355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Евгений Айсберг » Телевидение?.. Это очень просто! » Текст книги (страница 11)
Телевидение?.. Это очень просто!
  • Текст добавлен: 10 октября 2016, 00:04

Текст книги "Телевидение?.. Это очень просто!"


Автор книги: Евгений Айсберг



сообщить о нарушении

Текущая страница: 11 (всего у книги 17 страниц)

Беседа четырнадцатая
ИСЧЕЗНОВЕНИЕ И ВОССТАНОВЛЕНИЕ

Пройдя через конденсатор связи, видеосигнал теряет постоянную составляющую. Результатом этого являются неточное воспроизведение среднего уровня яркости изображения и нарушение синхронизации. В некоторых случаях можно обойтись без конденсаторов связи. В других же приходится прибегать к восстановлению постоянной составляющей. Это и является предметом настоящей беседы, во время которой будут рассмотрены: прохождение сигнала через конденсатор; асимметричные сигналы; потеря постоянной составляющей; влияние на среднюю яркость изображения и синхронизацию; схема с непосредственной связью; восстановление постоянной составляющей с помощью диода; схема включения восстанавливающего диода; смещение в случае униполярных сигналов.


ЭЛЕКТРОНЫ КАЧАЮТСЯ

Незнайкин. – Рассматривая в последний раз усиление на видеочастоте, ты особенно напирал на проблему наиболее высоких частот. Но на другом конце диапазона тоже должны быть трудности.

Любознайкин. – Что ты этим хочешь сказать?

Н. – Я спрашиваю себя, не вырождается ли в некоторых случаях видеосигнал в простое постоянное напряжение, например, если изображением является просто однородный фон. Ведь постоянное напряжение не передается через конденсаторы связи между каскадами.

Л. – Трудность была бы реальной в отсутствие синхронизирующих импульсов, которые в конце каждого кадра вызывают скачок напряжения, вследствие чего видеосигнал не может иметь постоянной величины даже в случае, о котором ты говоришь. Конечно, нужно использовать переходные конденсаторы достаточной емкости, чтобы низкочастотные составляющие прошли без искажений. Но, как ты сказал очень кстати, конденсатор не может передать постоянное напряжение. И это создает известные трудности несколько другого порядка.

Н. – Если бы ты соблаговолил быть менее таинственным, мне удалось бы, вероятно, понять их и, кто знает, может быть и преодолеть.

Л. – Ну, что же, подумай немного, каким образом переменное напряжение передается в классической цепочке связи через конденсатор С с резистором утечки R.

Н. – Мы это разбирали как-то, и нет ничего проще. Напряжение переменного тока подается на левую обкладку конденсатора. Во время положительного полупериода там образуется разрежение электронов, Поэтому ввиду притяжения, которое под действием положительных атомов (бедных электронами) испытывают электроны, они притягиваются к правой обкладке. Откуда же они могут появиться? Очевидно, из массы шасси. Они, следовательно, проходят через резистор R снизу вверх, создавая такое падение напряжения, что верхний его конец становится положительным. Все происходит таким образом, как будто ток в течение положительного полупериода реально прошел через конденсатор.

Л. – С той, однако, разницей, что если на переменную составляющую накладывается постоянное напряжение, а это так и бывает в анодной цепи, где существует высокое напряжение, то постоянная составляющая не передается через конденсатор. Что же происходит теперь с отрицательным полупериодом?

Н. – Электроны устремляются к левой обкладке и, следовательно, вытесняют электроны с правой, так как нет ничего более антагонистического для электрона, чем другой электрон. Изгнанные таким образом электроны направятся к массе шасси, проходя через резистор R таким образом, что верхний его конец становится отрицательным. И здесь опять все происходит так, как будто вместо конденсатора находится проводник.

Л. – Все это правильно. И ты замечаешь, что электроны легко и симметрично балансируют, как ребятишки на качелях.



СИММЕТРИЯ И РАВНОВЕСИЕ

Н. – Я это знал уже давно. Зачем ты мне опять об этом напоминаешь?

Л. – Да потому, что в случае видеосигнала все происходит несколько по-иному

Н. – Почему же?

Л. – Потому, что в отличие от формы модулированных сигналов высокой и сигналов низкой частоты, соответствующих звуковой передаче, сигналы видеочастоты асимметричны (рис. 95), т. е. не состоят из отрицательных и положительных полупериодов, похожих друг на друга, как отражение объекта в зеркале на сам объект.


Рис. 95. Напряжения высокой частоты (а) и модулированной высокой частоты (б) симметричны, напряжение же видеочастоты (в) асимметрично.


Н. – Действительно, на выходе детектора видеосигнал в соответствии с полярностью детектирования будет или полностью положительным, или полностью отрицательным. Для сигналов такой формы не может быть проведена ось симметрии.

Л. – Попробуй теперь разобрать, каким образом такие сигналы будут передаваться цепочкой связи CR от детектора на видеоусилитель.

Н. – А какую взять полярность детектирования?

Л. – Будем считать, что речь пойдет о наиболее употребительном случае, когда приемник имеет только один каскад видеочастоты и напряжение подается на катод кинескопа. Детектирование будет тогда…

Н. —..отрицательной полярности. У нас будет излишек электронов на левой обкладке, исключая короткие мгновения передачи самых ярких точек. Следовательно, из правой обкладки будет изгнано более или менее значительное количество электронов.

Л. – Совершенно верно. Когда детектированное отрицательное напряжение достигает максимума (верхушки синхронизирующих импульсов), наибольшее количество электронов удаляется из правой обкладки, чтобы направиться к массе шасси через резистор. В это время верхний конец резистора отрицателен.

Н. – Я вижу, куда ты клонишь. Когда напряжения менее отрицательны, как, например, при передаче белого, часть выброшенных электронов возвращаются к правой обкладке. Ток, который их туда переносит из массы шасси, идет в обратном направлении, вследствие этого верхний конец резистора становится положительным.


Л. – Ты видишь (рис. 96), что после конденсатора напряжение имеет ту же форму, что и детектированное, но оно уже неполностью отрицательно или положительно в зависимости от полярности детектирования. Хотя на сетке лампы видеоусилителя напряжение асимметрично, оно имеет положительные и отрицательные полупериоды, распределяющиеся должным образом вокруг нулевого потенциала.


Рис. 96. Видеосигнал отрицательной полярности на выходе детектора имеет вид, представленный кривой А. После прохождения через переходный конденсатор он приобретает форму, представленную кривой В, у которой площади заштрихованных положительных и отрицательных полупериодов соответственно равны.


Н. – А что ты называешь «должным образом»?

Л. – Так, чтобы общее количество электронов, покидающих правую обкладку (отрицательный полупериод), было равно количеству возвращающихся туда электронов (положительный полупериод). Как хороший бухгалтер, я стараюсь уравновесить приход и расход. И если об этом поразмыслить, не прибегая даже к полному подсчету, то можно обнаружить, что эти количества электронов пропорциональны площади каждого из полупериодов.

Н. – В общем, для нахождения оси с нулевым потенциалом нужно разделить ножом кривую на две части таким образом, чтобы она, если лезвие ножа совпадает с осью, сохраняла равновесие.

Л. – По крайней мере так можно проверить, правильно ли начерчена ось… Ты видишь, следовательно, что, пропуская детектированный сигнал через конденсатор связи, мы преобразовали его в переменный ток, лишив его определенной полярности, и, главное, сместили импульсы синхронизации с постоянного уровня.


НОВЫЕ КОЗНИ ЕМКОСТИ

Н. – А это опасно?

Л. – Это катастрофично! Ибо в соответствии с формой сигнала, т. е. с видом передаваемого изображения, уровень верхушек импульсов будет изменяться. При этом нельзя будет обеспечить правильную синхронизацию. Кроме того, полутона изображения могут оказаться искаженными.

Н. – Почему же?

Л. – Чтобы дать тебе возможность лучше понять степень неприятности, я приведу конкретный и очень простой пример.

Предположим, что изображение состоит из совершенно белого равностороннего треугольника на совершенно черном фоне. Попробуем начертить форму детектированного отрицательного видеосигнала (рис. 97) для трех строк развертки: одной – расположенной вверху, второй – в середине и третьей – внизу.


Рис. 97. Три строки изображения, вычерченного вверху, дают на выходе детектора напряжения А, В и С, показанные на первом графике. После прохождения через конденсатор эти напряжения смещаются в соответствии со вторым графиком. Если не принять соответствующих мер предосторожности, то изображение на экране приемника будет иметь вид, показанный внизу.

Н. – Это нетрудно. В первой строке синхронизирующий импульс составит 100 % максимальной амплитуды, затем следует сигнал черного на уровне 75 %, за исключением короткого пика с уровнем 15 %, соответствующего вершине белого треугольника. Для средней строки площадки на уровне черного сокращаются в пользу площадки, соответствующей уровню белого. И уровень белого занимает почти все место в последней строке.


Л. – Прекрасно. Можешь ля ты теперь начертить пунктиром для каждой из трех строк ось нулевого потенциала так, как она расположится после прохождения сигналов через конденсатор?


Н. – Конечно. Я думаю, что мои площадки не так уж плохо уравновешены.

Л. – Продолжим наши графические упражнения. Не нарисуешь ли ты вновь эти же сигналы так, как они будут расположены по отношению к нулевой оси после прохождения через конденсатор связи.

Н. – Это нетрудно.

Л. – Ты можешь установить теперь, что верхушки импульсов синхронизации находятся на разных уровнях, что помешает правильной работе схемы синхронизации. Но это еще не все, если подать сигналы в таком виде на катод кинескопа и добиться правильной градации тонов от черного до белого для первой строки, то соотношение полутонов для остальных строк уже не будет соблюдаться. То, что должно быть белым на средней строке, будет серым, а белый участок на последней строке окажется еще более темно-серым. В конце концов треугольник будет уже далеко не равномерно белым. Чем ниже, тем он будет темнее.


ДОЛОЙ КОНДЕНСАТОРЫ!

Н. – Я совершенно обескуражен. В общем, идет ли речь о паразитных емкостях или явно выраженных конденсаторах, все они играют самую роковую роль в телевидении. А что если их совсем изъять?

Л. – То, что ты говоришь в шутку, в действительности осуществляется в некоторых схемах с так называемой прямой или непосредственной, или, как еще говорят, гальванической связью. Ничто не мешает изъятию переходного конденсатора между детектором и сеткой лампы видеоусилителя.


Несколько сложнее осуществить прямую связь между анодом лампы усилителя и, например, модулятором кинескопа. При отсутствии конденсатора модулятор окажется под высоким положительным потенциалом анода лампы видеоусилителя (рис. 98).


Рис. 98. Простейшая схема передачи постоянной составляющей с использованием непосредственной связи между каскадами, следующими за детектором.

Н. – Но это невозможно! Разве ты мне не говорил, что потенциал модулятора кинескопа должен быть отрицательным относительно его катода, так же как и управляющая сетка триода?

Л. – Верно. Поэтому в такой схеме подают на катод кинескопа постоянный положительный потенциал несколько выше потенциала его модулятора. Благодаря этому сетка оказывается отрицательной относительно катода.


Н. – Вот и нет переходных конденсаторов! Я не думал, что решение окажется столь простым.

Л. – Не радуйся преждевременно. На самом деле это совсем не так просто. Схема, которую я тебе описал, имеет и серьезные недостатки. Жизнь кинескопа, в частности при непосредственной связи с модулятором, подвергается некоторой опасности.

Н. – Но почему же!

Л. – Предположим, что по каким-либо причинам, хотя бы вследствие перегорания нити, лампа видеоусилителя перестанет работать. При этом напряжение на ее аноде значительно повысится, потому что в отсутствие анодного тока нет больше и падения напряжения на нагрузочном резисторе.

Н. – Я вижу, в чем трагедия. Напряжение на аноде лампы видеоусилителя, а значит, и на модуляторе кинескопа окажется равным напряжению источника анодного питания. На модуляторе появится высокий положительный потенциал относительно катода. Последний потеряет эмиссию и окажется пригодным лишь для мусорного ящика. Что же делать?

Л. – Существуют другие схемы с прямой связью, где этот дефект, как и некоторые другие, может быть устранен. Так, например, если видеосигнал подать не на модулятор, а на катод, то кинескоп окажется в безопасности. Впрочем, существуют и другие способы, кроме прямой связи, чтобы восстановить форму видеосигнала после его прохождения через переходный конденсатор.



ПРОСТОЙ СПОСОБ ВОССТАНОВЛЕНИЯ

Н. – Хотел бы я с ними познакомиться, если только они не окажутся много сложнее улучшенных схем с непосредственной связью.

Л. – Ты ведь уже заметил, что причиной всех неприятностей из-за переходных конденсаторов является наличие токов в двух направлениях через резистор. Падение напряжения, обусловленное этими токами, и является причиной возникновения положительных и отрицательных полупериодов.

Н. – Очевидно, если бы можно было заставить электроны вернуться на правую обкладку в обход резистора, то не было бы положительных полупериодов. Но я не вижу такого способа.

Л. – Однако такой способ существует, и он сравнительно прост. Достаточно включить параллельно резистору R диод, соединив его катод с нижним концом резистора при негативном или с верхним концом при позитивном видеосигнале (рис. 99).


Рис. 99. Схема включения восстанавливающего диода.

а – негативный сигнал; б – позитивный сигнал.


Н. – Я об этом не подумал! Я понимаю, что в этих условиях электроны, изгнанные с правой обкладки, могут пройти на массу шасси только через резистор, так как диод в этом направлении не может их пропустить. Следовательно, они создадут требуемое отрицательное напряжение. Но, чтобы вернуться к обкладке, электроны вместо высокого сопротивления резистора R выберут гораздо более легкий путь через промежуток катод – анод диода. И на этом малом сопротивлении появится совершенно незначительное положительное напряжение.

Л. – В действительности протекающие в этой элементарной цепи явления не так просты. Электроны, образующие заряд конденсатора С, не могут мгновенно стечь через резистор R. Роль диода, следовательно, заключается в том, чтобы создать на правой обкладке конденсатора достаточный заряд. Тогда весь видеосигнал окажется в области отрицательных напряжений и лишь синхронизирующие импульсы будут достигать нулевого уровня. Благодаря действию диода нулевой уровень окажется не средним, а максимальным значением сигнала.

Н. – Разве электроны проходят через диод при каждой кадровой развертке?

Л. – Необязательно; если напряжение следующих друг за другом кадров имеет одинаковую форму или, точнее, создает один и тот же заряд, диод будет бездействовать после соответствующего заряда конденсатора. Но если появится более значительное количество электронов, то диод пропустит их для пополнения заряда. А когда заряд будет уменьшен, избыток электронов стечет через резистор R. Во всяком случае восстанавливающий диод…

Н. – Его так и называют?

Л. – Да, я забыл тебя познакомить с ним. Так вот, имею честь представить тебе диод для восстановления постоянной составляющей, как его официально называют.


Н. – А что это за постоянная составляющая, о которой идет речь?

Л. – Напряжение одной полярности (полностью положительной или полностью отрицательной), каким оно получается после детектирования, может рассматриваться (рис. 100) как сумма двух напряжений: переменного, имеющего такую форму, какая получается после прохождения через переходный конденсатор, и постоянного соответствующего знака и достаточной величины, чтобы после сложения переменное напряжение оказалось полностью в области положительных или соответственно отрицательных напряжений.


Рис. 100. Видеосигнал положительной полярности, представленный на графике А, может рассматриваться как сумма симметричного сигнала В и постоянной составляющей С.


Н. – Я догадываюсь, впрочем, что это постоянное напряжение равно тому, которое я начертил пунктиром на своем чертеже, чтобы разделить на равные поверхности кривую видеосигнала.

Л. – Ты еще раз прав, Незнайкин.

Н. – Мы рассмотрели случай напряжения отрицательной полярности. Как же нужно действовать в противоположном случае?

Л. – Нет ничего более простого. Если напряжение имеет положительную полярность, то переверни диод, т. е. присоединить анод к шасси, а катод – к верхнему концу резистора. Выполни для этого случая весь ход наших рассуждений, и ты увидишь, что схема работает так же хорошо… и, сверх того, ты проделаешь хорошую мозговую гимнастику.


ДИОДЫ ЗДЕСЬ, ДИОДЫ ТАМ…

Н. – В каком месте цепи видеочастоты нужно восстанавливать постоянную составляющую? Я думаю, что достаточно сделать это на выходе последнего каскада усилителя в цепи связи с кинескопом.

Л. – Можно было бы этим удовольствоваться при условии, конечно, что импульсы синхронизации будут выделены в этой точке, что часто и делают. Но можно также использовать несколько восстанавливающих диодов: один – после детектора, другой – после видеоусилителя, и если имеются два каскада видеочастоты, то третий диод – после второго каскада.

Но вернемся к примеру, который мы только что рассмотрели (рис. 97). Разве ты не видишь, что при отсутствии диода область напряжений U2, занятая сигналами, значительно превышает область U1, которой достаточно, когда верхушки импульсов синхронизации выравнены благодаря действию диода?

Н. – А почему нужно избегать этого растягивания сигналов по шкале напряжений?

Л. – Потому что видеоусилители – работают в малоблагоприятных условиях, и нет смысла давать им переваривать сигналы, растянувшиеся в столь обширной области сеточных напряжений. Конечно, при достаточно малых амплитудах действующих сигналов не следует злоупотреблять диодами.

Н. – Интересно, каким же образом нужно подавать смещение на лампы видеоусилителя, когда речь идет об усилении асимметричных и особенно «униполярных» сигналов?

Л. – Вопрос поставлен правильно. Действительно, в этом случае бесполезно устанавливать рабочую точку посередине прямолинейной части характеристики в области отрицательных сеточных напряжений. Рабочая точка для негативного сигнала выбирается в области нуля или несколько менее 1 в (рис. 101). А если речь идет о позитивном сигнале, то рабочая точка должна быть установлена на самом отрицательном конце прямолинейной части. В обоих случаях благодаря такому смещению для сигнала будет использована максимальная протяженность прямолинейной части характеристики.


Рис. 101. Смещение каскада видеочастоты должно так устанавливаться, чтобы униполярный сигнал находился на прямолинейном участке характеристики (показан выбор рабочей точки для случаев позитивного и негативного сигналов).

Н. – Подводя итоги, можно сказать, что в конкретном случае приемника с одним каскадом видеочастоты при подаче модулирующего напряжения на катод кинескопа нужно детектировать отрицательные полупериоды. При этом достаточно одного восстанавливающего диода, включенного параллельно резистору утечки кинескопа.

Л. – Заметь еще для будущего, что в случае негативного видеосигнала промежуток катод – сетка лампы может заменить диод. Когда мы анализировали механизм сеточного детектирования, помнишь, мы установили, что сетка лампы без сеточного смещения может играть роль анода диода. В случае негативного видеосигнала сетка и катод оказываются включенными так, что могут заменить восстанавливающий диод.



Беседа пятнадцатая
ВЫДЕЛЕНИЕ И РАЗДЕЛЕНИЕ

Этот диалог двух наших приятелей будет необычно длительным. Обсуждаемый вопрос действительно заслуживает особого внимания. Речь идет о методах выделения синхронизирующих импульсов из полного видеосигнала, а также разделения строчных и кадровых импульсов. Изучение этих вопросов приведет Любознайкина к анализу замечательных свойств очень простой цепи, состоящей из последовательно включенных резистора и конденсатора. Попутно приятели рассмотрят следующие вопросы: необходимость разделения; ограничение; место амплитудного селектора; амплитудный селектор с параллельным и последовательным диодом; схема на пентоде; вопросы полярности; применение восстанавливающего диода; преобразование длительности в амплитуду; дифференцирование и интегрирование; влияние постоянной времени; форма дифференцированных и интегрированных сигналов; практические схемы.


АМПЛИТУДНОЕ ОГРАНИЧЕНИЕ

Незнайкин. – Мне кажется, что теперь я знаю все.

Любознайкин. – Все? Что означает это полное скромности утверждение?

Н. – Я хочу сказать, что теперь я знаю все каскады телевизора от усилителя высокой частоты до последнего каскада видеоусилителя, соединенного с кинескопом. И, кроме того, я ничего не забыл о развертывающих устройствах. У меня приятное чувство, что я знаю, наконец, всю совокупность этой сложной техники, которая…

Л. – Не обольщайся, бедный мой Незнайкин. Тебе предстоит еще многое изучить. Ну, хотя бы методы синхронизации тех самых развертывающих устройств, о которых ты так кстати заговорил.

Н. – Я теперь припоминаю, что импульсы в конце строк и кадров служат для синхронизации развертывающих устройств приемника с развертками передатчика. Но разве недостаточно для этого подать на развертывающие устройства полный видеосигнал?

Л. – Это имело бы самые неприятные последствия. Смесь сигналов изображения с синхронизирующими импульсами запускала бы каждое из развертывающих устройств в самые неподходящие моменты. В этой области техники, где время исчисляется долями микросекунды, все должно быть четким и ясным. Каждая развертка должна получать только строго для нее предназначенные импульсы, причем любой другой сигнал должен быть исключен. Начало каждого разряда может определяться часто даже малейшими флуктуациями напряжения на сетке разрядной лампы.

Н. – Я вижу, куда ты клонишь: к необходимости отделить сигналы синхронизации от собственно видеосигнала. Впрочем, когда мы пробовали начертить общую схему телевизора, ты там как раз и предусмотрел для этого каскад амплитудного селектора.

Л. – Надеюсь, что ты без труда угадаешь принцип, позволяющий производить разделение.

Н. – Мне кажется, что речь идет о чем-то вроде электронного переключателя, который в нужные моменты подает сигналы на соответствующие развертки. Например, в конце каждой строки напряжение прикладывается к развертке «строки» и…


Л. – Нет, Незнайкин, твой переключатель было бы очень трудно создать, так как для правильного функционирования его самого нужно было бы синхронизировать. Ты попадаешь в порочный круг со своим проектом… Не видишь ли ты другого средства разделения сигналов изображения и синхронизирующих импульсов, основанного, например, на коренном различии между этими двумя типами сигналов?

Н. – Это различие, очевидно, заключено в разности амплитуд…

Л. – Это, конечно, основное. Теперь ты на верном пути. Продолжай.

Н. – В негативном видеосигнале импульсы синхронизации занимают промежуток между 75 и 100 % полного размаха видеосигнала. Все, что ниже этого, т. е. между 75 и 0 %, соответствует всей гамме яркостей от черного до белого. В позитивном же видеосигнале синхроимпульсы занимают область от 0 до 25 % полного размаха. Значит, нужно только отсечь напряжения, превышающие 75 % или расположенные ниже 25 %, в зависимости от полярности видеосигнала, чтобы остались одни синхроимпульсы.

Л. – Вполне правильные рассуждения, Незнайкин. Нужно чем-то вроде ножа отсечь в полном сигнале все, что выше 75 % или ниже 25 % и что отведено для синхроимпульсов. Такую ампутацию части напряжения называют амплитудным ограничением.


Н. – И каким же образом это осуществляют?


ГРАНИЦЫ ТЕРПЕНИЯ

Л. – Сигналы подают на лампу, которая милостиво усиливает до какого-то уровня, но отказывается переходить эту границу.

Н. – Как мой дядюшка, терпеливо переносивший, когда я был мальчишкой, мою игру на трубе, но выходивший из себя, как только я пробовал применять свои таланты к упражнениям на барабане… Но какой тип ламп также имеет границы терпения?


Л. – Обычно используются пентоды. Но избыток сеток необязателен, и в более дешевых устройствах простой диод худо ли бедно ли выполняет эту задачу.

Н. – А где располагают амплитудный селектор?

Л. – Теоретически можно на него подавать напряжение сигнала до детектирования, потому что, ограничивая, он одновременно и детектировал бы. Но работал бы такой амплитудный селектор недостаточно надежно. Выгоднее подавать на него сигналы с возможно большей амплитудой. Поэтому селектор включают в конце цепи усиления, например на выходе последнего каскада видеоусиления, или в редких случаях, когда схема без видеоусилителя, на выходе детектора.

Н. – Значит ли это, что подаваемый на селектор видеосигнал может быть как позитивным, так и негативным, в зависимости от того, включен ли выход последнего каскада на модулятор или катод кинескопа?

Л. – Нам придется рассмотреть оба случая.

Н. – Допустим, если ты согласен, что видеосигнал позитивный, т. е. что синхронизирующие импульсы «опираются» на нулевой потенциал и что остальной сигнал поднимается в область положительных напряжений. Как в этом случае отделить синхроимпульсы при помощи диода?

Л. – Существует много схем, используемых для этой цели. Наиболее простые содержат диод со смещением, включенный параллельно видеосигналу. В случае позитивного видеосигнала (рис. 102) катоду диода задается положительный по отношению к аноду потенциал. Пока к аноду не прикладывают напряжений, превышающих это напряжение смещения, ток через диод не проходит. Но как только потенциал анода становится положительным по отношению к катоду, возникает ток. Диод создает настоящее короткое замыкание, вследствие чего на выходе устройства не может появиться напряжение выше того, которое вызывает ток через диод.


Рис. 102. Амплитудный селектор с параллельным диодом для позитивного сигнала.


Н. – Мне кажется, я понял, что напряжение смещения выбирается таким образом, чтобы оно было несколько ниже амплитуды синхронизирующих импульсов. На импульсы диод, таким образом, не оказывает никакого действия, и они без ущерба передаются на выходные зажимы. Но как только напряжение превышает напряжение смещения, что соответствует собственно сигналам изображения, гильотина начинает работать и все проходит через диод, не доходя до выхода.

А для чего служит резистор R?

Л. – Для предохранения нагрузочного резистора предшествующего каскада от действия короткого замыкания диода.

Н. – Я об этом не подумал… Мог бы ты мне начертить схему, которая используется для негативных видеосигналов? Мне кажется, что нужно изменить направление диода.

Л. – Конечно. И тут опять (рис. 103), как видишь, потенциал анода отрицателен по отношению к катоду. Во время подачи синхроимпульсов потенциал катода положителен относительно анода, диод не пропускает тока и не оказывает никакого влияния на напряжение синхроимпульсов, точно передаваемых на выход. Сигналы же изображения сообщают катоду отрицательный относительно анода потенциал. Тогда возникает ток и на выходе, замкнутом накоротко диодом, отсутствуют сигналы изображения. Вот в несколько схематичном виде работа параллельного диодного ограничителя.


Рис. 103. Амплитудный селектор с параллельным диодом для негативного сигнала.


Н. – Это заставляет меня предположить, что существует последовательная схема. Как она устроена?

Л. – Схема чрезвычайно проста (рис. 104). Используется диод, анод которого слегка положителен благодаря делителю напряжения, состоящему из двух резисторов R3 и R4, включенных между отрицательным и положительным полюсами высокого напряжения. Конденсатор С достаточной емкости служит для пропускания переменных составляющих тока.


Рис. 104. Амплитудный селектор с последовательным диодом для позитивного сигнала.


Н. – Но ведь через диод будет протекать постоянный ток, раз его анод положителен по отношению к катоду.

Л. – Так будет по крайней мере в отсутствие сигнала, подаваемого на выход схемы. И не думай, что ток этот будет очень большим. Он создает на резисторе нагрузки R2 такое падение напряжения, что между анодом и катодом остается сравнительно небольшая разность потенциалов U. Соответственно выбирая R3 и R4, устанавливают U несколько меньшим, чем напряжение синхронизирующих импульсов.

Н. – А для чего здесь резистор R1?


Л. – Это резистор связи предшествующего каскада, я его ввел в схему, так как нужно, чтобы цепь тока диода была полностью замкнута.

Н. – Мне кажется, я без труда угадываю, что происходит в схеме. Пока напряжение видеосигнала, подаваемого на катод, ниже разности потенциалов U, т. е. во время действия синхронизирующих импульсов, потенциал анода остается положительным по отношению к катоду и ток проходит через диод. Но вне этих коротких моментов положительное напряжение, приложенное к катоду, выше, чем U, вследствие чего потенциал анода отрицателен по отношению к катоду. В этих интервалах диод блокирован, т. е. не пропускает тока.


Л. – Твое рассуждение правильно. Ты видишь, что в этой схеме ток проходит только во время синхронизирующих импульсов. Каждый из этих импульсов тока вызывает на резисторе R2 падение напряжения, создающее отрицательный импульс напряжения, снимаемого с анода.

Н. – Хорошо ли это? Я припоминаю, что некоторые развертывающие устройства обязательно требуют положительных синхронизирующих импульсов, тогда как другие менее разборчивы.

Л. – Если это необходимо, то всегда можно изменить полярность импульсов при помощи фазоинверсной лампы.

Н. – А как следует поступать в случае негативных видеосигналов?

Л. – Принцип остается таким же. Но нужно перевернуть диод (рис. 105) и подать на его катод незначительное отрицательное смещение. И в этом случае диод пропускает ток лишь во время действия импульсов. Сигналы изображения сообщают аноду отрицательный относительно катода потенциал, вследствие чего ток прекращается. Каждый синхроимпульс создает на сопротивлении нагрузки положительный импульс напряжения.


Рис. 105. Амплитудный селектор с последовательным диодом для негативного сигнала.



НА ТРИ СЕТКИ БОЛЬШЕ

Н. – Я должен констатировать, что диод не меняет полярности импульсов. Во всяком случае эти схемы кажутся мне соблазнительно простыми и я не вижу, почему следует им предпочесть другие, безусловно более сложные, в которых используются пентоды.

Л. – В технике простота не всегда сочетается с качеством. Вот так и диодные селекторы далеко не блещут добродетелями. Разделение, которое они обеспечивают, несовершенно, так как при очень быстром изменении яркости сигнал изображения попадает на развертывающие устройства через паразитную емкость анод – катод диода. Это значит, что на развертки воздействует помеха, нарушающая синхронизацию.


    Ваша оценка произведения:

Популярные книги за неделю