355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Евгений Айсберг » Телевидение?.. Это очень просто! » Текст книги (страница 13)
Телевидение?.. Это очень просто!
  • Текст добавлен: 10 октября 2016, 00:04

Текст книги "Телевидение?.. Это очень просто!"


Автор книги: Евгений Айсберг



сообщить о нарушении

Текущая страница: 13 (всего у книги 17 страниц)

Беседа шестнадцатая
ПРОБЛЕМЫ ПИТАНИЯ

Для телевизионных приемников проблема питания так же важна, как и для живых существ. При недостаточном питании телевизор дает бледные и чахлые изображения. Более прожорливый, чем радиоприемник, он требует больших напряжения и мощности. Разные способы, часто очень остроумные, дают возможность получить очень высокое напряжение, которое должно быть подано на последний анод кинескопа. Рассматривая эти разнообразные вопросы, наши приятели затронут следующие темы: анодное питание; фильтрация; регулировка фокусировки и яркости; высоковольтный выпрямитель с одноанодным кенотроном; меры предосторожности при работе с высоким напряжением; максимальное обратное напряжение; контактные выпрямители; удвоение напряжения; питание кинескопов; высокое напряжение от генераторов низкой и высокой частоты; использование перенапряжения на обратном ходу по строкам.


В ОБЛАСТИ КЛАССИКИ

Незнайкин. – Ну, что ж, на этот раз, я думаю, хватит. Сколько я ни размышлял, я не нахожу больше ни одного элемента телевизора, который мы бы не рассмотрели.

Любознайкин. – До некоторой степени это правильно. Но если ты соберешь телевизионный приемник только из элементов, которые мы с тобой изучили, он так же не заработает, как человек, лишенный пищи.

Н. – Да, конечно, мы не за тронули вопросы питания. Но я полагал, что классические решения, применяемые в радио, пригодны также и в телевидении. Я прекрасно понимаю, что 20 или 25 ламп телевизора потребуют более значительной мощности, чем банальный супергетеродин на четырех лампах. Но с помощью мощного трансформатора 150 или более ватт вместо его скромного коллеги из «музыкальной шкатулки», мирно отдающего свои 50 вт, и с соответствующим кенотроном все легко обойдется.


Л. – То, что ты говоришь, не лишено здравого смысла, хотя главная трудность, по-видимому, от тебя ускользнула.

Н. – И это?..

Л. – Источник на много тысяч вольт, необходимость которого вызывается анодом приемной трубки. Но пока что оставим в покое этот вопрос. Правильно, что для остального устройства может быть использовано питание, подобное питанию радиоприемников, но более мощное. Однако необходимо предусмотреть (рис. 116) дополнительную фильтрующую цепь для питания высокой и промежуточной частоты и отдельный фильтр для выходной лампы низкой частоты. В противном случае резкие и сильные изменения потребления питания, возникающие в процессе образования зубьев пилы и в усилителе низкой частоты, будут влиять на высокое напряжение усилителя видеосигналов и приемника звука, который будет сильно гудеть, тогда как изображение будет искажено. В дополнительных фильтрах вместо дросселей использованы резисторы R2 и R3. Падение напряжения на резисторе R1 в общей цепи питания используется для смещения. В старых типах телевизоров с электромагнитными трубками вместо резистора R1 часто включали фокусирующую катушку кинескопа.


Рис. 116. Схема источника питания телевизора. Источник высокого напряжения для анода кинескопа на этой схеме не показан.

1 – анодное питание ламп развертки; 2 – анодное питание выходном лампы низкой частоты; 3 – анодное питание ламп усилителен высокой и промежуточной частоты; 4 – отрицательное смещение.


Н. – Как в радиоприемнике вместо дросселя фильтра – подмагничивающую обмотку электродинамического громкоговорителя?

Л. – Совершенно верно, хотя все более и более наблюдается тенденция использовать превосходные постоянные магниты, а громкоговорители с подмагничивающей обмоткой отнести в область воспоминаний, так же как и фокусирующую катушку.

Н. – Я могу отметить, что трансформатор содержит дополнительную обмотку, предназначенную для накала кинескопа.

Л. – Это полезная мера предосторожности, особенно когда катод и модулятор кинескопа находятся под потенциалом анода лампы видеоусилителя.

Н. – Так или иначе проблема питания решена для меня на 90 %, раз я уже знаю, как подавать необходимые напряжения на все электроды, за исключением последнего анода кинескопа. Что нужно вписать в его меню?



В СТРАНЕ КИЛОВОЛЬТ

Л. – Этот анод не очень прожорлив, но у него утонченные вкусы. Ему необходимо от 800 до 4 000 в в кинескопах с электростатическими фокусировкой и отклонением. В кинескопах с электромагнитным отклонением, преимущественно используемых в телевидении, требуется от 5000 до 16 000 в. А кинескопы для проекции на большой экран, о которых мы будем говорить дальше, питаются напряжением не менее 25 000 в, а иногда и в 2 или 3 раза выше.

Н. – Но мой домашний счетчик взорвется от такого количества киловольт!

Л. – Ни малейшей опасности, по крайней мере для счетчика, потому что эти киловольты совсем не поглощают киловатт. Анодный ток кинескопов измеряется в микроамперах. Как правило, он меньше миллиампера. Например, кинескоп с экраном 43 см потребляет при напряжении 12 000 в ток не более 0,1 ма, что соответствует мощности 1,2 вт. Твой счетчик с презрением взирает на такую мощность…

Н. – Если это так, то я думаю, что нет никакого затруднения в получении высокого напряжения из сети питания. Ведь все обычные схемы анодного питания должны годиться также и для получения высокого напряжения?

Л. – Без всякого сомнения. Но, принимая во внимание незначительность тока и соответственно этому легкость фильтрации, достаточно самого простого устройства – однополупериодного выпрямителя с одноанодным кенотроном (рис. 117).


Рис. 117. Сетевой высоковольтный выпрямитель с одноанодным кенотроном.


Н. – Фильтр на твоей схеме выглядит весьма примитивным: один конденсатор и два резистора.

Л. – В действительности достаточно и одного конденсатора. Заряжаемый 50 раз в секунду, он так мало разряжается между двумя последовательными зарядами, что напряжение на его обкладках практически остается постоянным и почти равным амплитуде напряжения на высоковольтной вторичной обмотке трансформатора. Конденсатора емкостью 0,1–0,25 мкф вполне достаточно.

Н. – Такого маленького конденсатора?

Л. – Маленького по емкости, но отнюдь не по объему, так как он должен быть прекрасно изолирован, чтобы без пробоя выдерживать тысячи вольт между обкладками. Это возможно при достаточной толщине диэлектрика и, следовательно, довольно больших габаритах.

Н. – Мне, кажется, что резистор R эффективно дополняет фильтрующее действие конденсатора.

Л. – Нет, оно имеет иное назначение. Этот резистор сопротивлением 50—100 ком служит для защиты кенотрона и трансформатора путем ограничения тока в случае неожиданного короткого замыкания в высоковольтной цепи.

Н. – А для чего служит резистор R1, параллельный конденсатору С?

Л. – Еще одна мера безопасности, но на этот раз – чтобы защитить техника. Этот резистор с большим сопротивлением (порядка 20 Мом) служит для разряда конденсатора С после выключения приемника. В сухое время года конденсатор может часами сохранять заряд. Соприкосновение с зажимами конденсатора 0,25 мкф, заряженного до 12 000 в, может вызвать смерть или в лучшем случае серьезный шок. Ремонтные техники, которые шутки ради дают тебе в руки конденсатор, заряженный выпрямителем приемника до напряжения около 300 в, совершают ошибку, допуская такие глупые шутки. Напряжение же, в 40 раз более высокое, ничего приятного не обещает, поверь моему личному опыту…

Н. – Однако с разрядным резистором R1 не грозит никакая опасность.

Л. – Один добрый совет, Незнайкин: никогда не прикасайся к включенному высоковольтному источнику. И, даже выключив ток, не доверяй защитному резистору R1, так как он всегда может отсоединиться. Начинай с того, что накоротко замкни зажимы конденсатора С лезвием отвертки, которую ты, конечно, будешь держать за изолирующую рукоятку. И если ты услышишь треск разряда большой искры, пошли мысленно благодарность твоему доброму другу, Любознайкину, а также… позаботься о другом конденсаторе. Потому что бывают случаи, когда внезапный разряд разрушает его, хотя он и не так хрупок, как человеческий организм…

Н. – Спасибо, Любознайкин, что ты предупредил меня о смертельных опасностях, таящихся в чреве телевизора…



МНОЖЕСТВО ОПАСНОСТЕЙ В ВЫСОКОВОЛЬТНОМ ВЫПРЯМИТЕЛЕ

Л. – Есть и другие опасности, угрожающие его собственным элементам. Так, кенотрон и высоковольтный трансформатор должны выдерживать такие напряжения, которые подвергают их жестоким испытаниям.

Н. – Ну, конечно, амплитуда напряжения на высоковольтной вторичной обмотке очень велика.

Л. – Скажи лучше удвоенная величина этого напряжения.

Н. – Я тебя опять перестаю понимать. Почему удвоенная величина?

Л. – Чтобы тебе было яснее, я вновь начерчу схему выпрямителя, но менее ортодоксальным образом (рис. 118).


Рис. 118. Схема, аналогичная схеме на рис. 117, поясняющая процесс возникновения удвоенного обратного напряжения.

Н. – Изображенная таким образом схема напоминает мне немного схемы разверток: слева видна зарядная цепь, где напряжение вторичной обмотки создает ток, который после выпрямления кенотроном заряжает конденсатор С; последний разряжается затем по цепи, расположенной справа.

Л. – Такое толкование не лишено интереса и может, в частности, помочь тебе лучше разобраться в механизме фильтрации. Но пока что я хотел бы осветить некоторые другие явления. Для этого будем действовать нашим обычным методом.


Н. – Ты хочешь рассмотреть, что происходит за каждый полупериод? Это нетрудно. Возьмем прежде тот, когда ток проходит через кенотрон. Это полупериод, когда электроны выталкиваются к верху вторичной обмотки, т. е. когда из-за наличия электродвижущей силы верхний конец вторичной обмотки становится отрицательным по отношению к нижнему.

Л. – Прекрасно, Незнайкин. Можно подумать, что ты угадываешь, как я поведу рассуждение.

Н. – По правде говоря, нет. Но я вижу, что электроны свободно проходят от катода к аноду кенотрона и заряжают конденсатор до амплитудного значения напряжения С, развиваемого вторичной обмоткой, причем потенциал нижней обкладки отрицателен по отношению к верхней.

Л. – Посмотри теперь, что произойдет во время следующего полупериода, изобразив это на схеме.

Н. – По моему мнению, не произойдет ничего, потому что теперь электродвижущая сила на вторичной обмотке изменила полярность и разность потенциалов между верхним и нижним концами положительна и равна U. Поэтому электроны не могут идти от анода к катоду. Значит, ток в цепи будет отсутствовать.

Л. – Очевидно. Но что происходит в это время на конденсаторе С?

Н. – Он очень медленно разряжается через нагрузку. Практически же напряжение на его обкладках продолжает оставаться равным U.


Л. – Ну, что же, посмотри, как это все выглядит на схеме. Ты имеешь два напряжения U, включенных последовательно: на конденсаторе и на вторичной высоковольтной обмотке. Таким образом, «максимальное обратное напряжение» – его так называют, приложенное между катодом и анодом кенотрона, равно 2U. При напряжении 12 000 в это составляет во время не пропускаемых кенотроном полупериодов максимумы 24 000 в. Чтобы внутри кенотрона не возникало искр или даже дуги, это должна быть специальная лампа, выдерживающая такие напряжения между электродами. Кроме того, должна быть предусмотрена специальная изоляция в монтаже и трансформаторе. Ты можешь, в частности, заметить, что обратное напряжение полностью прикладывается между накальной обмоткой и магнитным сердечником, соединенным с шасси.


Н. – В общем наше устройство так же опасно для людей, как и для оборудования. Что же делать?

Л. – Можно несколько улучшить это положение, применяя полупроводниковые выпрямители (селеновые или даже германиевые). Так как катод отсутствует, можно использовать схему (рис. 119), которую я опять-таки изображаю не вполне ортодоксально. Выпрямитель изображается в виде стрелы, острие которой указывает направление прохождения электронов.


Рис. 119. Схема полупроводникового выпрямителя позволяет вдвое уменьшить напряжение между обмоткой и сердечником трансформатора.


Выпрямитель и в этой схеме должен выдерживать обратное пиковое напряжение 2U. Но между концом вторичной обмотки и сердечником максимальное напряжение не превышает U.

Н. – Все это далеко не утешительно. Когда речь идет о таких высоких напряжениях, должны возникнуть настоящие китайские головоломки в отношении изоляции!


Л. – Тогда предпочтительнее прибегнуть к умножителю напряжения.


Н. – Это еще что такое? Ты мне никогда о нем не говорил.

Л. – Принцип работы удвоителя напряжения понять нетрудно (рис. 120). Я тебе предоставляю возможность рассуждений, как мы это обычно делаем, по нашему методу.


Рис. 120. Схема удвоителя напряжения, изображенная не совсем обычным образом с целью пояснения принципа ее работы.

Н. – Спасибо за честь! Я полагаю, что, например, во время первого полупериода электроны во вторичной обмотке выталкиваются слева направо. Они смогут тогда пройти через верхний выпрямитель и зарядят до напряжения U верхний конденсатор, через нижний же выпрямитель им вход воспрещен.

В следующий полупериод электроны во вторичной обмотке выталкиваются справа налево. Теперь им прегражден путь через верхний выпрямитель. Они смогут тогда пройти через нижний выпрямитель и будут заряжать до напряжения U нижний конденсатор. Но, честное слово, Любознайкин, ты прав! Напряжения обоих конденсаторов складываются, и на выходе получается напряжение 2U. Это поистине гениально!

Л. – Можно применить несколько иную схему (рис. 121), где во время первого полупериода ток проходит через верхний выпрямитель и заряжает до напряжения U конденсатор, включенный последовательно со вторичной обмоткой. Во время следующего полупериода напряжение конденсатора добавляется к напряжению вторичной обмотки, так что выходной конденсатор заряжается через нижний выпрямитель, до 2U вольт.


Рис. 121. Схема удвоителя, состоящая из тех же элементов, что и схема на рис. 120, но несколько иначе включенных.

Н. – Все это похоже на какое-то колдовство.

Л. – Соединив каскадом ряд умножителей напряжения в современных устройствах для расщепления атомов, имена которых кончаются на «трон», достигают миллионов вольт.

Н. – Я уже слышал об этих циклотронах и прочих бетатронах. Но вернемся к нашим скромным кинескопам, честолюбие которых измеряется не мегавольтами, а простыми киловольтами.



МНОГО РЕЗИСТОРОВ

Л. – Чтобы покончить с классической схемой из трансформатора и выпрямителя, можно отметить, что она далеко не безопасна и практически уже не встречается, по крайней мере в тех случаях, когда речь идет о кинескопах с повышенными напряжениями. Но зато она вполне пригодна для питания кинескопов с электростатическими фокусировкой и отклонением.

Вот, например (рис. 122), схема такого питания, где, начиная с высокого напряжения, выпрямленного и отфильтрованного фильтрующей ячейкой с резистором (С1, R1, C2), все необходимые напряжения получают с помощью делителя напряжения.


Рис. 122. Схема питания кинескопа с электростатическими фокусировкой и отклонением.


Н. – Да, я вижу катод, которому задается положительный потенциал по отношению к шасси при помощи переменного резистора R2, включенного последовательно с постоянным резистором R3.Модулятор кинескопа благодаря резистору утечки R10 имеет потенциал шасси и поэтому отрицателен по отношению к аноду. Резистор R2 служит для регулировки средней яркости. Возрастающие потенциалы трех анодов снимаются с цепочки резисторов R4R7, благодаря потенциометру R5 можно изменять потенциал второго анода, чтобы регулировать фокусировку пятна. Но я что-то не пойму, для чего служат потенциометры R8 и R9.

Л. – Средние точки этих потенциометров имеют тот же потенциал, что и третий анод (потому что R6 = R7). С помощью движков потенциометров средний потенциал отклоняющих пластин (одной из каждой пары) может быть установлен немного ниже или выше потенциала последнего анода (другой пластины каждой пары). Таким образом, можно регулировать среднее положение пятна как в горизонтальном, так и в вертикальном направлениях, т. е. осуществить центрирование изображения путем перемещения его влево и вправо или вверх и вниз.

Н. – Это то же кадрирование, что и в кино, где стараются, чтобы изображение не перерезалось посредине, что вызывает свистки зрителей… Но скажи, Любознайкин, разве нельзя использовать такую же схему смещения на модуляторе для кинескопов с электромагнитными фокусировкой и отклонением?


Л. – Конечно, можно. Каков бы ни был способ получения высокого напряжения, всегда можно установить делитель напряжения (рис. 123), позволяющий подавать на модулятор кинескопа отрицательное по отношению к катоду регулирующею напряжение и регулировать с его помощью яркость изображения.


Рис. 123. Схема делителя напряжения, обеспечивающая на катоде регулируемое положительное напряжение.


МЕСТНОЕ ПРОИЗВОДСТВО ПЕРЕМЕННОГО ТОКА

Н. – Ты мне дал совершенно ясно понять, что, кроме классической схемы получения высокого напряжения, которая тебе, по-видимому, абсолютно не нравится, существуют и другие. Так ли это?

Л. – Конечно. Основным недостатком классической схемы является слишком низкая частота выпрямленного тока, вследствие чего необходимо прибегать к конденсаторам фильтра со сравнительно большой емкостью. Заряд, накопленный на одной четверти микрофарады десятком киловольт, может оказаться смертельным, как я уже говорил. Но если выпрямить ток с частотой, например, 10 000 гц, то достаточно будет емкости, уменьшенной в 200 раз. А заряд такого конденсатора, кроме неприятных ощущений, не будет представлять никакой опасности, особенно при ограниченном зарядном токе.

Н. – Это выглядит более привлекательным. Но не думаю, что по твоему простому телефонному звонку инженеры электростанции ускорят вращение генераторов, чтобы снабдить тебя частотой 10 000 гц.


Л. – Я не создаю себе никаких иллюзий на этот счет. Потому-то я сам себя и обеспечу переменным током.

Н. – Вот как! Придется поместить небольшую машину переменного тока внутри телевизора!..

Л. – Да. но успокойся, она будет чисто электронной. Попросту применяют генераторную лампу, колебания которой на желаемой частоте используют для питания телевизора. Неважно, каким будет генератор – с настроенной сеткой или анодом, с электронной связью или еще какой-нибудь, может быть использован любой. Лишь бы возник ток, его используют так же, как в классической схеме выпрямления.


Н. – То есть?

Л. – Напряжение повышают при помощи вторичной обмотки с большим количеством витков, а выпрямляют его одноанодным кенотроном (рис. 124).


Рис. 124. Схема высоковольтного выпрямителя с использованием местного генератора и однополупериодного выпрямителя с фильтром.

Н. – Я вижу, что ты нагреваешь нить кенотрона также током генератора от небольшой предусмотренной для этой цели обмотки.

Л. – Ну и что же? Это изящнее, чем применение специальной вторичной обмотки на трансформаторе электропитания.

Н. – На какую частоту нужно настраивать генератор?

Л. – Можно использовать частоты, начиная с 500 вплоть до 250 000 гц. В первом случае трансформатор должен быть с сердечником, тогда как в высокочастотном генераторе можно не применять сердечника, что упрощает проблему изоляции.

Н. – С этим и здесь нужно считаться?

Л. – И как еще! Впрочем, чтобы избежать слишком большой разности потенциалов между соседними слоями обмотки, часто предпочитают наматывать катушку в виде плоской галеты с большим количеством слоев, но с небольшим числом витков в каждом из них.

Н. – Должен признаться, что идея вырабатывать на месте необходимый ток мне кажется весьма остроумной.


ПОРОК ПРЕВРАЩАЕТСЯ В ДОБРОДЕТЕЛЬ

Л. – Конечно, хотя энергетический к. п. д. электронного генератора и не очень высок. Но в конечном счете можно обойтись и без него. Зачем, в самом деле, изготавливать этот маленький генератор переменного тока, если он уже существует в недрах телевизора.

Н. – Сегодня ты, видно, поклялся вещать языком сивиллы, чтобы подвергнуть мое любопытство самым жестоким испытаниям. Уж не намекаешь ли ты на гетеродин преобразователя частоты?

Л. – Нет, мой милый, хотя принципиально и им можно было бы воспользоваться в качестве источника переменного тока, если сделать его достаточно мощным. Но я думал о другом. Вспомни о перенапряжениях, которые возникают во время обратного хода на первичной обмотке строчного выходного трансформатора, связывающего отклоняющие катушки строк с генератором строчной развертки.

Н. – Да, действительно. Резкое изменение тока, вызванное спадом зуба пилы, является причиной описанных перенапряжений на первичной обмотке трансформатора, включенного в анодную цепь пентода генератора строчной развертки. И я помню, ты говорил, что порок может обратиться в добродетель, если использовать эти перенапряжения как источник высокого напряжения.

Л. – Решительно, твоя память продолжает восхищать меня. Ты видишь, что мы располагаем импульсами высокого напряжения, которые появляются с частотой развертки строк. Мы еще можем, если это нужно, увеличить напряжение при помощи дополнительной обмотки, образующей повышающий автотрансформатор (рис. 125).


Рис. 125. Схема выпрямления импульсов высокого напряжения, возникающих на обратном ходу строчной развертки.

Н. – Теперь я вижу, остается только выпрямить напряжение обычным способом. И здесь ты также нагреваешь нить кенотрона от обмотки на том же трансформаторе.

Л. – Обращаю твое внимание, Незнайкин, на дополнительное преимущество такого высоковольтного источника, наиболее совершенного из всех и получившего самое широкое применение в современных телевизорах. Если почему-либо развертывающее устройство выйдет из строя, неподвижное пятно может вызвать прожог светящегося экрана в этой точке. Но в схеме получения высокого напряжения за счет перенапряжения на обратном ходу строчной развертки при выходе из строя развертки исчезнет высокое напряжение, а следовательно, и само пятно.


Н. – Значит, кинескоп при такой системе не подвергается никакому риску. Вот, наконец, слово утешения после опасностей, о которых ты сегодня говорил… Спасибо!



    Ваша оценка произведения:

Популярные книги за неделю