355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Евгений Айсберг » Телевидение?.. Это очень просто! » Текст книги (страница 1)
Телевидение?.. Это очень просто!
  • Текст добавлен: 10 октября 2016, 00:04

Текст книги "Телевидение?.. Это очень просто!"


Автор книги: Евгений Айсберг



сообщить о нарушении

Текущая страница: 1 (всего у книги 17 страниц)

Айсберг Евгений Давыдович
«Телевидение?.. Это очень просто!»
Издание второе, переработанное

Предисловие редактора к первому русскому изданию


В русский перевод книги Е. Айсберга «Телевидение?.. Это очень просто!» введен ряд изменений в текст и графический материал, необходимость которых диктовалась существенными различиями между французским и советским телевизионными стандартами. К основным различиям относятся число строк разложения, полярность модуляции передатчика изображений, форма сигналов синхронизации, разность несущих частот изображения и звукового сопровождения и их взаимное расположение по шкале частот, тип модуляции передатчика звукового сопровождения. Во Франции действуют два стандарта: более ранний на 441 строку разложения и современный стандарт на 819 строк. Все количественные примеры в книге соответствовали стандарту на 819 строк и были пересчитаны на советский стандарт 625 строк.

Наибольшие изменения в тексте и графике связаны с различием в полярности модуляции передатчика и изображений и типом модуляции передатчика звукового сопровождения.

Во французском стандарте принята позитивная модуляция передатчика изображений, при которой наибольшая яркость (белое) передается максимальным значением тока в антенне, а синхронизирующие сигналы, расположенные «чернее черного», занимают область коэффициентов модуляции от 0 до 25 %. В советских же передачах принята негативная модуляция, при которой максимальное значение тока в антенне соответствует синхроимпульсам.

Основное преимущество передачи с негативной модуляцией заключается в ее значительно большей помехозащищенности.

При позитивной модуляции видеосигнал после детектирования полупериодов положительной полярности также является позитивным сигналом. Учитывая эту частотную особенность французского телевизионного стандарта, в книге не проводится различие между термином «сигнал положительной полярности», характеризующим абсолютное распределение сигнала по шкале напряжений, и термином «позитивный сигнал», характеризующим относительное его распределение. При негативной модуляции, например, видеосигнал после детектирования полупериодов положительной полярности является негативным сигналом.

Поэтому позитивный и негативный видеосигналы были неправильно определены в книге как сигналы положительной и отрицательной полярности, что отразилось и на графическом материале. Все необходимые изменения были введены в процессе перевода книги.

Не было также должной четкости в пользовании терминами «полярность напряжения» и «сдвиг по фазе». Несмотря на принципиальную разницу в этих понятиях, первое из которых относится исключительно к распределению сигнала по шкале напряжений, а второе характеризует временные соотношения, неправильное их использование до сих пор встречается в технической литературе. Объясняется это тем, что до зарождения в сравнительно недавнем прошлом техники асимметричных импульсов, где нечеткость в использовании этих терминов может привести к серьезным недоразумениям, техника синусоидальных (симметричных) токов не испытывала особой потребности в разделении этих понятий. Соответствующие изменения также внесены в перевод.

Во французских телевизионных передачах звуковое сопровождение осуществляется по методу амплитудной модуляции, в то время как в Советском Союзе принята значительно более помехозащищенная частотная модуляция.

При амплитудной модуляции осуществление звуковой части телевизионного приемника затрудняется. В частности, не представляется возможным применение столь прогрессивного метода, как прием с использованием в качестве промежуточной частоты в канале звукового сопровождения биений между несущими изображения и звука. Повышаются также требования к стабильности частоты гетеродина. Поэтому при переводе были сделаны соответствующие добавления. Кроме того, были включены некоторые современные схемы, отсутствовавшие в оригинале.

Книга «Телевидение?.. Это очень просто!» написана в несколько необычной, занятной манере, которая несомненно поможет усвоению и запоминанию достаточно обширных полезных сведений из области телевизионной техники и, в частности, приемкой аппаратуры для телевизионного вещания.

А. БРЕЙТЕAPT

Предисловие автора

Из всех чудес современности телевидение, бесспорно, наиболее увлекательно. В странах, где телевидение получило широкое распространение, оно внесло глубокие изменения в личную и общественную жизнь.

Сам факт передачи на расстояние изображений высокой четкости граничит с чудом. Тот, кто знаком со всеми преградами, которые нужно было преодолеть, всеми проблемами, которые нужно было решить, едва верит своим глазам, наблюдая за современными достижениями.

В настоящее время телевидение прочно вошло в быт, изменило жизнь многих миллионов семей и явилось могучим средством развлечения и самообразования, хотя иногда, увы, и оглупления. Это изумительное средство, которое, как и эзопов язык, может найти как наилучшее, так и наихудшее применение.

Быстрое развитие телевизионной техники требует привлечения во всех странах большого количества техников. Кроме того, каждый культурный человек стремится познакомиться с этим новым средством связи. Вероятно, именно поэтому многие из моих друзей обращались ко мне с пожеланием, чтобы я выпустил книгу «Телевидение?.. Это очень просто!» по образцу книги «Радио?.. Это очень просто!».

Эта последняя книга, написанная в 1935 г., имела исключительный успех. Она была переведена на несколько языков. Много тысяч людей на земном шаре познакомились с радиотехникой благодаря диалогу наших юных друзей Любознайкина и Незнайкина. Первый из них знает решительно все, в то время как второй, хотя со многим и не знаком, тем не менее безусловно не глуп.

Напрасно я объяснял своим друзьям, что телевизионная техника не только не проста, но согласно выражению Незнайкина дьявольски сложна, что она затрагивает различные области физики, что положение еще усложняется из-за отсутствия международного стандарта. Ничего не помогло. Я должен был покориться и написать «Телевидение?.. Это очень просто!».

Нужно надеяться, что эта книга появилась как раз вовремя, так как два выпуска первого издания полностью разошлись в течение нескольких месяцев и срочно потребовалось выпустить настоящее второе издание.

Что представляет собой эта книга? Книгу для первого ознакомления с предметом? Возможно, поскольку ее может понять человек, никогда ранее не изучавший телевидение. В то же время, чтобы ее усвоить, необходимо хотя бы элементарное знакомство с радиотехникой. Тот, кто хочет извлечь наибольшую пользу из чтения этой книги, должен знать, как работают многоэлектродные лампы, знать основные схемы усилителей, детекторов и смесителей хотя бы в пределах книги «Радио?.. Это очень просто!». В то же время не требуется знания математики. Я старался в первую очередь возможно яснее осветить физические основы описываемых процессов.

Если внимательно проследить за траекториями электронов, за изменениями формы сигналов, за соотношением различных напряжений, различные элементы становятся достаточно понятными и разбор схем не представит особого труда.

Стремясь постоянно выявлять наиболее существенное в этом разделе техники, который не стабилизовался ни в пространстве, ни во времени (так пак он находится в разгаре развития), я постарался показать все основные элементы телевизионных приемников в различных вариантах.

Я воздерживался от количественного определения параметров элементов схем, поскольку они изменяются в зависимости от стандарта четкости и типа аппаратуры. Эта книга не предназначена для конструкторов телевизионной аппаратуры. Ее целью является ознакомление с принципами работы. Нельзя ведь начать изготовление такой аппаратуры со сколько-нибудь серьезными видами на успех, не зная ее «анатомии и физиологии».

Я старался, чтобы усвоение материала этой книги было возможно более легким, не поступаясь, однако, нигде истиной, не избегая трудностей и не опуская ничего, что было бы полезно будущему телевизионному специалисту.

Любая новая техника неизбежно достаточно сложна. Поэтому читать эту книгу нужно с неослабным вниманием и не следует приступать к новому разделу, не усвоив содержания предыдущих разделов.

Я не пытался расположить материал в порядке возрастающей трудности, поэтому для многих читателей первая беседа окажется, вероятно, наименее легкой.

На основании длительного педагогического опыта я могу судить, что обучению способствует улыбка. Вот почему Любознайкин и Незнайкин в своих беседах будут часто отклоняться от строгого стиля «Диалогов» Платона.

Остроумные рисунки на полях, помогая усвоению текста, внесут веселую нотку в беседы наших молодых друзей.

Внимательно следуя за ними, читатель поймет все тайны телевидения и обогатит свои познания. В этом и заключаются наши пожелания.

Е. АЙСБЕРГ

Предисловие ко второму русскому изданию

Книга Е. Айсберга «Телевидение?.. Это очень просто!», первое русское издание которой вышло тиражом в 200000 экземпляров и разошлось в течение нескольких дней, завоевала широкую популярность среди читателей благодаря ее занимательности и доступности, достигнутых, однако, не в ущерб строгости изложения.

Во втором русском издании переработана глава о цветном телевидении и исправлен ряд неточностей в тексте, допущенных в первом издании.

Редакция считает своим долгом выразить глубокую признательность автору книги Е. Айсбергу за внимательный просмотр первого русского издания и ряд ценных указаний, которые были учтены в настоящем издании.

Редакция Массовой радиобиблиотеки

Беседа первая
ВИДЕОЧАСТОТА И ВЫСОКАЯ ЧАСТОТА

В книге «Радио?.. Это очень просто!» Любознайкин посвятил своего друга Незнайкина в тайны радиотехники. Теперь он попытается изложить ему принципы телевидения. Начиная с первой же беседы, он введет его сразу в существо дела, изложив, не щадя своего друга, некоторое количество следующих основ этой техники: метровые волны и их распространение; дальность действия телевизионного передатчика; стратосферное телевидение; боковые модуляционные полосы; принцип последовательной передачи элементов изображения; видеосигнал; искажение прямоугольного сигнала и преобразование его в синусоиду; максимальная видеочастота; теснота в эфире; использование метровых волн; соотношение между несущей и модулирующей частотами.


ДЯДЮШКА, ЖИВУЩИЙ НЕ ТАМ, ГДЕ СЛЕДУЕТ

Незнайкин. – Сегодня, дорогой Любознайкин, я хочу с тобой посоветоваться относительно моего дядюшки.

Любознайкин. – Что же с ним случилось?

Н. – Представь себе, что он буквально помешался на телевидении. Вот уже несколько месяцев из-за своего ревматизма он должен сидеть дома. И этот страстный любитель кино лишен своей еженедельной порции фильмов. Вот он и поручил мне соорудить ему телевизор, чтобы доставить «фильмы» на дом.

Л. – Вот превосходная мысль! Для тех, кто прикован болезнью к постели или по крайней мере к креслу, телевидение является еще большим благодеянием, чем радио… С удовольствием помогу тебе, Незнайкин. Начнем с посещения твоего дядюшки, чтобы определить, где установить антенну.

Н. – Боюсь, что для посещения это далековато, ведь дядюшка живет в Иль д'Ие[1]1
  Jle d'Yeu – островок в Атлантическом океане у берегов департамента Вандея, приблизительно в 380 км от Парижа. Прим. перев.


[Закрыть]
.

Л. – О, что же ты не сказал об этом сразу! В таком случае пошли ему достаточное количество салицилки. Что же касается телевизора, он будет напрасно загромождать его помещение.

Н. – Почему же? Разве он не сможет принимать передачи Эйфелевой башни?

Л. – Никоим образом. Надежная дальность ее передач почти не превышает 80 км. При благоприятных условиях передачи можно принимать на еще большем расстоянии. Но в Иль д'Ие нет никакой надежды на удовлетворительный прием изображений из Парижа.


ЗЕМЛЯ – ЭТО ШАР

Н. – Почему же но увеличивают мощность телевизионного передатчика?

Л. – Потому что это ненамного увеличило бы дальность действия. Телевидение передается на волнах метрового диапазона, т. е. имеющих длину от 1 до 10 м, и дециметрового длиною от 30 см до 1 м. Столь короткие волны обладают свойствами, сближающими их со световыми, длина которых, однако, гораздо меньше. Так же как и световые, метровые волны распространяются по прямой линии, тогда как короткие и в особенности длинные волны довольно легко искривляют свой путь, хотя бы для того, чтобы обходить некоторые препятствия или огибать земной шар.

Н. – Значит ли это, что для приема метровых волн с места расположения приемной антенны нужно видеть передающую антенну?

Л. – Это условие «оптической видимости» желательно, но не обязательно. Метровые волны все же не обладают строгой прямолинейностью световых лучей и могут огибать небольшие препятствия. Кроме того, не забудь, что диэлектрики не препятствуют распространению электромагнитных волн. Но земной шар должен рассматриваться как проводник и на этом основании…

Н. – Подожди. Мне кажется, я понимаю. Очевидно, Земля является препятствием для волн. А так как Земля круглая, то за пределами некоторого расстояния от передатчика (рис. 1) ее кривизна скрывает от нас передающую антенну. Волны проходят над головой, все более удаляясь от Земли, и теряются в верхних слоях атмосферы.


Рис. 1. Дальность действия передатчика метровых волн ограничена зоной видимого горизонта.

Л. – Действительно, ты прекрасно схватил то, что можно назвать трагедией телевидения.

Н. – Почему «трагедией»?

Л. – Потому что из-за незначительной дальности действия передатчиков необходимо устанавливать их в большом количестве для покрытия всей территории страны, а это стоит очень дорого. Правда, в настоящее время открывается возможность практически неограниченно увеличить дальность телевизионных передач с помощью искусственных спутников Земли.


НЕЗНАЙКИН МЕТИТ ОЧЕНЬ ВЫСОКО

Н. – Должно же все-таки существовать какое-то средство, помогающее в этом трудном положении! Может быть, можно ловить волны, бесполезно проходящие над головами людей на слишком большом удалении от передатчика, с помощью очень высоких антенн, поднятых на воздушных змеях или аэростатах.

Л. – Дело до этого не доходит. Но стараются использовать антенны, расположенные как можно выше. Поэтому всегда выгодно располагать передающую антенну в самом высоком пункте какого-либо района. Вот почему парижская передающая антенна помещена на верхушке Эйфелевой башни.

Н. – Действительно, таким образом можно получить большую дальность действия. Но почему же не пойти дальше по такому верному пути?

Л. – Что ты хочешь этим сказать?

Н. – Можно было бы производить передачи с большой высоты: достаточно было бы поместить передатчик на самолет. Передвигаясь в стратосфере, он мог бы облучать всю Францию метровыми волнами… к величайшей радости дядюшки Жюля…

Л. – Поздравляю с прекрасной идеей! Но техники предусмотрели эту возможность гораздо раньше тебя. Одно время было много шума вокруг стратосферных телевизионных передач. Однако их практическое использование оказалось очень трудным.


НЕЗНАЙКИН РАЗДОСАДОВАН

Н. – Но в конце концов почему мы вынуждены осуществлять телевидение на метровых волнах? Не потому ли, что, появившись последним, оно было помещено на задворках длин волн? Разве нельзя было, отделавшись от трех или четырех радиовещательных передатчиков, отвести телевидению подходящее место в диапазоне коротких или длинных волн? Я прекрасно знаю, с какой остротой оспаривают распределение свободных частот. Но пойми, что на одной волне между 200 и 600 м достаточно мощный передатчик обслуживал бы большую часть страны…

Л. – Ты частенько допускаешь ошибки, мой дорогой. Но никогда не изрекал ты такой несусветной чепухи! Допустить, что телевидение уместилось бы в диапазоне волн длиннее 200 м, это все равно, что заставить слона войти в раковину улитки.


Н. – То, что ты говоришь, вероятно, весьма остроумно. Но я смиренно сознаюсь, что не вижу связи между телевидением и слоном.

Л. – Не сердись… Ты лучше поймешь правильность моего сравнения, если рассмотришь свойства сигнала, используемого для передачи изображения. Ты увидишь тогда, насколько он отличается от низкочастотных сигналов, которые позволяют передавать с помощью электрического тока звук, попадающий на микрофон радиовещательного передатчика. Ты помнишь границы его частот?

Н. – Прекрасно помню. Самый низкий тон имеет 16 гц. Наиболее высокий, еще различаемый ухом, имеет 20 000 гц. Не практически диапазон частот, передаваемых обычными радиовещательными передатчиками, ограничивается частотой 4 500 гц.


Л. – Чудесно! А чем же вызвано это ограничение?

Н. – Желанием уменьшить то, что ты когда-то называл «теснотой в эфире». Каждая радиопередача занимает на шкале частот, кроме несущей частоты, две боковые симметричные полосы, содержащие все модуляционные частоты (рис. 2). Когда они ограничены частотой 4 500 гц, общая ширина, занятая двумя боковыми полосами, будет, следовательно, 9 000 гц. Выше ли она в телевидении?


Рис. 2. Кроме несущей частоты, спектр содержит две боковые полосы.

Л. – О да, намного!.. Но, прежде чем говорить об этом, сможешь ли ты кратко изложить, каким образом происходит передача изображений?


ВСЕ ТЕЛЕВИДЕНИЕ В НЕСКОЛЬКИХ СТРОКАХ

Н. – Я попробую. Так как нельзя передавать одновременно все элементы изображения, их передают последовательно. Свечение каждого элемента…

Л. – Точный термин — яркость.

Н. – Хорошо. Итак, яркость каждого элемента (я подразумеваю под этим словом элементарную площадку, достаточно малую, чтобы глаз не различал деталей в ее пределах) преобразуется в пропорциональное ей напряжение. Таким образом, сильно освещенная белая поверхность дает максимум напряжения, тогда как черная площадка дает нулевое напряжение.

Л. – Или по крайней мере наименьшее. А каким образом просматриваются все элементы изображения?

Н. – Их пробегают точно так же, как взгляд пробегает последовательно все буквы страницы. Каждую букву можно уподобить одному элементу изображения. Все элементы «прочитываются» таким образом строка за строкой. Совокупность этих строк составляет страницу, которую можно уподобить всему изображению. И когда мы таким образом просмотрели одну страницу, мы сейчас же приступаем к следующей.


Л. – Совершенно верно. А в каком темпе производится это чтение? Знаешь ли ты это?

Н. – Ну да. Для сохранения глазом ощущения непрерывности нужно, чтобы, как в кино, отдельные изображения, или кадры, очень быстро следовали друг за другом. В Европе принят стандарт 25 кадров в секунду (вдвое меньше частоты электрической сети); в США, где частота сети питания 60 гц, телевидение передает 30 кадров в секунду.

Л. – При такой кадровой частоте 800 страниц какой-нибудь книги «прочитываются» телевизионным передатчиком приблизительно за полминуты.


ИЗ НИЧЕГО НИЧЕГО И НЕ БЫВАЕТ

Н. – Это поразительно. Теперь я начинаю понимать, насколько сигнал, передающий изображение, богаче содержанием того, который передает звук, колеблющий мембрану микрофона.

Л. – Однако ничто даром не дается. Если хотят передать с помощью радиоволн столь обширное послание, в котором за 725 сек описаны относительные яркости всех элементов изображения, то нужно передать напряжение, состоящее из самых разнообразных частот, достигающих очень высоких значений и, следовательно, определяющих очень широкие боковые модуляционные полосы.

Н. – Можно сказать, что к законам сохранения материи и энергии добавляется другой аналогичный закон, не допускающий передачи в заданный интервал времени определенного количества информации, если для этого не обеспечена достаточно широкая полоса частот.

Л. – Ты прав, Незнайкин. Такой закон в природе существует. И стараться обойти его, пытаться передать некоторое количество информации (я употребляю этот термин в самом широком смысле, так как он так же хорошо может относиться к чередованию более или менее сложных звуков или к передаче более или менее деталированной части изображения, или же к телеграфному сообщению), не имея для этого необходимой полосы частот, так же бесполезно, как пытаться осуществить вечное движение без пополнения энергии извне.


В ЦАРСТВЕ ВИДЕОЧАСТОТ

Н. – Как определить частоты, используемые в телевидении?

Л. – Сигнал, соответствующий яркости последовательно просматриваемых элементов разложения, называется видеосигналом[2]2
  От латинского глагола videre – видеть.


[Закрыть]
. Это в сущности то же, чем является низкая частота в радиовещании. Он может содержать большое количество разных частот.

Н. – Я даже думаю, что он может в некоторые моменты быть нулевой частоты, т. е. иметь постоянное значение. Если в передаваемом изображении имеется однообразная поверхность с одинаковой яркостью, то всем ее элементам соответствует одно и то же напряжение, которое остается, следовательно, постоянным во все время передачи этой поверхности.

Л. – Правильно. Но если элементы вдоль линии разложения или строки не будут иметь одинаковую яркость, то напряжение сигнала будет меняться. Ты угадываешь, в каком случае эти изменения самые быстрые, т. е. частота видеосигнала максимальна?

Н. – Я полагаю, что это происходит, когда два соседних элемента одной строки различаются своей яркостью.

Л. – Твой ответ доказывает, что ты хорошо разобрался в вопросе. В самом деле, максимальной частоте соответствует последовательное чередование белых и черных элементов. Так, например, это случай, когда изображение содержит серию черных вертикальных полосок, ширина каждой из которых равна ширине элемента изображения, разделенных белыми промежутками той же ширины.

Н. – В этом случае каждый передаваемый элемент дает один период сигнала.

Л. – Ты слишком торопишься, Незнайкин, и это вводит тебя в заблуждение. На самом деле черной полоске соответствует небольшое напряжение, а белой – максимальное. Таким образом, два соседних элемента, один черный и другой белый, передаются одним отрицательным и одним положительным полупериодами, составляющими вместе целый период. А так как за один период передаются два элемента изображения, то общее число периодов равно…

Н. – … половине количества элементов изображения.

Л. – Ты, я вижу, очень хорошо следил за моими рассуждениями.


ОТ ТЕОРЕТИЧЕСКИХ ЗУБЦОВ К РЕАЛЬНОЙ СИНУСОИДЕ

Н. – Форма этого видеосигнала ужасно забавна. Можно подумать, что это зубцы средневековой башни. Им далеко до прекрасных синусоид в радиовещании.

Л. – Не настолько, как ты думаешь. И это но двум соображениям: прежде всего периодическое напряжение такой формы (его называют прямоугольным сигналом) может быть разложено на очень большое число синусоидальных составляющих, из которых основная имеет частоту прямоугольного сигнала, а остальные имеют частоты в 3, 5, 7 и т. д. раз большие.

Н. – Ведь это то, что называют рядом Фурье? Верно?

Л. – Да, когда хотят напустить на себя важность. Но, в самом деле, откуда ты это знаешь?

Н. – Мне случалось читать очень серьезные книги.

Л. – Тем лучше! Ты тогда должен знать, что многочисленные частотные составляющие называются гармониками. В случае видеосигнала они вряд ли пройдут через усилитель. Так как основная частота очень высока, то частота гармоник и подавно высока. И даже широкополосный усилитель не рассчитывается на пропускание этих очень высоких частот. Поэтому на его выходе (рис. 3) останется лишь одна-единственная основная синусоида[3]3
  Автор допускает неточность. Сигнал самой высокой частоты, как это следует также из последующего текста, очень близок по форме к синусоиде и почти не содержит гармоник вследствие того, что размеры анализирующего элемента (апертуры) и элемента изображения сравнимы по величине. Это явление носит наименование апертурных искажений. Прим. ред.


[Закрыть]
.


Рис. 3. Когда изображением является последовательность попеременно чередующихся вдоль строки белых и черных элементов (верхняя часть рисунка), сигнал видеочастоты теоретически прямоугольный (средняя часть рисунка), а практически синусоидальный (нижняя часть рисунка) содержит столько же периодов, сколько всего пар черных и белых элементов.

H. – Тем лучше, так как твое зубчатое напряжение ничего мне не говорит. А каково второе соображение, на которое ты только что сослался?

Л. – Сделаем небольшой опыт. Возьмем этот кусок бумаги и проделаем в нем небольшое круглое отверстие таких же размеров, как и элемент изображения. Я заставляю медленно скользить мою бумажку по черным и белым полоскам, составляющим наше изображение.


Н. – Ты, значит, производишь анализ изображения так же, как это производится в телевидении.

Л. – Ну да. Говорят также разложение или развертывание изображения. Ты видишь (рис. 4), что в некоторые моменты отверстие находится целиком либо на черной, либо на белой полоске. Но перемещение из одного положения в другое происходит отнюдь не мгновенно. Мы проходим через все промежуточные положения, когда большая или меньшая часть развертываемого элемента черная, тогда как другая часть – белая. Отодвинься настолько от бумажки, чтобы ты не мог больше различать двух частей элемента изображения, ограниченных отверстием.


Рис. 4. Формирование одного периода видеочастоты (нижняя часть рисунка) для нескольких последовательных фаз разложения изображения (верхняя часть рисунка).

Н. – Ты, конечно, хочешь, чтобы я оказался в условиях, точно соответствующих определению элемента изображения, которое я только что дал: площадка достаточна малая, чтобы глаз не различал никаких деталей в ее пределах?

Л. – Ну, конечно. А вот теперь, когда отверстие медленно перемещается, что ты видишь?

Н. – Я различаю только средний тон того, что видно через отверстие. В соответствии с соотношением черного и белого я вижу более или менее темную серую поверхность. А когда ты передвигаешь бумажку, поверхность в пределах отверстия изменяется от черного до темно-серого цвета, который быстро светлеет и становится белым, затем снова темнеет и становится черным. Затем все повторяется.


Л. – Отгадай, каков же характер напряжения, которое должно передать эти изменения средней яркости?

Н. – Уверен, что мы вышли из трудного положения: я хочу сказать, что мы опять вернулись к нашей доброй старушке синусоиде.


НЕМНОГО АЛГЕБРЫ

Л. – Попытаемся теперь подсчитать максимальную частоту, которую может иметь эта синусоида. Посмотрим сначала, на сколько элементов разбито изображение. Допустим, что его высота Н и ширина L (рис. 5). Она развертывается с помощью N горизонтальных линий (строк), причем в секунду передается n целых изображений.


Рис. 5. Относительные размеры растра.

Н. – Все это как будто попахивает алгебраической задачей…

Л. – Тем хуже для тебя, если это так… Предположим, что элемент изображения квадратный, т. е. что четкость передачи одинакова в вертикальном и горизонтальном направлениях. В этом случае высота квадрата равна общей высоте H, разделенной на число строк N, т. е. равна H/N, и в каждой строке длиной L содержится L:(H/N) = L·N/H элементов.

Поскольку всего N строк, изображение будет разложено на

(L·N/HN = L·N2/H элементов.

Н. – До сих пор мне все кажется логичным.

Л. – Так оно будет н дальше. Все элементы, составляющие изображение, передаются n раз в секунду, что дает L·N2·n/H элементов в секунду. Но так как одного периода достаточно для передачи двух элементов изображения, то для передачи всех элементов потребуется вдвое меньше периодов, т. е. L·N2·n/2H гц.

Эта формула не абсолютно точна, так как она не учитывает потери времени на сигналы синхронизации, о которых мы будем говорить в другой раз. Но в данный момент этого вполне достаточно, чтобы определить максимальную видеочастоту.



НЕМНОГО АРИФМЕТИКИ

Н. – И что же дает это выражение для конкретной передачи?

Л. – А вот ты подсчитай. Изображение имеет такой формат, что соотношение L/H = 4/3. Мы его развертываем на N = 625 строк и n = 25 изображений в секунду. Ну-ка быстрей, Незнайкин!

Н. – Мы, следовательно, имеем (4·6252·25)/(2·3) = 6 500 000гц.

Ничего себе! Видеочастота превышает шесть миллионов!

Л. – Реально передаются частоты до 6 Мгц. И ты заметь, что максимальная частота пропорциональна квадрату числа строк. Таким образом, если перейти от 625 строк к разложению на 1 000 строк, то видеочастота достигнет почти 17 Мгц,

Н. – Ты меня этим совершенно ошеломил.



ВОЗВРАЩЕНИЕ К СЛОНУ

Л. – Ты по-прежнему упорствуешь в своем намерении уделить телевидению «небольшое местечко» в диапазоне средних волн?

Н. – Он простирается от 200 до 600 м, следовательно, от 1500 000 до 500 000 гц. Весь интервал равен 1000 000 гц. В то же время телевизионная передача с боковыми полосами растягивается на 12 000 000 гц. Следовательно, она в 12 раз больше общей протяженности средневолнового диапазона. Решительно слон не умещается в раковине улитки.

Л. – Очень приятно это слышать. Ты теперь понимаешь, почему необходимо прибегать к метровым волнам, чтобы передать модуляцию видеочастотой. Например, на частоте 49,75 Мгц боковые полосы будут ограничены следующими пределами:

49 750 000 – 6 000 000 = 43 750 000 гц

и

49 750 000 + 6 000 000 = 55 750 000 гц,

что вполне приемлемо.

Н. – Нужно ли, по правде говоря, так далеко забираться? Нельзя ли использовать, например, частоту 12 Мгц, т. е. 25 м, что позволит уместить модуляцию между

12 000 000 – 6 000 000 = 6 000 000 гц

и

12 000 000 + 6 000 000 = 18 000 000 гц?

Л. – Пойми, что длины волн, соответствующие этим частотам, составляют 50 и 16,5 м. Ты, стало быть, хочешь занять весь диапазон коротких волн между 16,5 и 50 м только одной телевизионной передачей?

Н. – Я признаю, что это было бы неразумно.


ЖИЗНЕННЫЙ МИНИМУМ ВЫСОКОЙ ЧАСТОТЫ

Л. – Существует правило, согласно которому высокая частота не может быть одного порядка с модулирующей частотой. Чтобы модуляция производилась без искажений, нужно, чтобы несущая частота была во много раз выше частоты модуляции.

Н. – Почему же?

Л. – Потому, что без этого модулирования волна не сможет точно воспроизвести модулирующее напряжение. Взгляни на синусоиду, которая здесь нарисована (рис. 6).


Рис. 6. При передаче синусоидального сигнала (представленного вверху синусоидой) с помощью несущей частоты, восемь периодов которой приходятся на три периода сигнала, передаваемому сигналу соответствуют редко расположенные значения (представленные внизу), которые не позволяют восстановить форму сигнала.

Допустим, что что сигнал, который нужно передать. Если частота несущей превышает частоту этого сигнала, например, в отношении 8/3, то мы передадим соответствующие мгновенные значения только с очень большими интервалами и получим ряд отдельных значений, по которым будет невозможно при всем желании воспроизвести закон синусоидального изменения. Но возьми несущую волну с частотой, в 8 раз большей частоты сигнала (рис. 7). Последовательность переданных величин позволит легко воспроизвести форму модулирующего напряжения.


Рис. 7. Если на каждый период синусоидального сигнала приходится восемь периодов несущей частоты, то при этом передается достаточно большое количество мгновенных значении сигнала, чтобы он мог быть надлежащий образом воспроизведен.

Н. – Это все равно, что растр газетных фотографических клише. Если растр слишком крупный, детали клише пропадают.


    Ваша оценка произведения:

Популярные книги за неделю