Текст книги "Досье внеземных цивилизаций"
Автор книги: Ф Биро
Соавторы: Ж Риб
сообщить о нарушении
Текущая страница: 3 (всего у книги 13 страниц)
Но за этим успехом возникла необходимость создания телескопов-гигантов. Чтобы разглядеть все более далекие объекты, необходимо все больше и больше света. Тогда на смену большим астрономическим телескопам (более 16 м длины – самая большая труба в Европе) пришли большие телескопы-рефракторы. Назовем 1,52, а затем 2,57-метровые телескопы на горе Вильсон,. пятиметровый гигант в Маунт Паломар и телескоп Шмидта диаметром 1,80 м*. Эти инструменты (все в США) помогли достичь хороших результатов. Самым большим французским телескопом остается 1,93-метровый инструмент в Сен-Мишель де Прованс, хотя уже проектируется 3,5-метровый**. Однако по качеству наши инструменты относятся к лучшим в мире, особенно телескоп Пик дю Миди, который к тому же еще и расположен в исключительно благоприятном месте.
Впрочем, создание больших телескопов имеет свои пределы: земная атмосфера становится для этих монстров весьма неудобной. Абсорбция и особенно турбуленция воздуха не позволяют до конца использовать их достоинства.
* "Телескоп Шмидта" – особый тип телескопа; диаметр крупнейших из них – более 2 м. – Прим. пер.
** К 1988 году построен не был; дальнейших сведений мы не имеем. – Прим. пер
мер, пятиметровый телескоп Маунт Паломар лишь в исключительных случаях дает разрешающую способность в 1/5 дуговой секунды, что в восемь раз хуже расчетной. Конечно, эти проблемы будут сняты, когда мы научимся размещать такие инструменты на орбите или на Луне. Но из телескопов, построенных на Земле, сегодня крупнейшим считается построенный в СССР, – его диаметр 6 м*. Чтобы создать такой инструмент, приходится преодолевать неимоверные трудности. Огромные проблемы связаны с отливкой и особенно охлаждением зеркал из жаростойкого стекла: первое 42-тонное зеркало для русского шестиметровика при охлаждении треснуло, а охлаждали его два года! Обточкой и полировкой таких зеркал занимаются специалисты, которых в мире, возможно, всего несколько человек. Один из самых знаменитых мастеров в этой области – француз Текеро. .
Обычно астронома представляют себе прильнувшим к окуляру телескопа и рисующим цветными мелками увиденную им картину. Но, за исключением некоторых наблюдений за планетами, первичную информацию, как правило, получают, используя вспомогательные устройства, установленные в обсерватории: фотопластинки, различные спектрографы и многие другие. Особо упомянем "электронную камеру". Этот прибор, изготовленный французским астрономом Лальманом, позволяет достичь гораздо большей чувствительности, чем обычные фотопластинки. В общем, все эти вспомогательные приспособления к главному инструменту становятся все сложнее... и дороже.-Теперь, например, невозможно представить себе телескоп,
* Новые технологии уже позволили построить несколько 8-метровых телескопов и проектируются телескопы с диаметром зеркала более 10м.– Прим. пер.
ный в обсерватории, без компьютера, управляющего его движением и обрабатывающего полученные данные. Особенно сильное впечатление производят радиотелескопы. Сам по себе такой "телескоп" – это просто большая металлическая решетка, которую разве что время от времени красят. А в обсерватории находятся приемники с кучей проводов, которые гораздо больше поражают непосвященного.
Столь сложная аппаратура повышает эффективность работы, но труд астронома теряет поэтичность, которая так пленяла еще полвека тому назад. Бывают астрономы, которым никогда не приходилось глядеть своими глазами в телескоп. Обычно теперь начинающий ученый несколько лет мастерит какой-нибудь новый приемник или что-то в этом роде, точит детали, паяет, возится с крохотными штучками, каждая из которых стоит целое состояние. А когда наконец все гото– ХХ во, наблюдения сводятся к долгому сидению перед записывающим устройством. Потом астроном уносит с собой бобину с перфолентой или магнитной лентой, и только после того, как компьютер все просчитает, станет ясно, был ли толк в его работе, принесла ли она новые знания о Вселенной.
Можно сожалеть об этой эволюции (касающейся, впрочем, не только астрономии) и с ностальгией вспоминать ночь на 7 января 1610 года, когда Галилей, едва направив трубку на небо, сделал больше открытий, чем любой нынешний астроном за всю свою жизнь. Но только ценой этих сложностей, этой работы, где подчас больше рутины, чем творчества, мы постепенно смогли установить описанную здесь модель Вселенной.
Но это описание было бы неполным, если не сказать еще об одной великой, захватывающей тайне: общее движение галактик. Недавно
ло известно, что большая часть галактик с огромной скоростью удаляются от нас, и притом тем быстрее, чем дальше находятся. Впечатление такое, что в космосе когда-то произошел грандиозный взрыв. Есть мнение, что перед нами циклическое движение. Галактические системы в какое-то время удаляются друг от друга – это фаза расширения Вселенной, в которую мы и живем, – а в какое-то время сближаются. Так что космос напоминает воздушный шарик, который то надувают, то снова спускают.
Документ 3
РАССЛЕДОВАНИЕ В ПРЕДЕЛАХ СОЛНЕЧНОЙ СИСТЕМЫ
БЛИЖНЕЕ ОКОЛОЗЕМЬЕ
Естественно начать поиски жизни с ближайших окрестностей Земли – с мест, которые мы, зная все сказанное, назовем "ближним околоземьем".
Само собой, люди прежде всего подумали о Луне и о планетах Солнечной системы. Диск Луны нам давно привычен, а со времени изобретения первых астрономических труб представлялось очевидным, что на ней есть рельеф, подобный земному: горы, долины, океаны. Что касается других планет, то после того, как была принята система Коперника, стало невозможным сказать априори, что Земля получила среди них какую-то особую благодать.
Много веков человеческое воображение забавлялось тем, что придумывало и описывало обитателей соседних планет. В середине XVII века иезуит Афанасий Кирхер своей фантазией поселил на Сатурне каких-то угрюмых стариков, которые ходят черепашьим шагом и всегда держат в руках погребальные факелы. Один Бог знает, отчего он изобразил Сатурн таким мрачным местом, подверженным злым чарам! Легче понять, почему он не находит слов, описывая красоту молодых людей, гуляющих по Венере... Эти любимцы судеб – прекрасные юноши в "прозрачных, как хрусталь", одеждах – целыми днями наслаждаются танцами под звуки лир и цимбал.
После Фонтенеля становится невозможно перечислить всех селенитов, венерианциев и марсиан, все научно-фантастические романы от Жюля Верна до Уэллса и создателя незабываемого Тарзана Э.Р.Берроуза, заполнившие библиотечные полки.
Но обычно писатели, посвятившие себя такого рода литературе, изображают антропоморфные существа. Нам представляется, что теперь следует идти гораздо дальше.
Изучение планет получило сильный толчок с изобретением новых инструментов, разрешающая способность которых в XVII веке за семьдесят лет выросла в десять раз. Но даже самое тщательное прямое наблюдение всерьез не продвинуло к разгадке проблемы жизни. В конце же прошлого века интерес к ней всколыхнуло открытие марсианских "каналов". Вот как было дело.
В 1864 году Доуз заметил, что марсианские "моря" соединены очень тонкими прямыми темными линиями. Патер Секки назвал их по-итальянски "canali", то есть морские проливы. Но это слово можно перевести и как "каналы". Этого было достаточно, чтобы у широкой публики пробудил-, ся огромный интерес к изучению Марса. Многие астрономы подтвердили "существование каналов", уточнили их количество и трассы.
В 1894 году американиц Персиваль Ловелл за собственный счет построил обсерваторию, предназначенную для изучения планет, и особенно Марса. Он поставил в ней мощную трубу диаметром 60 см. Два года спустя Ловелл, работая вместе с Дугласом, не только подтвердил наличие "каналов", но и подробно описал их. Многочисленные перекрещивающиеся прямые линии он объявил полосами растительности вдоль искусственных каналов, отводящих воду из тающих полярных ледниковых шапок. Изменения цвета
каналов, как и подобные изменения в больших темных зонах Марса, – это сезонные явления, зависящие от цвета растительности. Наконец, пятнышки на пересечении прямых – это не водоемы, а оазисы. Итак, представлялось доказанным, что разумные существа на Марсе есть.
Но некоторые астрономы сохранили скептицизм: они не видели пресловутых "каналов". Началась полемика.
Первые фотографии Марса, которые в 1907 году в обсерватории Ловелла получил Слайфер, оставляли место сомнению. Но 83-сантиметровая труба Медонской обсерватории позволила Антониади в 1909 году установить: на Марсе видны линии пятен, а не "каналы" четкой геометрической формы. Последующие исследования подтвердили это наблюдение и заставили вновь усомниться в существовании марсиан. Как мы увидим далее, стетографии, полученные с помощью американских зондов, положили конец этому спору.
Серьезные исследования морфологии планет начались только в начале нашего века: лишь современные методы позволили с большой точностью установить элементы их физической географии. С помощью инфракрасных датчиков можно легко измерить их температуру, а спектральный анализ позволяет точно узнать состав атмосферы, если она существует.
В связи с вычислением расстояний, отделяющих нас от звезд, мы уже говорили (см. Документ 2, с. 38), что принцип спектрального анализа состоит в изучении цветов, составляющих белый, и особенно тонких спектральных "линий". Эти "линии" появляются из-за наличия в источнике света тех или иных веществ, которые отражают или поглощают лучи определенных цветов. Таким образом, "линии" характеризуют химические вещества. Поскольку спектр каждого
вещества можно получить в лаборатории, его можно методически искать и в небесных телах. В 1862 году Кирхгоф и Бунзен впервые при помощи спектрального анализа установили химический состав Солнца. Сегодня этот метод стал общераспространенным, усовершенствован применением радио. Например, если водород в оптическом диапазоне излучает "линию" с длиной волны 0,656 микрон, то в радиодиапазоне он излучает "линию" с длиной волны 21,1 см. Таким образом, спектральный анализ предоставляет радиоастрономии безграничные возможности для изысканий.
Больше всего проблем для астрономов при использовании этого метода создает земная атмосфера, потому что она тоже содержит те самые элементы, которые ищут на небесных телах.
Чтобы свести ее влияние к минимуму, обсерватории строят на высоких горах, а некоторые астрономы используют стратостаты. Именно таким образом, например, Одуэн Дольфюс открыл в атмосфере Венеры следы водных паров. В мае 1954 года он поднялся в стратостате, подвешенном к сотне шаров-зондов, на высоту 7000 м, а в 1959 году – на 14 000 м. Подытожил же он свои наблюдения в 1963 году в обсерватории на ЮнгфрауИох, вычислив, что, если водяной пар, содержащийся в верхних слоях атмосферы Венеры, выпадет в виде осадков, он образует слой толщиной 70 микрон. Судите сами, какова была точность его измерений!
Но при изучении планет, которые считались уже достаточно исследованными, за последние годы произошел колоссальный скачок: теперь на планету можно отправиться непосредственно с помощью космических зондов. Это, несомненно, чрезвычайно многообещающее достижение, на которое многие ученые надеялись, но немногие
считали возможным. Оно уже перевернуло некоторые привычные представления о планетах.
ОТКРЫТИЕ НЕПТУНА И ЗАГАДКИ ПЛУТОНА
Прежде всего подытожим, в каком состоянии находятся ныне исследования, касающиеся жизни в Солнечной системе.
Вокруг Солнца обращается девять планет (табл. их характеристик см. в Приложении). Шесть из них известны с античности: это "блуждающие звезды" греков – Меркурий, Венера, Марс, Ю-питер, Сатурн и, конечно, Земля. Как мы уже говорили, в 1781 году Гершель открыл Уран. Открытие же Нептуна произошло благодаря чрезвычайно точному и необыкновенному математическому расчету.
В 1821 году было замечено, что движение Урана по орбите испытывает какие-то возмущения: расчетное положение планеты существенно расходилось с наблюдаемым. Сразу же была выдвинута гипотеза о том, что движение Урана нарушается притяжением неизвестной планеты. Но лишь в 1843 году совсем молодой английский математик Джон Кауч Адаме решил провести необходимые расчеты. Он работал два года, определил элементы орбиты и массу гипотетической планеты. В 1845 году Адаме передал свои расчеты королевскому астроному Англии, а тот положил их в долгий ящик.
Но в том же самом году директор Парижской обсерватории Араго прославленный ученый, обладавший необыкновенным даром отыскивать таланты, – сообщил о задаче, связанной с Ураном, одному замечательному математику. Это был тридцатипятилетний преподаватель Политехнической школы Урбен Леверье, который страстно
любил сложные расчеты. Он взялся решить за-' дачу и год спустя представил решение. Если возмущающая планета существует, она должна находиться на 326° 32' эклиптической долготы. 18 сентября 1846 года Леверье передал свой расчет берлинскому астроному Иоганну Готфриду Галле. Тот немедленно направил телескоп в указаную точку. Планета находилась менее чем в одном градусе от предсказанного места!
Любопытная деталь. Можно подумать, что Леверье сразу бросился к телескопу, чтобы посмотреть на "свою" планету. Ничего подобного! Говорят даже, что он до самой смерти не проявлял к своему детищу никакого интереса... Впрочем, это вообще был человек, мягко говоря, со странностями. Будучи после смерти Араго назначен директором обсерватории, он вдрызг рассорился со всеми сотрудниками. Однажды он распорядился заложить кирпичами дверь кабинета одного из своих недругов! Можно себе представить, какой поднялся шум. Весь персонал обсерватории покинул ее. Вмешалась пресса. Академия наук стала полем грандиозных сражений, в ходе которых дело не раз доходило чуть не до кулаков...
Итак, Нептун был открыт 23 сентября 1846 года. Что до несчастного Адамса, судьба продолжала испытывать его. Следуя его расчетам, наблюдатели трижды видели Нептун. Но не проанализировав сразу результаты своих наблюдений, они не поняли, что видели именно новую планету.
Девятая планета, Плутон, была замечена около столетия спустя на основании расчетов Пикеринга и Ловелла. Основа рассуждений была той же самой, поскольку движение Нептуна еще не объясняло полностью все аномалии движения Урана. Значит, должна была существовать еще одна возмущающая планета. Ее искали двадцать
лет. Результата добился Клайд Томбо 23 января 1930 года. Плутон находился лишь в 5° от места, предсказанного Ловеллом, который так и не увидал его: он умер в 1916 году.
Плутон ставит перед астрономами целый ряд проблем. Он поныне полон загадок. Неизвестно, например, "настоящая" ли это планета, то есть имеет ли она общее происхождение с другими. Некоторые предполагают, что она является частью пояса сильно удаленных от Солнца астероидов; другие, как Литтлтон и Фред Хойл, выдвигают чрезвычайно смелую гипотезу, рисуя своего рода захватывающую космическую драму. Эти ученые считают Плутон бывшим спутником Нептуна – таким же, как Тритон. Некогда и тот, и другой вращались вокруг Нептуна против часовой стрелки. Затем они слишком сильно сблизились, и Тритон сообщил своему собрату такое ускорение, что Плутон оторвался от орбиты Нептуна. В то же самое время орбита Тритона претерпела невероятное изменение: он сделал как бы "шпильку" вокруг Плутона, а затем вновь попал в орбиту притяжения Нептуна, но стал теперь двигаться в обратном направлении: по часовой стрелке. Согласитесь, что такой трюк высшего пилотажа на скорости 5 км/сек, то есть 180 тысяч км/ч, производит сильное впечатление, даже если гипотеза выглядит неубедительной*.
В Солнечной системе есть еще множество мелких небесных тел астероидов или планетоидов. Первый из них был открыт 1 января 1801 года. Его увидел астроном из Палермо Пиацци, и поэтому астероид получило имя Цереры – божественной покровительницы Сицилии. Сначала Пиацци
* Есть предположение, что таким же образом оторвался от Юпитера Идальго – одна из малых планет, о которых пойдет речь ниже.
нял новое небесное тело за комету, но вскоре выяснилось, что его орбита в точности соответствует вычисленной для планеты, которая согласно правилу Боде'" предположительно находилась между Марсом и Юпитером.
С тех пор каталог малых планет достиг внушительных размеров: их насчитывается более двух тысяч. Сначала им по традиции давали имена, взятые из мифологии: Паллада, Юнона, Веста, Навзикая, Петиция. Когда ресурсы мифологии истощились, стали давать преимущественно женские имена: Ирена, Элеонора... Когда же список астероидов превзошел все мыслимые пределы, астрономы стали демонстрировать чувство юмора, нарекая новорожденных такими прелестными именами, как, например, Лаодамия! Среди известных астероидов нельзя не упомянуть Адонис, орбита которого проходит очень близко от Земли.
Диаметр этих малюток не превышает нескольких сот километров (у Цереры – 770), на них нет атмосферы. Дело о них можно сразу закрыть: обнаружить на астероидах следы жизни, аналогичной нашей, нет никаких шансов.
То же можно сказать и о кометах: они очень многочисленны, но их размеры еще того меньше.
ЧЕТЫРЕ ГИГАНТА
Остаются собственно планеты, которые делятся на две основные группы: так называемые теллурические** – они обладают твердой корой, подобно Земле (Меркурий, Венера, Марс), и так называемые гиганты (Юпитер, Сатурн, Уран и Нептун), характеризующиеся очень малой плотностью (удельный вес Сатурна, например, 0,7
* Подробно о нем см. на с. 80. ** От лат. tellus, telluris – Земля. – Прим. пер.
он мог бы плавать в воде) и, вероятно, отсутствием твердой поверхности.
Самая большая и самая близкая из гигантских планет, лучше всех доступная наблюдению, -Х это Юпитер. Даже в небольшой телескоп его можно увидеть с теми же угловыми размерами, что Луну невооруженным глазом. Понятно, насколько относительно легко изучать Юпитер в наше время. Известно, например, что форма Юпитера сильно сплюснута из-за большой скорости вращения вокруг своей оси. Замеченная точка на его поверхности возвращается на прежнее место каждые десять часов.
Выяснили также, что разные части Юпитера вращаются с неодинаковой скоростью: экваториальная зона быстрее, полярная – медленней. Наконец, на нем открыли одиннадцать крупных те-. чений. Так пришли к выводу, подтвержденному всеми последующими наблюдениями и анализами, что у этой планеты очень густая атмосфера. Предполагают, что строение остальных гигантских планет такое же, но пока они недостаточно изучены. Долгое время считалось, что у них есть небольшое твердое ядро, состоящее из железа и горных пород, приблизительно похожих на земные, покрытое толстой ледяной мантией, а затем жидкой и в верхних слоях газообразной атмосферой, очень густой и плотной, причем доступны для наблюдений лишь самые верхние слои этой атмосферы. Но в 1954 году были открыты исходящие от Юпитера сильные и краткие радиоэлектрические сигналы, подобные радиопомехам в грозу. Это сильно поколебало прежние представления и дало почву для новых дискуссий.
Атмосферы этих планет столь густы потому, что, в отличие от небольших планет вроде Земли, масса планет-гигантов достаточно велика,
чтобы сохранить их*. Но сам термин "атмосфера", обозначающий возможность жизни на планете, в данном случае ведет к недоразумениям. Ведь эта атмосфера так плотна, что давление на уровне моря сжижает любые газы, вплоть до водорода и гелия.
Яркую и заманчивую картину этих зловещих далеких миров дополняют крайне низкие температуры (от -140 до -200°). Можно ли надеяться найти следы жизни в вечных льдах, сдавленных атмосферой без кислорода и водных паров, но состоящей из сильно ядовитых газов? При нынешнем состоянии наших знаний следует думать, что шансы на это весьма и весьма малы.
МЕРКУРИЙ: УСЛОВИЯ НЕБЛАГОПРИЯТНЫ. ЗАГАДКИ ВЕНЕРЫ
Методически рассматривая планеты Солнечной системы, мы убедились, что наличие атмосферы у планет играет очень важную роль. Теперь настало время объяснить, почему одни планеты окружены плотной атмосферой, другие – незначительной, третьи практически лишены ее.
Поскольку газы вообще характеризуются способностью бесконечно расширяться, встает вопрос, почему они не рассеиваются в космическом вакууме, а сосредоточиваются около планет. Дело в том, что молекулы газа сами по себе подобны
* Следует напомнить, что масса есть мера количества материи и измеряется в килограммах. Вес же тела есть сила, с которой на тело действует планета, на которой оно находится. К сожалению, вес также нередко выражают в килограммах (Сейчас официально принята другая единица – ньютон. – Прим. пер.), что приводит к путанице. Но смешивать массу и вес нельзя. Скафандры астронавтов "Аполлона-II" имели массу 90 кг. На Земле их вес равнялся 90 кг (килограмм-сил), а на Луне – всего 15 кг.
небесным телам и их поведение управляется теми же законами. Каждая молекула – это своего рода миниатюрный снаряд, запущенный в бесконечность, но удерживаемый планетным притяжением. "Скорость освобождения", которой нужно достичь любой частице (или любому космическому снаряду), чтобы преодолеть планетное притяжение, зависит от массы планеты. Более тяжелые планеты энергичней удерживают молекулы своей атмосферы.
В то же время скорость движения молекул увеличивается с ростом температуры. Итак, понятно, что массивные холодные планеты – от Юпитера до Нептуна – крепко удерживали газы своей первоначальной атмосферы и теперь ок-1 ружены густой газообразной оболочкой. Теллу-j рические же планеты, значительно более лег-1 кие и теплые, за время, протекшее с их воз-ч никновения, почти всю свою первоначальную атмосферу уже растеряли. Вокруг них возникла новая атмосфера, совсем другой природы, преимущественно за счет испарений их коры. Так объясняется огромное различие между густыми, хотя и состоящими из легких газов, атмосферами планет-гигантов и "вторичными" атмосферами теллурических планет.
Теперь нетрудно понять, почему планетные атмосферы нестабильны, почему, например, атмосфера Меркурия, рассеялась в космосе. Ведь из наблюдений за самой маленькой планетой (они подтверждены расчетами) мы знаем, что там нет заметных следов атмосферы.
Если к этому крайне неблагоприятному фактору добавить, что близость к Солнцу обрекает Меркурий на чрезвычайно высокие температуры порядка 400°, станет ясно, что практически нет шансов обнаружить там жизнь в представимой для нас форме.
Настала очередь Венеры – самой яркой звезды небосвода, которая блещет на востоке, предваряя солнечный восход, или первой появляется в лучах заката на западе. Странная вещь! Венера – близнец Земли по размерам, массе и плотности, ее орбита пролегает ближе всего к нашей, но она остается для людей самой загадочной из планет. "Утренняя звезда" словно боится потерять свой романтический облик, когда с нее будут сорваны густые покровы...
Между астрономами нет согласия даже, когда речь идет о таких основополагающих вопросах, как период вращения Венеры. Это не какая-то малозначительная деталь, а самая основная характеристика! Но вот в 1967 году астроном П.Герен так подвел итог своего исследования этой проблемы: "...Примем, пока не доказано противное, что Венера вместе с атмосферой вращается вокруг своей оси в обратном направлении с периодом 4, а не 240 суток". И в то же время в "Планетном атласе" 1968 года читаем: "В настоящее время принято считать, что Венера вращается вокруг своей оси в обратном направлении с периодом 245+(-)2 суток ..."
Повторяем: речь идет не о нюансах! Эти расхождения объясняются огромными трудностями наблюдения за Венерой, которая окружена чрезвычайно густой атмосферой. Можно почти не сомневаться, что прямое наблюдение не позволяет видеть ее поверхности, и нельзя быть уверенным, что волны, испускаемые радаром, полностью доходят до поверхности и нормально отражаются от нее. Впрочем, последние измерения подтверждают версию о периоде обращения, равном 245 земным суткам*.
Между тем вопрос о периоде обращения крайне важен для решения проблемы о возможности жизни на планете. Если оно синхронно (период суточного обращения совпадает с периодом
Более точное значение равно 243 суткам. – Прим. пер.
ния вокруг Солнца), значит, Венера всегда обращена к Солнцу одной стороной. В таком случае у нее одна сторона очень жаркая, другая очень холодная, а между ними есть узкая полоса умеренной температуры, где бушуют свирепые бури.
Сведения о температуре Венеры тоже весьма разноречивы. Видимо, лучший способ изучения ее – космические зонды. 14 декабря 1962 года американский зонд "Маринер-З", снабженный болометром** и радиопередатчиком сантиметрового диапазона, прошел на расстоянии 41 000 км от Венеры. Он измерил температуру планеты как в верхних слоях атмосферы, так и на поверхности. Первая колебалась от -33 до -53°, вторая достигала +300°. Такой перепад объясняется так называемым "парниковым эффектом". Солнечный свет проходит сквозь атмосферу и достигает поверхности. Поверхность, нагреваясь, испускает инфракрасные лучи, которые не пропускает через себя углекислый газ. Таким образом, инфракрасные лучи попадают в "ловушку" подобно тому, как это происходит в парнике или в оранжерее.
Таким образом, хотя Земля и Венера получают почти одинаковое количество солнечной энергии, температура на Венере намного выше.
О рельефе этой планеты, которая так сопротивляется изучению, известно мало. Полагают, что ее поверхность твердая – песчаная или скальная, и гораздо менее повреждена ударами метеоритов, чем лунная. Атмосфера же состоит главным образом из двуокиси углерода (СО. ), содержит также следы водяных паров и, возможно, немного озона. Но прежде всего она характеризуется очень высокой плотностью, создающей на поверхности давление не менее 100 кг/см=2.
** Болометр – высокочувствительный прибор для измерения излучения, широко применяемый при измерении пла-' нетных и звездных температур.
Все эти сведения в 1967 году были подтверждены советскими и американскими исследованиями. Зонды в этих странах были запущены с разницей в двое суток – 12 и 14 июня, – чтобы воспользоваться "окошком", позволяющим раз в 584 дня выбрать самую экономичную орбиту. Советский зонд "Венера-4" весил больше тонны, а "Маринер-5" – всего 245 кг. Советская станция должна была спуститься на поверхность, американская – облететь вокруг Венеры на расстоянии 4000 км. Оба зонда выполнили задачи, но "Венера-4" через час с четвертью после посадки перестала передавать сообщения. Так и не узнали, достигла она поверхности или еще в воздухе была раздавлена непомерным давлением.
Два года спустя "Венера-5" и "Венера-6" вновь были спущены на парашютах на планету, но раздавлены атмосферным давлением на высоте соответственно 25 км и 18 км от поверхности.
Разумеется, такие температура и давление для возникновения жизни неблагоприятны. Можно ли сказать, что она при них невозможна? Этого утверждать нельзя. Давление 1000 кГ/см^ например, существует в наших океанах на глубине 10 тысяч метров. Но если человек может погружаться не глубже 300 м, то рыбы живут даже на глубине II тысяч метров. Многие крупные млекопитающие, к примеру кашалот, живут на поверхности, но могут за несколько секунд погрузиться на несколько километров. Так что было бы неосторожно сразу делать вывод о невозможности жизни на Венере.
ЕСТЬ ЛИ ЖИЗНЬ НА МАРСЕ?
Марс известен нам гораздо лучше Венеры. Со времен античности его красноватый цвет поражал воображение, и своим воинственным именем он обязан сходству с каплей крови. Марсианская
3 Досье внеземных цивилизаций (, ^
pa очень разрежена. Еще недавно полагали, что ее давление достигает примерно 30 миллибар, т.е. около 1/30 земной атмосферы. Но анализ, произведенный американским зондом "Маринер-4", стартовавшим с мыса Кеннеди 28 ноября 1964 года и семь месяцев спустя, к 15 июля 1965 года, прошедшим в 17 000 км от планеты, показал, что атмосфера Марса еще разреженней. На уровне поверхности ее давление равнялось всего 5-12 миллибарам, или 1% земной атмосферы. Но человеку, чтобы гулять по Марсу, возможно, хватило бы летного скафандра, Впрочем, понадобился бы еще кислородный баллон, поскольку атмосфера Марса очень богата углекислым газом: его там вдвое больше, чем на Земле.
Все легкие газы с Марса улетучились. Можно было бы надеяться обнаружить там кислород, поскольку его молекулярная масса довольно велика, но до сих пор этого не удалось. Одуэн Дольфус вычислил, что, если бы весь водяной пар, содержащийся в марсианской атмосфере, выпал в виде дождя, высота водного покрова была бы равна 0,045 мм*. Это, конечно, очень мало (для Земли такой расчет дает 20 см), но и в таких условиях могут существовать какие-то формы жизни.
Марсианские температуры весьма умеренны. Если на Земле среднегодовая температура равна +10", то на Марсе – где-то между -20 и -30". Но зато экстремальные земные температуры намного больше марсианских, которые, видимо, не превышают 30" днем и -70" ночью. Напомним, что на Земле на Южном полюсе в 1965 году была зафиксирована температура -94,5"!**
* Данные "Маринера-4" подтвердили эту оценку: они показывают 0,035 мм. В таком случае трудно сказать, может ли вода существовать там в жидком состоянии.
** Современные данные рисуют несколько иную картину; средняя температура -40°, минимальная: до -125° – Прим. пер.
В том же году "Маринер-4" передал 22 фотографии, снятые с расстояния 12 000 км от поверхности Марса. Для астрономов и это было неслыханным богатством. Затем "Маринер-6" 31 июля 1969 года и "Маринер-7" 5 августа 1970 года передали соответственно 75 и 126 фотографий превосходного качества. Заметим, между прочим, превосходное техническое достижение: с учетом данных "Маринера-6" программа "Маринера-7" была уже в полете изменена и за четыре дня установлены новые точки съемок!
Эти фотографии (лучшие из них сделаны с расстояния всего 3200 км) дали гораздо более точное представление о топографии Марса. Каково же было изумление астрономов, когда оказалось, что марсианская поверхность гораздо более похожа на лунную, чем на земную! Марс весь испещрен кратерами разнообразной формы -от 4 до 240 км в поперечнике. Края их иногда отвесные, иногда более пологие. В некоторых регионах, например в области Эллады, они сильно выветрены, как если бы подвергались постоянной эрозии, вызванной песчаными бурями. Некоторые из этих кратеров явно метеоритного происхождения, но природа других не ясна.
Лаборатории зондов позволили также установить, что, вопреки предположениям, на Марсе нет никаких следов азота – совершенно необходимого для жизни на Земле элемента. Может быть, азот в связанном виде находится в почве? Но присутствие водяных паров в атмосфере подтвердилось, и астрономов весьма заинтересовал объект над полярной шапкой, напоминающий облако. .