Текст книги "Телевидение?.. Это очень просто!"
Автор книги: Евгений Айсберг
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 2 (всего у книги 17 страниц)
Л. – Это неплохое сравнение.
ТЕМ ХУЖЕ ДЛЯ ДЯДЮШКИ!
Н. – Резюмирую все, о чем мы сегодня говорили. Передача изображений требует сигналов, занимающих очень широкую полосу частот. Эти сигналы могут передаваться только несущими волнами очень высокой частоты в диапазоне метровых волн. Распространяясь по прямой линии, они имеют радиус действия, ограниченный видимым горизонтом. Отсюда следует, что у моего дядюшки не будет телевидения.
Л. – Я страшно огорчен за него. Но что касается тебя, то ты узнал некоторое количество полезных сведений…
Н. – …которые мне показались сначала дьявольски сложными, но которые, по сути дела, может быть, и очень просты.
Беседа вторая
ПУТЕШЕСТВИЕ В ПРОШЛОЕ
Чтобы понять действие аппаратуры современного телевидения, нет необходимости изучать всю историю этой области техники. Однако изучение способов разложения изображения значительно облегчится в результате предварительного изложения классической «механической» системы телевидения, предложенной Нипковым.
Незнайкин легко поймет метод, который впервые дал возможность передачи движущихся изображений на расстояние. В ходе этой беседы Любознайкин, следовательно, затронет следующие вопросы: диск Нипкова; разложение изображения; чересстрочная развертка; фотоэлемент; передатчик изображений; синхронизм; приемник с неоновой лампой; недостатки механических систем телевидения.
ГОЛОВОКРУЖИТЕЛЬНЫЕ ОПЫТЫ НЕЗНАЙКИНА
Любознайкин. – Боже мой! Что с тобой, Незнайкин, почему ты кружишься вокруг себя? Ты упражняешься в ремесле вертящегося дервиша?
Незнайкин. – Да вовсе нет! Я просто пробую читать так, чтобы, дойдя до конца строчки, не переводить взгляда обратно, налево, к началу следующей строчки.
Л. – А зачем это?
Н. – Потому, что я думаю о развертке изображения в телевидении, о котором мы говорили в последний раз. Ты мне объяснил, что последовательное разложение элементов производится, как чтение книги: строчка за строчкой. Принимая во внимание огромную скорость, с которой должно производиться это чтение, я хотел бы избежать потери времени, вызванной необходимостью возвращения к началу строк. Вот почему, пробежав, поворачиваясь, одну строку, я продолжаю быстрое вращательное движение вокруг самого себя, чтобы после каждого оборота мой взгляд снова попал на начало строк.
Л. – Не думаю, чтобы таким образом ты выгадал время. Самое большее – ты заработаешь на этом головокружение… Но этот способ развертки, который можно назвать «без обратного хода по строкам», характерен для большей части механических способов анализа.
НЕМНОГО ГЕОМЕТРИИ
Н. – Неплохо, если бы ты об этом поговорил. Потому что все, что ты до сих пор объяснял, довольно абстрактно. Очень мило сказать, что производят последовательную развертку элементов изображения. Но как это происходит в действительности?
Л. – Я предпочел бы не описывать тебе механические способы, потому что они уступили место электронным. Но, может быть, ты лучше поймешь электронные методы, если я тебе расскажу об одном из самых простых и самых старинных устройств – диске Нипкова.
Н. – Я смутно припоминаю, что об этом что-то говорили, но никакого точного представления об этом у меня нет.
Л. – Мы сейчас изготовим один диск. Вот лист чертежной бумаги. Я вычерчиваю на нем (рис. 8) с помощью циркули круг радиусом приблизительно 10 см и вырезаю диск. Затем черчу на нем 16 окружностей радиусом 60, 62, 64 и т. д. до 90 мм. делю внешнюю окружность на 16 равных частей…
Рис. 8. Расположение отверстий по спирали на диске Нипкова.
Н. – Решительно, после того как мы занимались арифметикой и алгеброй, мы теперь в разгаре геометрии. Затем мы перейдем к интегральному исчислению…
Л. – До этого мы еще не дошли. Закончим же рисунок.
Я провожу 16 радиусов, проходящих через равноотстоящие точки внешней окружности. Все эти вспомогательные линии мне нужны были для того, чтобы определить точки спирали. В самом деле, я обозначаю пересечение первого радиуса с внутренней окружностью, затем пересечение следующего радиуса (в направлении движения часовой стрелки) со следующей окружностью и т. д.
Н. – В самом деле, таким образом ты получаешь 16 точек, расположенных на спирали. Ну и что ты с ними будешь делать?
РАССМАТРИВАЯ ЧЕРЕЗ ОТВЕРСТИЯ ДИСКА
Л. – Я пробиваю в диске пробойником совершенно круглые отверстия диаметром немного более 2 мм. И вот диск Нипкова готов.
Н. – И ты серьезно намерен воспользоваться им для развертки изображения?
Л. – Да, у меня твердое намерение. Вот небольшой очень простой рисунок размером около 3 см. Я его прикалываю к абажуру лампы, а диск очень быстро вращаю, используя в качестве оси вязальную спицу.
Н. – Ах, вот что!.. Я вяжу рисунок так, как если бы диск был прозрачным.
Л. – Теперь, чтобы лучше понять, что происходит, и вращаю диск очень медленно.
Н. – Я понял! Ведь это тот же кусок бумажки с круглым отверстием? Однако значительно усовершенствованный. Когда диск вращается, первое отверстие пробегает строку (она, правда, не совсем прямая – это дуга окружности, но это ничего не меняет). Как только оно закончит свою строку, следующее отверстие выступает на сцену, чтобы в свою очередь пройтись вдоль строки изображения. И таким образом одно за другим все отверстия, начиная с наружного и кончая самым близким к центру, пробегают все строки изображения.
Л. – А когда все изображение таким образом развернуто…
Н. – …все опять начинается сначала с новым поворотом диска.
Л. – Ты установил, что при условии достаточно быстрого вращения диска изображение видно целиком, тогда как на самом деле в каждый данный момент лишь один из его элементов появляется в одном из отверстий диска.
Н. – Я устанавливаю также, что диск читает на манер дервиша-вертуна, т. е. не возвращаясь к началу строк движением, обратным направлению чтения. Я вижу, однако, что надо вращаться очень быстро для получения ощущения одновременного видения всех элементов.
ДИКОВИННЫЙ СПОСОБ ЧТЕНИЯ
Л. – В самом деле, если я хоть слегка замедляю вращение, то изображение имеет такой вид, как будто через него попеременно пробегают черные и белые волны. Это происходит оттого, что световые ощущения длятся недолго.
Н. – С какой скоростью нужно, следовательно, развертывать изображение во избежание мерцания, наблюдаемого, когда диск вращается недостаточно быстро?
Л. – Чтобы добиться хороших результатов, нужно развертывать 30 изображений и секунду.
Н. – Это то, что делают американцы. Но в Европе, ты мне сказал, довольствуются 25 изображениями в секунду. Разве этого достаточно? Не лучше ли было бы увеличить частоту кадров?
Л. – Не забудь, что максимальная частота видеосигнала пропорциональна числу кадров в секунду. Не рекомендуется чем бы то ни было увеличивать эту и так уже слишком высокую частоту. Существует, к счастью, остроумный прием, позволяющий избегать мерцания без расширения полосы передаваемых частот. Это чересстрочная развертка.
Н. – Что ты под этим понимаешь?
Л. – Вместо того чтобы передавать последовательно все строки изображения от первой до последней передают сначала все нечетные, а затем все четные строки. Общее время развертки остается тем же, равным 1/25 сек. Но половина строк, покрывающих, однако, с некоторым интервалом всю поверхность изображения, передается в течение 1/50 сек, а вторая – в течение следующей 1/50 сек.
Н. – Если бы я таким образом читал книги, я бы там немного понял.
Л. – Вообще-то да. Но вот маленький текст, который нужно прочесть «чересстрочно». Взгляд пробегает, читая его, точно такой же путь, который должна пройти чересстрочная развертка в телевидении. Этот способ в настоящее время повсюду принят.
Чтобы правильно прочесть этот текст, нужно сначала совокупность («полурастр») нечетных прочесть сначала нечетные строки, затем четные строк, затем четных строк. Таким образом, строки. Чересстрочная развертка позволяет чтобы развернуть изображение 25 раз в секунду, читать изображение таким же образом, пробегая нужно развернуть 50 полурастров в секунду.
Н. – Это, действительно, довольно забавно. Я думаю, что типограф, который составил этот текст, был немного навеселе… Но как практически осуществить такой способ развертки? Думаю, что это должно быть чрезвычайно сложно.
Л. – Вовсе нет, дружище. Вот, например, диск Нипкова, который для этого вполне подходит (рис. 9).
Рис. 9. Двухспиральный диск Нипкова для чересстрочной развертки.
Ты видишь, что у него также 16 отверстий для разложения изображения на 16 строк. Но отверстия расположены не на одной, а на двух спиралях, занимающих каждая половину круга. На одной находятся отверстия, развертывающие строки 1, 3, 5, 7, 9, 11, 13 и 15, тогда как на другой расположены отверстия, соответствующие строкам 2, 4, 6, 8, 10, 12, 14 и 16.
Н. – Поистине, это очень просто. Нужно же было до этого додуматься! Но можешь ты мне объяснить, как при помощи диска Нипкова передавали изображения?
НЕМНОГО ХИМИИ
Л. – Знаешь ли ты, что называется фотоэлементом?
Н. – Конечно. Для моего фотоаппарата мне предложили фотоэкспонометр с фотоэлементом. Это приспособление, дающее возможность измерять интенсивность освещения предметов, которые нужно сфотографировать. Свет падает на фотоэлемент, который превращает свет в электрический ток, измеряемый при помощи очень чувствительного гальванометра.
Л. – Фотоэлемент является, следовательно, преобразователем световой энергии в электрическую. Ток, который через него проходит, пропорционален падающему на него потоку света. Фотоэлементы, используемые в телевидении, фотоэмиссионного типа (рис. 10). Вначале фотоэлемент такого типа представлял собой стеклянную колбу, из которой выкачан воздух. Одна из внутренних стенок колбы была покрыта тонким слоем фотоэмиссионного материала.
Рис. 10. Батарея Б задает на аноде фотоэлемента положительный относительно катода потенциал. Фотоэлектронный ток через резистор R определяет напряжение U, которое подается на усилитель.
1 – световой поток; 2 – анод; 3 – светочувствительный слой (катод).
Н. – Так называют материал, излучающий свет?
Л. – Этимология слова вводит тебя в заблуждение. Речь идет о веществах, которые при попадании на них светового потока излучают электроны.
Н. – А какие же это вещества?
Л. – Все так называемые «щелочные» металлы, т. е. цезий, натрий, кадий, рубидий и литий, так же как и реже используемые щелочноземельные.
Н. – У меня есть идея! Раз существуют материалы, излучающие электроны под действием света, можно было бы заменить ими катоды радиоламп. Таким образом, отпала бы необходимость в токе накала. Днем можно было бы выставлять приемник под лучи солнца, а вечером его помещали бы около осветительной лампы.
Л. – Твоя идея не абсурдна. Но количество излучаемых при этом электронов может обеспечить только очень слабый ток. Чтобы получить ток в фотоэлементе, еще кое-чего не хватает. Фотоэмиссионная поверхность составляет катод…
Н. – Понял! Не хватает анода. Очевидно, нужно поместить в колбу анод с положительным по отношению к катоду потенциалом, чтобы притягивать электроны, которые он излучает.
Л. – Да, но сплошной анод задерживал бы световые лучи. Поэтому его заменяют кольцом или редкой сеткой.
ИЗОБРАЖЕНИЕ РАЗВЕРНУТО
Н. – Мне думается, что я могу рассказать теперь, как я представляю себе телевизионный передатчик. Я беру свой фотоаппарат, но на место матового стекла помещаю ту часть диска Нипкова, которой производится разложение изображения (рис. 11). Ведь именно здесь объектив моего аппарата образует изображение, которое нужно передать. А сзади диска я помещу фотоэлемент. Так это?
Рис. 11. Передатчик с диском Нипкова.
1 – объектив; 2 – проекция изображения; 3 – фотоэлемент; 4 – усилитель; 5 – передатчик.
Л. – Абсолютно верно! Ты на пути к повторному изобретению телевидения. В каждый момент времени фотоэлемент в твоем устройстве будет получать свет от развертываемого элемента изображения и будет преобразовывать его в ток, пропорциональный интенсивности света. Следовательно, на выходе фотоэлемента возникает сигнал видеочастоты, который нужно будет соответственно усилить, перед тем как промодулировать несущую высокую частоту, используемую для передачи видеосигнала на расстояние.
ИЗОБРАЖЕНИЕ ВОСПРОИЗВЕДЕНО
Н. – А приемник?
Л. – Как ты понимаешь, в нем будет диск Нипкова, подобный диску передатчика, приводимый в совершенно идентичное вращательное движение (рис. 12).
Рис. 12. Приемник с диском Нипкова и неоновой лампой.
1 – приемник; 2 – неоновая лампа; 3 – изображение.
Н. – Это то, что называют «синхронизмом», не так ли?
Л. – Я с удовольствием отмечай, насколько богаче стал твой технический словарь.
Н. – Но какое устройство будет служить преобразователем изменений тока в изменения яркости?
Л. – Попросту неоновая лампа, состоящая из колбы, содержащей неон под небольшим давлением.
Н. – Я прекрасно знаю эти неоновые лампы, которые применяют в световых рекламах. Я даже разбил одну в кафе напротив нашего дома, потому что она излучала больше помех, чем света.
Л. – Я и не подозревал, что у тебя такие агрессивные наклонности. Но неоновые лампы, которые использовались в телевидении, содержали один электрод в виде пластинки такой же поверхности, как и воспроизводимое изображение, и другой электрод, который в виде рамки охватывал первый электрод. Когда между этими двумя электродами приложено некоторое постоянное напряжение, вся поверхность пластинки светится. Если, кроме того, в цепь попадает переменное напряжение видеосигнала, то яркость изменяется в соответствии с мгновенными значениями сигнала.
Н. – Да, но как сделать, чтобы каждая точка этой пластинки имела яркость, соответствующую яркости той же точки передаваемого изображения?
Л. – А этого и не нужно. Ведь неоновая лампа помещена за диском Нипкова и ты ее видишь через отверстия диска.
Н. – Теперь я понял! В каждое мгновение мы увидим только один элемент светящейся поверхности лампы, и в это мгновение лампа правильно воспроизводит яркость соответствующей точки развертываемого изображения. Например, в момент, когда передают первый элемент первой строки, вся неоновая лампа имеет такую же яркость. Но через отверстие диска мы видим только место изображения, соответствующее этому элементу. Когда отверстие переходит к следующему элементу, неоновая лампа воспроизводит яркость этого второго элемента и т. д. Следовательно, все элементы видны на своих местах с соответствующей яркостью, что дает восстановленное изображение.
Л. – Ты прекрасно понял принцип этой системы телевидения, выдвинутой еще в конце XIX в
МЕХАНИКА УМЕРЛА, ДА ЗДРАВСТВУЕТ ЭЛЕКТРОНИКА!
Н. – Эта система мне кажется очень простой и практичной. Надеюсь, что она продолжает существовать.
Л. – Она давным-давно заброшена, так как пригодна для разложения изображений с ограниченным количеством строк, не превышающим 180.
Н. – А разве не могли делать достаточно большие диски, чтобы разместить на них большое количество отверстий?
Л. – Нет, потому что при скорости, с которой они вращаются, центробежные силы могли бы их разорвать
Н. – Можно было бы уменьшить диаметр отверстий.
Л. – Не ниже некоторой величины. Световые лучи, проходящие через слишком малые отверстия, подвергаются неприятному явлению дифракции.
Н. – Положительно мои идеи сегодня не очень то удачны.
Л. – Если бы они и были удачны, ты все равно не мог бы спасти механические системы. Они страдают другими серьезными недостатками. Так, например, в процессе передачи фотоэлемент получает свет от каждого элемента изображения только в течение очень короткого интервала времени. Чтобы получить ощутимый электрический ток, требуется очень интенсивное освещение объекта. При приеме имеет место такое же расточительство, так как каждое мгновение мы видим только один элемент всей освещенной поверхности неоновой лампы, свет которой, следовательно, очень мало используется. И, наконец, разве мы не живем в век электроники?
Н. – Зачем же ты мне тогда подробно объяснял действие системы, которая должна встретиться в музее с самолетом братьев Райт и когерером Бранли.
Л. – Потому что, шевеля мозгами, чтобы ее понять, ты лучше подготовишься к усвоению более сложных явлений в электронных системах.
Н. – Я чувствую, что это будет дьявольски сложно.
Беседа третья
ЭЛЕКТРОНЫ В ВАКУУМЕ
Выявив недостатки механических систем телевидения, приятели переходят к изучению электронных методов. Для этого они начинают изучать основное устройство всякого, телевизионного прибора – электронно-лучевую трубку, применяемую как в передающих телевизионных камерах, так и в телевизионных приемниках. Это показывает, насколько она заслуживает подробного изучения. Предметом изучения наших приятелей будут, следовательно, следующие вопросы: электроника; устройство электронной пушки; атмосферное давление на электронно-лучевую трубку; возможность ее разрыва; люминесцентный экран; электронная оптика; электростатическая фокусировка; электростатическая линза; электронное пятно; скорость электронов; их возврат в источник; алюминированные экраны; электростатическое отклонение; горизонтально и вертикально отклоняющие пластины; формирование изображения.
ОПРЕДЕЛЕНИЕ ЭЛЕКТРОНИКИ
Незнайкин. – Все же кое-что мне решительно не удается понять. Во время последней беседы ты заявил, что «механические способы» в наше время уступили место «электронным». Так вот, по-моему, диск Нипкова по существу электронный.
Любознайкин. – Как это?
Н. – Разве его атомы не состоят из протонов, электронов и нейтронов? Что тебе еще больше нужно электронного?
Л. – Просто-напросто электроны в свободном состоянии, отделенные от протонов. А где ты их найдешь в таком виде?
Н. – Ничего я об этом не знаю… Впрочем, знаю: в пустоте радиоламп, когда они выполняют «сальто», чтобы перелететь от катода к аноду.
Л. – Правильно. И вся важная отрасль современной техники, которую определяют термином «электроника», рассматривает применение электронных токов, протекающих в пустоте или полупроводниках, некоторые усилительные свойства которых недавно научились использовать.
У ИСТОЧНИКА ЭЛЕКТРОНОВ
Н. – Но вернемся к телевидению. Как создают электронные токи, которые в нем используются?
Л. – Совершенно таким же образом, как и в усилительны радиолампах: путем электронной эмиссии горячею катода.
Н. – А что делать с этими электронами?
Л. – Их собирают в узкий пучок, который наподобие невидимого карандаша пробегает строка за строкой все элементы передаваемого изображения. Таким образом осуществляется развертка изображения как при передаче, так и при приеме изображения.
Н. – Я прекрасно вижу, как поток электронов идет от катода к аноду в триоде. Но как может он сконцентрироваться и особенно переместиться, чтобы последовательно развернуть элементы изображения?
Л. – Именно это-то мы сегодня и рассмотрим. Основное устройство, в котором происходят все эти явления, – электронно-лучевая трубка. Она состоит прежде всего из триода, весьма похожего на триоды, используемые в радиолампах. Однако, чтобы облегчить концентрацию электронов, используют катод с очень малой поверхностью (его называют «точечный катод»).
Н. – Очевидно, чтобы собрать электроны в узкий пучок, лучше с самого начала держать их вместе. Но почему же в таком случае они стремятся иметь расходящиеся траектории?
Л. – Разве ты забыл, дружище, что одноименные заряды (отрицательные электроны) взаимно отталкиваются?
СТРАННЫЙ ТРИОД
Н. – Но где собираются электроны?
Л. – Обычно после их прохода через анод.
Н. – Ничего не понимаю. В твоем любопытном триоде электронам удается, значит, пройти через анод?
Л. – Вот именно. Потому, что у анода в центре отверстие. Притягиваемые анодом с высоким положительным потенциалом (несколько тысяч вольт), электроны развивают очень большую скорость и пролетают через отверстие, чтобы закончить свой пробег гораздо дальше (рис. 13).
Рис. 13. Простейшая электронно-лучевая трубка.
1 – нить накала; 2 – катод; 3 – управляющий электрод; 4 – анод; 5 – электронный луч; 6 – люминесцирующий экран.
Н. – Вот странный триод!
Л. – И даже более странный, чем ты думаешь. Не только анод в нем образован диском с отверстием, но и то, что эквивалентно сетке и называется управляющим электродом, на самом деле состоит из цилиндра, окружающего катод.
Н. – А как он действует?
Л. – Так же, как в сетка. Если его потенциал имеет большое отрицательное значение, он отталкивает вылетевшие электроны обратно к катоду, а к аноду пропускает лишь очень небольшое количество их. Наоборот, когда цилиндр лишь немного отрицателен, большей части электронов удается пройти сквозь него, чтобы устремиться к аноду… и за него.
Н. – А какова величина тока?
Л. – Ток гораздо слабее, чем в радиолампах. Вообще-то он порядка сотен микроампер, тогда как в приемных триодах он достигает нескольких миллиампер. Впрочем, триод трубки был бы очень плохим усилителем, так как, его крутизна не превышает десятка микроампер на вольт, тогда как внутреннее сопротивление близко к сотням мегом!..
ЛЕГКАЯ АРТИЛЛЕРИЯ
Н. – Для чего же тогда служит этот необычный триод?
Л. – Он служит электронной пушкой (его называют также электронным прожектором). Для телевизионных систем нужно было создать устройство, излучающее электроны в достаточном количестве и к тому же поддающееся управлению благодаря тому цилиндру, о котором я тебе говорил. В электронно-лучевых трубках электронная пушка помещена в цилиндрической части стеклянной колбы, расширяющейся далее в виде конуса, его основание служит экраном, на котором воспроизводится изображение.
Н. – Должен ли быть удален воздух из этой колбы?
Л. – Конечно, иначе электроны будут ударяться о тяжелые молекулы газа и потеряют свой разбег. Внутри трубки должна царить совершенная пустота настолько, насколько это возможно.
Н. – Как и природа, я боюсь пустоты, а пустота в трубке ничего хорошего не сулит. Ты отдаешь себе отчет в том, что в этих условиях каждый квадратный сантиметр поверхности трубки должен выдерживать полное атмосферное давление, т. е. один килограмм?
Л. – Я это знаю. И если ты не забыл свои уроки геометрии, ты легко подсчитаешь давление, которое действует на экран трубки диаметром 43 см.
Н. – Около тысячи двухсот килограммов!
Л. – Если ты учтешь еще конические и цилиндрические стенки, ты увидишь, что общее давление – около трех тонн, или нес 40 взрослых людей.
Н. – Трубка, выдерживающая всех бессмертных Французской Академии![4]4
«Сорок бессмертных» – так обычно называют 40 членов французской Академии, основанной кардиналом Ришелье. Прим. перев.
[Закрыть] Решительно, она должна быть необыкновенно прочной…
Л. – Именно поэтому ее экран обычно делают слегка выпуклым, хотя теперь научились изготовлять и плоские. А конические стенки часто делают из стали.
Н. – Недостает только, чтобы во избежание взрыва трубки я занимался телевидением лишь высоко в горах.
Л. – Почему это?
Н. – Потому, что на высоте атмосферное давление меньше…
Л. – Согласен. Но спустимся обратно па землю, чтобы исправить ошибку терминологии: трубка не взрывается, она «раздавливается»… И это дорого обходится.
ЛЮМИНЕСЦЕНЦИЯ, ФОСФОРЕСЦЕНЦИЯ И ФЛУОРЕСЦЕНЦИЯ
Н. – Что же происходит с электронами, выброшенными электронной пушкой, когда они достигают экрана?
Л. – Его внутренняя стенка покрыта слоем полупрозрачного вещества, которое светится под ударами электронов.
Н. – Это вещество вроде того, что светится в темноте на стрелках моих часов?
Л. – Не совсем, потому что на твоих стрелках фосфоресцирующее вещество очень долго светится после того, как оно было предварительно облучено. А в электронно-лучевых трубках длительность послесвечения экрана сравнительно невелика.
Н. – То ли это явление, которое происходит во флуоресцирующих лампах, все шире используемых в кафе и магазинах?
Л. – Ну да. В этих лампах электрический разряд в ртутных парах дает ультрафиолетовые лучи, не ощущаемые нашим глазом. Однако, падая на флуоресцирующее вещество, которым покрыты внутренние стенки экрана, ультрафиолетовые лучи вызывают видимое световое излучение.
Н. – Твоя флуоресцирующая лампа, мне кажется, совершенно подобна супергетеродину.
Л. – ??
Н. – Разве это не преобразователь частоты, преобразующий очень высокую частоту ультрафиолетовых лучей в менее высокую частоту видимого света?..
Л. – Ты совершенно прав. Но ближе к делу. У нас есть электронная пушка, посылающая свои снаряды на экран, который начинает светиться. Так как при стрельбе происходит рассеивание, на экране образуется широкое световое пятно. Пробовать получить изображение при помощи этого пятна было бы так же бесполезно, как пытаться нарисовать картину при помощи платяной щетки.
ЭЛЕКТРОННАЯ ЛИНЗА
Н. – Вот мы и вернулись опять к проблеме фокусировки. Как ты думаешь пробудить в электронах дух солидарности?
Л. – Я могу это сделать при помощи «электронной линзы». В этом термине нет ничего неправильного, потому что электронные лучи на пути от катода до экрана ведут себя более или менее подобно световым. Они подчиняются законам «электронной оптики», которая имеет много общего с разделом физики, рассматривающим поведение световых лучей.
Н. – Уж не хочешь ли ты мне сказать, что электронной линзой служит диск из двояковыпуклого стекла? Ведь электроны не могли бы пройти через него.
Л. – Подобную линзу получают, помещая за первым анодом второй, имеющий более высокий потенциал (а иногда даже и третий). Электрическое поле между анодами действует на элементарные электрические заряды, какими являются электроны, изменяя их траекторию и стремясь направить их к оси трубки. И вот таким-то образом электроны образуют сходящийся пучок (рис. 14).
Рис. 14. Электростатическая фокусировка электронного пучка.
1 – управляющий электрод; 2 – первый анод; 3 – второй анод.
Н. – А наш триод превращается в тетрод или даже пентод?
Л. – У него будут в некоторой степени свойства тетрода. В частности, изменения напряжения на последнем аноде почти не будут оказывать влияния на количество электронов, образующих электронный луч, т. е. на интенсивность тока в вакууме.
Н. – Какие же напряжения прикладываются к электродам?
Л. – На первом аноде относительно небольшое напряжение, порядка 220 в. Зато второй анод находится под высоким напряжением в несколько тысяч вольт. При этом напряжение на первом аноде можно изменять, влияя таким образом на распределение электрических полей и тем самым изменяя «кривизну» электронной линзы.
Н. – Значит, электронная линза совершеннее обычной оптической линзы?
Л. – Нет, не всякой. Вот, например, глазной хрусталик тоже обладает способностью изменять свою кривизну, чтобы приспосабливаться к рассматриванию близких и удаленных предметов.
Н. – Значит, регулируя напряжение на первом аноде, изменяют фокусировку пучка?
Л. – Совершенно верно. Стараются получить очень узкий пучок, дающий на экране светящееся пятно очень небольших размеров, которое и является элементом растра, определяющим размер элемента изображения.
ПЕЧАЛЬНАЯ УЧАСТЬ ЭЛЕКТРОНОВ
Н. – По что делается с электронами, достигшими экрана? Нужно, чтобы они вернулись к источнику высокого напряжения, каков бы он ни был.
Л. – Вот вопрос, который раньше мало интересовал изготовителей трубок. Электроны, падающие на экран с большой скоростью…
Н. – Какого порядка?
Л. – Эта скорость зависит от напряжения, приложенного к последнему аноду, и пропорциональна квадратному корню из этого напряжения. Так, при 10 000 в на этом аноде электроны будут иметь скорость около 60 000 км/сек. Но при 20 000 в она едва превзойдет 80 000 км/сек.
Н. – Какой же смысл увеличивать эту скорость?
Л. – Чем сильнее электроны ударяются об экран, тем ярче он светится.
Н. – Вернемся, с твоего разрешения, к электронам, которые ударяются об экран. Что с ними происходит?
Л. – Как камень, с силой брошенный в воду, поднимает фонтан брызг, электроны выбивают другие электроны из люминесцентного слоя. Эти электроны…
Н. – …вторичные.
Л. – Ну да, я вижу, ты ничего не забыл из наших прежних бесед. Эти вторичные электроны медленно и как умеют передвигаются к аноду. По крайней мере, так было в старых трубках. В наше время им облегчают обратный путь, покрывая внутренние стенки колбы между экраном и выводом последнего анода проводящим графитовым слоем. Я должен тебе, кстати, заметить, что вывод последнего анода производится через стекло в конической части колбы (рис. 15).
Рис. 15. Электронно-лучевая трубка с фокусировкой посредством электронной линзы. Высокое напряжение на последнем аноде требует хорошей изоляции; поэтому его вывод осуществляется вне цоколя трубки.
1 – управляющий электрод; 2 – первый анод; 3 – второй анод; 4 – проводящее покрытие.
Н. – А почему не через штырек цоколя?
Л. – Да потому, что из-за высокого напряжения на этом электроде его следует по возможности отдалить от других электродов.
Н. – Теперь я ясно представляю себе всю цепь. Электроны вылетают из катода, пролетают отверстия управляющего электрода и одного или нескольких анодов и попадают на какую-то точку экрана. Оттуда они движутся вдоль стенок по направлению к последнему аноду и через источник высокого напряжения возвращаются на катод. Я полагаю, что самая трудная часть пути – это та, которая ведет от пятна к краю экрана.
Л. – Верно, потому что люминесцентный слой очень далек от идеального проводника. Но в современных трубках на этот слой часто наносится очень тонкий зеркальный слой алюминия, сквозь который легко проходят электроны, вылетающие из электронной пушки, и который облегчает удаление вторичных электронов. Впрочем, истинная цель алюминиевого слоя – увеличить яркость изображения, отражая по направлению к зрителю ту часть световых лучей, которая без этого безвозвратно терялась бы для него, уходя внутрь трубки.
ПЯТНО ХОДИТ ВВЕРХ И ВНИЗ
Н. – Вот мы и владеем электронным карандашом, предназначенным для вычерчивания светящихся изображений на экране. Однако, чтобы рисовать, нужно сделать его подвижным. Как схватить этот невидимый пучок и манипулировать им по своему желанию?
Л. – Когда настоящая пушка выпускает снаряд, он следует по прямолинейной траектории?
Н. – Нет, конечно. Он описывает параболу, так как земное притяжение искривляет его траекторию по направлению к Земле.
Л. – Не видишь ли ты возможности воздействовать на электрон аналогичной силой, способной отклонить его от прямого пути?
Н. – Да, вижу. Можно было бы расположить под пучком положительно заряженный электрод, который притягивал бы электроны так же, как Земля притягивает снаряд. Таким образом, пучок искривился бы книзу.
Л. – Правильно! Можно поступить еще лучше, поместив одновременно над пучком второй, отрицательно заряженный электрод (рис. 16).
Рис. 16. Электростатическое отклонение. В соответствии со знаком напряжения на отклоняющих пластинах пятно отклоняется вниз или вверх.