355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Евгений Айсберг » Телевидение?.. Это очень просто! » Текст книги (страница 5)
Телевидение?.. Это очень просто!
  • Текст добавлен: 10 октября 2016, 00:04

Текст книги "Телевидение?.. Это очень просто!"


Автор книги: Евгений Айсберг



сообщить о нарушении

Текущая страница: 5 (всего у книги 17 страниц)

Л. – Чтобы избежать подобной… зрительной какофонии, в передаваемый сигнал включают короткие импульсы, указывающие конец каждой строки, так же как и более продолжительные импульсы (чтобы их можно было отличить от первых), указывающие конец каждого кадра (рис. 37).


Рис. 37. Схематическое изображение формы полного телевизионного сигнала, содержащего видеосигнал и синхронизирующие строчные и кадровые импульсы.

1 – видеосигнал; 2 – синхроимпульсы; 3 – строчные синхроимпульсы; 4 – кадровые синхроимпульсы.

Н. – Это те импульсы, которые ты подаешь через конденсатор С1 (рис. 35) на сетку тиратрона?

Л. – Безусловно. И делают так, чтобы они поступали в положительной полярности, т. е. чтобы при каждом импульсе сетка становилась на какое-то мгновение менее отрицательной.

Н. – Я как-то не очень хорошо улавливаю, что должно произойти. Лампа должна усиливать эти импульсы, так что ли?

Л. – Нет, Незнайкин. Ты уже забыл о связи между напряжением сетки и напряжением ионизации.

Н. – Прости. Очевидно, когда сетка становится менее отрицательной в момент появления импульса, анодное напряжение ионизации уменьшается.

Л. – Необходимо, чтобы период собственных колебаний генератора развертки был чуть больше длительности одной строки (или одного кадра – для соответствующей развертки), иначе говоря, больше промежутка между двумя последовательными импульсами (рис. 38). До того как анодное напряжение на заряжающемся конденсаторе С (рис. 35) достигнет напряжения ионизации, возникает импульс, уменьшающий отрицательный заряд сетки и, следовательно, напряжение ионизации. Благодаря этому разряд начинается одновременно с импульсом синхронизации.


Рис. 38. Процесс синхронизации развертки. Положительный синхронизирующий импульс на сетке лампы уменьшает анодное напряжение зажигания и вызывает, таким образом, преждевременный разряд конденсатора в момент появления импульса.

1 – напряжение зажигания без синхроимпульсов; 2 – напряжение зажигания, уменьшенное под воздействием синхроимпульсов; 3 – моменты подачи синхроимпульсов; 4 – собственный период развертки; 5 – период синхронизированной развертки.


Н. – Думаю, что я тебя правильно понял. Возьмем, например, тиратрон, у которого коэффициент сеточного управления равен 20 и смещение на сетке равно – 15 в. Его напряжение ионизации, следовательно, составляет 300 в. Если же импульс синхронизации будет +1 в, он доведет смещение до —14 в. В этот момент напряжение ионизации будет составляв только 280 в. Разряд, следовательно, начнется раньше, чем в случав отсутствия импульсов.

Л. – Я вижу, что ты правильно понял.

Н. – Это было нетрудно. У нас, в плавательном бассейне, инструктор по плаванию синхронизирует прыгунов в воду.

Л. – ?..

Н. – Ну, да. Когда они готовятся к прыжку и немного задерживаются на краю трамплина, инструктор посылает их в воду легким, но твердым шлепком по спине… И они отправляются туда, описывая в воздухе великолепную параболу.



ОТ НАСЫЩЕННОГО ДИОДА К ПЕНТОДУ

Л. – В рассмотренных генераторах мы имели дело с экспоненциальной кривой, кривизна которой должна быть, однако, возможно малой.

Н. – Нельзя ли для этого каким-либо способом поддерживать зарядный ток совершенно постоянным так, чтобы напряжение на выводах конденсатора возрастало пропорционально времени?

Л. – Это, действительно, возможно. А ты, Незнайкин, можешь найти такой способ ограничения?

Н. – Нужно было бы заменить зарядное сопротивление R (рис. 35) чем-нибудь, что не пропускает ток выше заданной величины. Лампа, понимая под лампой промежуток катод – анод, не могла бы для этого пригодиться?

Л. – Конечно. Возьми диод (предпочтительно прямого накала), который работает в режиме насыщения, т. е. так, что все излученные нитью электроны достигают анода (рис. 39).


Рис. 39. Анодный ток диода в зависимости от анодного напряжения для трех различных значений напряжения накала Uн. Начиная с некоторой величины анодного напряжения, увеличение тока прекращается (явление насыщения).

Тогда анодный ток не сможет превысить величину тока насыщения, образованного полной электронной эмиссией нити накала. Впрочем, ты можешь регулировать его величину, изменяя в известных границах напряжение накала.


Н. – А зачем нужна лампа прямого накала?

Л. – Потому что явление насыщения в ней гораздо более ярко выражено, чем в лампах косвенного накала, и, кроме того, в этой лампе легко можно регулировать величину тока насыщения, изменяя напряжение накала. Но если тебе не нравятся устаревшие лампы, ничто не мешает тебе использовать обычный пентод с косвенным накалом.

Н. – А он работает тоже в режиме насыщения?

Л. – Термин не очень подходящий, но результат такой же. Если рассматривать кривые изменения анодного тока в зависимости от напряжения на аноде (рис. 40), можно заметить, что для каждой кривой (соответствующей данному напряжению первой сетки), начиная с некоторого анодного напряжения, ток изменяется лишь в незначительной степени. В этой области характеристики пентод начнет заряжать конденсатор током постоянной величины.


Рис. 40. Кривые анодного тока пентода в зависимости от анодного напряжения (для различных значений напряжения Uс1 на управляющей сетке). Начиная с некоторой величины, возрастание анодного напряжения Uа практически не влечет за собой заметного увеличения анодного тока Iа.


Вот схема развертки (рис. 41), где пентод заменяет зарядное сопротивление R. Можно заметить, что напряжение экранирующей сетки пентода регулируется при помощи потенциометра R5, включенного последовательно с резистором R4 между полюсами высокого напряжения (конденсатор С3 является развязывающим).


Рис. 41. Развертка, линеаризированная с помощью пентода в качестве зарядного сопротивления.

Н. – Я догадываюсь, что путем изменения напряжения на экранирующей сетке ты устанавливаешь нужную рабочую точку пентода. Все насыщенные диоды и другие пентоды с током постоянного значения напоминают мне историю Прокрустова ложа… Однако досадно, что нужно применять дополнительную лампу только для линеаризации формы напряжения.



ИСКУССТВО ИСПОЛЬЗОВАНИЯ КРИВЫХ

Л. – Поэтому-то и предпочитают возложить эту задачу на усилительную лампу, которая при любых условиях нужна для увеличения до требуемой величины амплитуды зубьев пилы.

Н. – А как же она выпрямит кривизну напряжения?

Л. – Попросту изменяя его форму в обратном направлении. В самом деле, имей в виду, Незнайкин, что необходимо уметь использовать не только людские добродетели и достоинства вещей, но также их пороки и недостатки. Что может быть досаднее лампы, характеристика которой недостаточно линейна и которая поэтому деформирует усиливаемые напряжения? А в рассматриваемом случае этот недостаток становится истинным благом.

Н. – Я понимаю, что происходит. Возьмем лампу, у которой характеристика анодного тока в функции напряжения сетки представляет собой кривую. Это одна из наших старых добрых знакомых: лампа с переменной крутизной, крутизна которой увеличивается, когда уменьшается смещение. Таким образом, чем сильнее поступающий сигнал, тем более он усиливается. Это как раз то, что нужно для спрямления экспоненциальной кривой, которая по мере подъема все более и более наклоняется.

Л. – Вот посмотри на небольшой рисунок (рис. 42), ясно показывающий, каким образом линеаризируются зубья пилы.


Рис. 42. Линеаризация экспоненциального зуба пилы с помощью усилительной лампы с нелинейной характеристикой.

а – характеристика лампы: б – напряжение, подлежащее усилению; в – анодный ток лампы.

Если форма характеристики лампы и зубьев симметрична, то взаимная компенсация кривизны оказывается практически вполне удовлетворительной. Изменяя смещение, можно всегда выбрать такую часть характеристики, которая имела бы кривизну, требуемую для компенсации нелинейности зубьев пилы.

Большое распространение получили также схемы линеаризации, использующие более или менее сложные цепи отрицательной обратной связи. Вообще это задача, вполне удовлетворительного решения которой пока не найдено.


Н. – Я думаю, что пришла пора возвестить мне, что в телевидении никогда не применяются ни тиратронные генераторы развертки, ни линеаризирующие усилительные лампы.

Л. – Успокойся, и те и другие там широко используются.


Беседа седьмая
ГЕНЕРАТОРЫ РАЗВЕРТКИ НА ВАКУУМНЫХ ЛАМПАХ

Если предыдущая беседа затрагивала в основном генераторы развертки с газоразрядными лампами (тиратронами), то в настоящей беседе рассматриваются различные схемы развертки с вакуумными лампами. Изучение их потребует от Незнайкина (как и от читателя) довольно напряженного внимания. В самом деле, иногда придется следить за одновременным изменением многих токов и напряжений, что не всегда легко, но благодаря чему будут усвоены следующие понятия: разряд через вакуумную лампу; блокинг-генератор; фазы его работы; генераторы развертки с блокинг-генератором; мультивибратор; колебания прямоугольной формы; мультивибратор с катодной связью; формирование пилообразного напряжения.


ГЕНЕРАТОР РАЗВЕРТКИ ТИПА «МОДЕЛЬ НЕЗНАЙКИНА»

Незнайкин. – Вопреки твердо установившейся традиции ты утверждал, заканчивая нашу последнюю беседу, что развертки на тиратронах очень удачны и широко применяются в современном телевидении.

Любознайкин. – Верно, несмотря на незначительный срок службы газоразрядных ламп по сравнению с вакуумными лампами.

Н. – Я много думал над этим и считаю, что использование тиратронов – ошибка. Вакуумные лампы прекрасно могли бы выполнить те же функции. Я составил чрезвычайно простую схему, которая сметет с лица земли все тиратроны.

Л. – Я очень хочу ее посмотреть, однако предупреждаю, что задолго до тебя были придуманы разнообразные типы генераторов развертки с вакуумными лампами.

Н. – До чего жалко, что я не родился 100 лет назад. Мне больше нечего изобретать!.. Все же вот развертка «модель Незнайкина». В ней применена вакуумная лампа – триод с высокой крутизной и ярко выраженной кривизной характеристики в момент появления анодного тока. Таким образом, если смещение на лампе выбрано так, чтобы анодный ток дошел до нуля, то положительный импульс на сетке вызовет анодный ток определенной величины (рис. 43).


Рис. 43. Форма анодного тока при импульсе положительной полярности на сетке лампы.

Л. – Я понимаю, куда ты гнешь.

Н. – Это и нетрудно. В моей схеме (рис. 44), как и в схеме с тиратроном, имеется зарядная цепь, состоящая из резистора R и конденсатора С, Разрядная цепь образуется промежутком катод – анод триода. Нормально благодаря резистору R1 (блокированному конденсатором С1) на сетке триода создается как раз такое смещение, чтобы ток был равен нулю. Но через конденсатор С2 я подаю на сетку синхронизирующие импульсы положительной полярности. При поступлении каждого импульса возникает анодный ток, давая возможность конденсатору С быстро разрядиться.

Что ты об этом думаешь? Уж, конечно, ты приведешь массу возражений…


Рис. 44. Схема развертки «модель Незнайкина», где разряд конденсатора С происходит в соответствии с принципом, показанным на рис. 43.


Л. – Вовсе нет, Незнайкин. Твоя схема может работать вполне удовлетворительно при условии, что импульсы синхронизации имеют достаточную амплитуду. Так будет в случае, когда приемник расположен по соседству с передатчиком. Если же расстояние между ними будет большое, то напряжение принимаемого сигнала не будет постоянным, разряд будет происходить с различной скоростью, и изображения получатся искаженными. Кроме того, при отсутствии передачи не будет развертки и неподвижное пятно разрушит соответствующее место на экране.

Н. – Если я правильно понял, моя идея немногого стоит?

Л. – Да нет же, Незнайкин, твоя схема вполне пригодна. Но только вместо того, чтобы вызывать разряд с помощью синхронизирующих импульсов, подаваемых непосредственно на сетку разрядной лампы, лучше использовать положительные импульсы, специально сформированные в телевизоре, с постоянной и хорошо поддающейся регулировке амплитудой, соответствующим образом синхронизированные принимаемыми импульсами.


СТАРАЯ СХЕМА В НОВОЙ РОЛИ

Н. – В общем ты хочешь, чтобы победили научные принципы организации труда, и четко разделяешь функции. Зарядная цепь, состоящая из резистора и конденсатора, выполняет свою часть работы. Лампа обслуживает цепь разряда. Некоторое таинственное устройство действует положительными импульсами на сетку, чтобы вызывать разряд. И, наконец, синхронизирующие импульсы управляют точным ритмом импульсов, полученных при помощи названного таинственного устройства.

Л. – Да, дело обстоит именно так. И так как устройство, о котором идет речь (назовем его «генератором импульсов»), генерирует независимо от наличия синхроимпульсов, то даже в случае потери нескольких синхронизирующих импульсов вследствие замирания ритм развертки но будет слишком изменен. Развертка будет продолжаться даже в отсутствие передачи.

Н. – А как получить эти периодические импульсы?

Л. – Например, с помощью блокинг-генератора. Вот его схема (рис. 45).


Рис. 15. Схема блокинг-генератора.

Н. – Но, дорогой Любознайкин, что ты рисуешь? Ведь это старый знакомый! Я узнаю самый классический из генераторов с катушкой обратной связи в анодной цепи и конденсатором, шунтированным резистором, – в сеточной. Ты просто-напросто поменял местами сеточную обмотку и сеточный конденсатор, но ведь это ничего не меняет, потому что они включены последовательно. Ты мне уже подробно объяснял его работу. И теперь я знаю, что он генерирует синусоидальные колебания, а вовсе не импульсы.

Л. – Это зависит от значения величин элементов. Чтобы получать импульсы, применяются конденсатор С3 и резистор R3 в цепи сетки с величинами, значительно большими, чем для генератора синусоиды. Связь между сеточной и анодной обмотками должна быть очень сильной.

Н. – Не понимаю, почему при этих условиях нельзя все же получить такие красивые синусоиды. Когда в анодной цепи возникает ток, сетка становится более положительной благодаря взаимоиндукции между обмотками L1 и L2, что только увеличивает анодный ток.

Л. – Я тебя прерываю, ибо твое рассуждение, верное до сих пор, рискует стать ошибочным, если ты будешь продолжать его развивать. Не забудь, что связь между обмотками L1 и L2 очень велика. Сетка, таким образом, очень быстро становится положительной. Поэтому она притягивает электроyы, эмитированные катодом.


Н. – Уж не кажется ли ей, что она стала анодом?

Л. – Весьма вероятно. Факты таковы, что электроны заряжают конденсатор С3, емкость которого дает им идеальное убежище.

Н. – Почему они не направятся поспешно по направлению к катоду, образуя сеточный ток?

Л. – Это и происходит, но в небольшой степени из-за большого сопротивления резистора R3. Ты ведь видишь (рис. 46), что потенциал сетки после быстрого подъема (от а до Ь на кривой) не только перестает быть положительным, но даже падает до некоторой отрицательной величины (с). Анодный ток в этот момент равен нулю (так же как и сеточный ток). Лампа оказывается блокированной (откуда и название устройства). С этого момента ничто не мешает конденсатору С3 разряжаться через резистор R3, постепенно доводя до нуля потенциал сетки (от с до d на кривой). В этот момент вновь появляется анодный ток…


Рис. 46. Форма напряжения на сетке лампы блокинг-генератора.

Н. – …и все начинается сначала. В общем у нас налицо быстрый положительный скачок потенциала сетки, который образует то, что ты называешь импульсом, затем отрицательная часть, гораздо более продолжительная и совершенно бесполезная.

Л. – Вижу, что ты хорошо понял мое объяснение.


ОТ УПРОЩЕНИЯ К УПРОЩЕНИЮ

Н. – А каким образом синхронизируют блокинг-генератор?

Л. – Подавая положительные синхроимпульсы на сетку, что вызывает появление импульса блокинг-генератора той же полярности. Раз уж мы заговорили о синхронизации, должен тебе сказать, что существует много способов подачи импульсов на сетку лампы блокинг-генератора (рис. 47); можно их подводить с помощью третьей обмотки, индуктивно связанной с сеточной обмоткой, или же через конденсатор непосредственно на сетку лампы, но только не в точке соединения L1 и R3, или же, наконец, через конденсатор С4, соединенный с верхней точкой резистора R4, включенного в сеточную цепь со стороны катода.



Рис. 47. Два способа подачи импульсов синхронизации.

а – трансформаторная связь; б – емкостная связь с сеточной цепью.

Н. – Если принять этот последний способ, то сочетание блокинг-генератора с разрядной цепью будет выглядеть, я думаю, в виде нарисованной мною схемы (рис. 48).



Рис. 48. Двухламповый генератор развертки с блокинг-генератором.

Л. – Твоя схема вполне правильна.

Н. – Ее, однако, нельзя считать очень простой.

Л. – Да, она и не самая простая. На практике можно заменить две лампы одной. Или же по крайней мере использовать только один баллон, содержащий два триода. Такие лампы изготовляются в целях экономии места и себестоимости.

Н. – Но ведь это не упрощает схему.

Л. – Раз ты на этом настаиваешь, можно поступить еще проще, заменив две лампы одним пентодом (рис. 49). В блокинг-генераторе используется экранирующая сетка лампы в качестве анода. Пространство катод – анод будет по-прежнему служить для разряда конденсатора С, вызываемого короткими положительными импульсами, периодически возникающими на сетке.



Рис. 49. Одноламповый генератор развертки с блокинг-генератором ни пентоде.

Н. – Если уж на то пошло, нельзя ли заменить пентод простым триодом, соединив экранирующую сетку с анодом и включив зарядную цепь последовательно с анодной обмоткой L2?

Л. – Так часто и поступают (рис. 50). Но остановимся на этом, так как если ты будешь продолжать в том же духе, то дойдешь до формирования безупречной пилы при помощи простой лампы от карманного фонаря…



Рис. 50. Одноламповый генератор развертки с блокинг-генератором на триоде.


ПЕРЕПУТАННЫЕ ВХОД И ВЫХОД

Н. – Существуют ли другие типы импульсных генераторов, кроме того, который ты описал? Ведь имеется столько различных схем генераторов синусоидальных колебаний.

Л. – Конечно, эти схемы можно было бы использовать, но они вызвали бы ненужные усложнения. Можно полностью обойтись без блокинг-трансформатора, осуществляя обратную связь с помощью второй лампы, которая изменяет полярность напряжения и дает возможность подать его на вход первой лампы в правильной полярности и том самым поддержать колебания.

Н. – Мне это что-то не совсем ясно.

Л. – Тогда рассмотрим вопрос с другой стороны. Представь себе усилитель на двух лампах со связью через сопротивление и емкость (рис. 51). Подай его выходное напряжение на его собственный вход. Что ты получишь?



Рис. 51. Двухламповый усилитель с обратной связью между выходом и входом является мультивибратором. Маленькие синусоиды обозначают фазы напряжений.

Н. – Две змеи, кусающие себя за хвосты.


Л. – Меня интересуют не зоологические аналогии, а физический анализ явлений, которые произойдут при подаче напряжения на такое устройство.

Н. – Я прибегну к таким же рассуждениям, какие ты обычно употребляешь в подобных случаях. Допустим, что в момент включения напряжения анодный ток лампы Л1возрастает. При этом падение напряжения на анодном сопротивлении Ra1 также возрастает, а напряжение на аноде Uа1 настолько же уменьшается. Через конденсатор связи это падение напряжения передается на сетку лампы Л2, уменьшая ее потенциал Uc2. Так как сетка становится более отрицательной, анодный ток лампы Л2 уменьшается. Следовательно, падение напряжения на резисторе Rа2 уменьшается, а напряжение на аноде Uа2 увеличивается. Через конденсатор связи это увеличение напряжения передается на сетку первой лампы, вследствие чего положительный потенциал ее сетки и, следовательно, величина анодного тока возрастает.

Л. – Ты видишь, что все эти явления происходят одновременно. Кроме того, очень важно отметить, что напряжение на выходе усилителя только усиливает явления, происходящие на его входе. Иначе говоря, полярности напряжения на выходе и входе совпадают. И это вполне естественно. Ведь в каждом каскаде происходит изменение полярности. Когда сетка становится более положительной, положительный потенциал анода падает, и, наоборот. Значит, при двух каскадах полярности совпадают.

Н. – Можно было бы, таким образом, применить 4, 6 или 8 каскадов?


Л. – Конечно. По можно подумать, что ты на жалованьи у ламповых фабрикантов…

Н. – Все же я хотел бы знать, будет ли ток первой лампы бесконечно возрастать.

Л. – Ну, конечно, нет, ты не рискуешь расплавить предохранители. Быстрый рост тока первой лампы, сообщая сетке второй лампы высокий отрицательный потенциал, доведет до нуля (рис. 52) ее анодный ток (момент А на кривых Uа1,Uc1, Uа2, Uc2). С этого момента ничто больше не будет вызывать увеличения положительного потенциала сетки лампы Л1 который будет сохранять свою величину. Ток этой лампы останется значительным, а напряжение на ее аноде – малым. Что касается конденсатора С1, заряженного отрицательно, то он будет разряжаться; через резистор R2 (отрезок А – Б на кривой Uс2).


Рис. 52. График, позволяющий легко проследить одновременные изменения напряжений на различных электродах ламп мультивибратора на рис. 51.


Н. – Признаюсь, трудновато следить за таким количеством одновременно происходящих явлений.

Л. – Я тебя понимаю. Но думаю, что кривые, которые я начертил, должны облегчить тебе понимание.

Н. – Когда конденсатор С2 будет разряжен, возникнет и будет быстро возрастать анодный ток в лампе Л2.

Л. – Совершенно верно. И в это же время (точка Б на кривых) лампа Л2 окажется в тех же условиях, что и лампа Л1 в момент А.

Н. – Иначе говоря, напряжение Uа2 упадет, конденсатор связи С2 передаст ото уменьшение на сетку лампы Л1, анодный ток которой начнет уменьшаться до нуля, что вызовет увеличение ее анодного напряжения и соответственно положительного потенциала сетки лампы Л2.

Л. – Остановись хоть ты, Незнайкин, так как на мультивибратор нельзя рассчитывать. Генератор, названный так, вырабатывает периодические напряжения специальной формы. В обеих лампах повторяются с интервалом в один полупериод в точности одни и те же явления, как это показывает внимательное рассмотрение кривых. То одна, то другая лампа по очереди пропускает ток, затем запирается.

Н. – Однако мультивибратор не дает пилообразного напряжения.

Л. – Да, это так, на его анодах можно обнаружить скорее прямоугольные колебания. Они имеют многочисленные применения, широко используются в телевидении и еще больше в электронике вообще; длительность положительных и отрицательных полупериодов идентична, когда элементы двух каскадов мультивибратора одинаковы по величине. Но если они отличаются друг от друга, симметрия нарушается. Таким образом, можно получить импульсы небольшой длительности, разделенные сравнительно длинными интервалами времени. Так можно получать синхронизирующие и различные управляющие импульсы.



ВОЗВРАЩЕНИЕ К ЗУБЬЯМ ПИЛЫ

Н. – Как и в случае генератора развертки с блокинг-генератором, нельзя ли в мультивибраторе заменить обе лампы одним двойным триодом?

Л. – Конечно, можно. Больше того, связь между двумя каскадами, обычно выполняемую с помощью конденсатора С1 можно заменить связью через общий резистор R в катодах обеих ламп (рис. 53).


Рис. 53. Мультивибратор с катодной связью. Пунктиром показана часть схемы, позволяющая получить пилообразное напряжение.


Н. – Не понимаю, каким образом резистор может заменить конденсатор.


Л. – Однако путем рассуждений ты без труда можешь проникнуть в тайну катодной связи. Ведь увеличение анодного тока одного из триодов, тока, который, не забудь, проходит также через резистор R, увеличивает падение напряжения на его концах, делая более отрицательным тот, который присоединен к сетке другой лампы. Таким образом, ее анодный ток уменьшится. Конденсатор связи, очевидно, произведет то же действие.

Н. – Теперь я понимаю. При этом по схеме видно, что сетка триода Л1 свободна и поэтому ты на нее подаешь синхронизирующие импульсы через конденсатор С3.

Л. – Я это делаю тем охотнее, что мультивибратор очень легко синхронизируется

Н. – Прости, Любознайкин, но с момента, когда оказалось, что твой мультивибратор не вырабатывает пилообразного напряжения, другие его добродетели меня не трогают.

Л. – Раз ты так уж настаиваешь на пиле, она у тебя будет, Незнайкин (рис. 54). Чтобы ее получить, добавь конденсатор С (см. соединение, изображенное на рис. 53 пунктиром) между одним из анодов мультивибратора и отрицательным полюсом высокого напряжения. Кроме того, пусть сопротивление анодного резистора Rа2 этого триода будет значительно больше, чем анодного резистора Rа1 другого триода. И у тебя появится на зажимах Rа2 пилообразное напряжение.


Рис. 54. График напряжении на правом аноде и на катоде в случае включения конденсатора С, показанного пунктиром на рис. 53.

Н. – Мне кажется, что опять начинается история с зарядом конденсатора С через резистор Rа2.

Л. – Да, такова природа этого явления. Так как сопротивление резистора Rа2 большое, ток вначале не проходит через триод Л2. Но как только напряжение на выводах С достигает достаточной величины, возникает ток между катодом и анодом, разряжая конденсатор С. Но тут же обрушивается целая лавина! С появлением тока триода Л2 в триоде Л1 возникает отрицательное смещение под действием общего катодного резистора R. Его анодный ток падает и благодаря связи через конденсатор С1 потенциал сетки триода Л2 возрастает, ускоряя разряд. Когда конденсатор С разряжен таким образом, ток через триод Л2прекращается, и все начинается сначала.

Н. – Ну что, теперь я уже знаю все устройства для получения пилообразных напряжений?


Л. – К величайшему моему сожалению, должен тебя разочаровать. Ведь их несметное количество. Но, познакомившись с тиратроном, блокинг-генератором и мультивибратором, ты узнал основные из них. Остальные основываются на уже рассмотренных принципах. А это значит, что для тебя не представит затруднений их изучить. Благодаря этому в следующей нашей беседе мы сможем затронуть более занимательные вопросы, чем генераторы развертки.



    Ваша оценка произведения:

Популярные книги за неделю