что способствует резкому исчезновению магнитного поля.

Ток высокого напряжения, подаваемый со вторичной, обмотки на центральный электрод свечи, пробивает воздушный промежуток между электродами и воспламеняет рабочую смесь.

Зажигание от магнето

На мотоцикле К1Б применяется зажигание от магнето.

Магнето объединено в одном приборе с генератором и обозначается МГ-10.

Магнето мотоцикла (рис. 85) состоит из сердечника, на котором расположены первичная 9 и вторичная 4 обмотки.


Рис. 85. Магнето-генератор МГ-10, устанавливаемый на мотоцикле К1Б: 1 – корпус; 2 – полюсные башмаки; 3 – постоянные магниты; 4 – вторичная обмотка; 5 – конденсатор; 6 – неподвижный контакт; 7 – подвижный контакт; 8 – кулачковая шайба; 9 – первичная обмотка; 10 – провод; 11 – свеча.

Один конец первичной обмотки соединен с массой сердечника, а другой конец – с подвижным контактом 7 прерывателя. Вторичная обмотка 4 одним концом соединена с первичной обмоткой и другим концом через провод 10 с центральным электродом свечи. Параллельно контактам 6 и 7 прерывателя включен конденсатор 5.

Во время работы двигателя полюсные башмаки 2, соединенные с постоянными магнитами 3, подходят к наконечникам сердечников и магнитные силовые линии, замыкаясь через сердечник, наводят в первичной обмотке ток низкого напряжения.

В тот момент, когда ток имеет наибольшее значение в первичной обмотке, кулачковая шайба, вращаясь вместе с маховиком, размыкает контакты прерывателя и во вторичной обмотке наводится ток высокого напряжения, подаваемый на центральный электрод свечи.

Опережение зажигания

Как было сказано выше, с момента проскакивания искры до момента появления давления в цилиндре двигателя проходит некоторое время, за которое коленчатый вал двигателя поворачивается на некоторый угол. После этого давление в цилиндре повышается и газы начинают давить на поршень. Если искра между электродами свечи проскакивает в тот момент, когда поршень двигателя находится в верхней мертвой точке, горение смеси происходит при увеличившемся объеме цилиндра. Вследствие этого давление газов не достигнет максимальной величины, горение смеси замедлится и будет продолжаться при перемещении поршня к нижней мертвой точке, что вызовет перегрев двигателя.


    Ваша оценка произведения:

Популярные книги за неделю