Текст книги "Открытие без границ. Бесконечность в математике"
Автор книги: Энрике Грасиан
Жанр:
Математика
сообщить о нарушении
Текущая страница: 9 (всего у книги 10 страниц)
Научные журналы
В 1826 году Август Леопольд Крелле (1780–1855) основал Journal fur die reine und angewandte Mathematik («Журнал о чистой и прикладной математике»). Его название указывало цель, к которой стремился основатель: восстановить единство математики, которая, в отличие от Средних веков или эпохи Возрождения, в то время была чётко разделена на два самостоятельных направления – чистую и прикладную. Впрочем, математические журналы – лишь один из видов научных журналов.
Первый научный журнал в истории был основан под эгидой Лондонского королевского общества и ознаменовал неизбежное: распространение научных публикаций и их характер отныне определяли научные общества. Если говорить о первых изданиях, посвящённых исключительно математике, в частности об «Анналах математики» Жергонна или журнале Крелле, то следует отметить несколько интересных моментов. Во-первых, объём публиковавшихся в них работ был меньше, чем в сборниках научных трудов. Во-вторых, в журналах не издавались старые тексты.
Обязательным условием публикации были новизна и оригинальность работы. Ещё одним интересным моментом стало то, что в этих журналах впервые стали выпускаться совместные работы, а не труды, выполненные исключительно силами одного учёного, как было до сих пор.
* * *
СИЦИЛИЙСКАЯ МАТЕМАТИКА
Любопытно, что одно из первых математических сообществ появилось в городе Палермо, и центром его стал журнал Rendiconti del Circolo Matematico di Palermo, основанный итальянским математиком Джованни Баттистой Гуччиа (1855–1914). Обосновывая авторитетность нового математического общества, Гуччиа отмечал, что оно появилось в стране с «выдающейся математической родословной». Гуччиа также учредил несколько премий, и это привело к тому, что свои работы в его журнал стали отправлять выдающиеся математики. За короткое время журнал неожиданно получил международное признание, заняв одно из первых мест в списках международных математических сообществ.
Джованни Баттиста Гуччиа
* * *
Основной целью математических сообществ был максимальный охват территории, регулярное издание математических журналов и предоставление необходимых для их распространения средств. Однако время показало, что без поддержки официальных учреждений решить эти задачи невозможно. Научные сообщества неизбежно попадали под определённое влияние общества и политических элит, так как они стали частью культурной идентичности государств. С одной стороны, правительственная поддержка научных сообществ очень важна, с другой – международное научное сотрудничество могло оказаться под угрозой по политическим причинам. Кроме того, органы, контролирующие допуск работ в печать, могли быть не так объективны, как этого хотелось учёным. Время показало, что математические сообщества препятствуют публикации некоторых новаторских работ, которые нарушают установленные каноны, не всегда имеющие отношение непосредственно к науке. Показательно, что две трети всех статей по математике, вышедших в 1900 году, были опубликованы не в математических журналах.
Среди первых научных сообществ, которые начали появляться уже в середине XIX века, наиболее важными (в порядке появления) были Московское математическое общество (1864), Лондонское математическое общество (1865), Французское математическое общество (1872), математический кружок Палермо (1884), Американское математическое общество (1888), Немецкое математическое общество (1890).
* * *
НЕОСМОТРИТЕЛЬНЫЙ МАТЕМАТИК
Научный журнал, созданный Генри Ольденбургом в 1665 году, издаётся до наших дней. Его издание прерывалось только дважды: в первый раз – из-за эпидемии чумы в Лондоне, во второй раз – из-за болезни Ольденбурга, всё своё время посвящавшего работе. Его энтузиазм был так велик, что каждую неделю он писал для журнала пять колонок. Ольденбург считал, что наука не знает границ, поэтому продолжал публиковать свои статьи даже во время войны. Но в те времена это было очень неосмотрительно, и Ольденбург на три месяца был заключён в Лондонский Тауэр.
Противоречивость бесконечности
Кронекер как-то сказал: «Бог создал первые десять чисел, всё остальное создал человек», выразив тем самым, сколь велика заслуга математики. По его мнению, всё в математике должно было строиться из известных, чётко определённых элементов и за конечное число этапов. Иными словами, Кронекер не хотел ничего слышать об актуальной бесконечности. Как-то раз он заявил, что от бесконечности следует отказаться как от
«…пагубной бессмыслицы, унаследованной от древней философии и запутанной теологии. Без неё мы можем достичь всего, чего захотим…»
Кронекер был явным последователем финитизма, а также операционизма, в котором не признаются никакие рассуждения, не подкреплённые чётко определёнными математическими операциями. Он заявил, очевидно, имея в виду труды Кантора, что математике необходим контроль со стороны признанных учёных, так как
«богатый практический опыт решения полезных и интересных задач даст математике новый смысл и новый импульс. Однобокие и интроспективные умозрительные заключения не дают плодов».
Следует учитывать, что Кронекер был одним из редакторов журнала Крелле, поэтому неудивительно, что в 1877 году он отклонил все рукописи, переданные Кантором для публикации в этом журнале. Расхождение во взглядах переросло в личную неприязнь, и Кронекер публично назвал Кантора ренегатом, шарлатаном и совратителем учащейся молодёжи.
Не будем забывать, что Кантор был лучшим учеником Кронекера, естественно, что он очень болезненно переживал подобное отношение учителя и получил глубокую психологическую травму, от которой ему так и не удалось оправиться.
Дедекинд
Юлиус Вильгельм Рихард Дедекинд (1831–1916), который родился в Брауншвейге и был четвёртым ребёнком в зажиточной семье, большую часть жизни посвятил математическим исследованиям. Он был алгебраистом и стремился сформировать фундаментальную основу анализа, для чего в качестве базы выбрал множества и отображения множеств.
Вейерштрасс, Кантор и Дедекинд независимо друг от друга работали над определением вещественных чисел. Работы Кантора и Дедекинда стали классическими и вошли в учебники. Труды Кантора, в основе которых лежала теория множеств, были наиболее близки Дедекинду, особенно потому, что оба они работали над большой темой непрерывности пространства, носившей больше философский, нежели математический характер. И Кантор, и Дедекинд утверждали, что доказать непрерывность пространства абсолютно невозможно. Максимум, что можно сделать, – это принять гипотезу о непрерывности пространства в качестве постулата.
На этой памятной марке, выпущенной в честь Дедекинда, справа изображена формула разложения числа на простые множители.
В 1872 году, находясь на отдыхе в Швейцарии, Кантор познакомился с Дедекиндом – одним из немногих математиков того времени, если не сказать единственным, с которым он поддерживал близкие отношения, основанные на взаимном доверии и уважении. Рождение теории множеств можно чётко проследить, если ознакомиться с их перепиской в 1874–1884 годах. Любопытно, что в большинстве наиболее важных статей Дедекинд почти не использует понятие «множество»: он считал, что Кантор уже совершил наиболее важные открытия в этой области, поэтому больше внимания уделял понятию отображения.
В 1881 году на кафедре математики Университета Галле освободилась должность преподавателя, и Кантор предложил кандидатуру Дедекинда, написав в Министерство образования письмо, в котором подчеркнул положительные качества своего друга. Однако, несмотря на настойчивые просьбы Кантора, Дедекинд отказался от этой должности – у него совершенно отсутствовали какие-либо амбиции и желание занять высокое место в научных кругах. В течение тридцати лет Дедекинд преподавал в Карловском коллегиуме, где работали его отец и дед. К тому же чиновники министерства отдали должность преподавателю, рекомендованному Кронекером.
В результате отношения между Кантором и Дедекиндом остыли, и переписка между ними прекратилась на семнадцать лет. Лишь в 1899 году по инициативе Кантора учёные вновь начали общаться.
Миттаг-Леффлёр
В то самое время, когда отношения между Кантором и Дедекиндом прекратились, на горизонте появилась новая личность, которой суждено было получить признание в научном мире и поддержать Кантора в один из тяжелейших периодов его жизни.
Этим человеком был Магнус Гёста Миттаг-Леффлёр (1846–1927) – математик шведского происхождения, известный не собственными открытиями, а прежде всего благодаря распространению трудов других великих математиков. Брак с богатой наследницей позволил ему найти необходимые средства для учреждения в 1882 году нового научного журнала Acta Mathematica, который завоевал значительный авторитет в международном научном сообществе. Кантор и Миттаг-Леффлёр быстро нашли общий язык, и последний перевёл большинство статей, переданных ему Кантором.
Магнус Гёста Миттаг-Леффлёр на фотографии 1916 года.
Переводом трудов Кантора на французский и редактированием занялась группа математиков во главе с Шарлем Эрмитом, который, как мы отмечали в главе 5, разработал доказательство трансцендентности числа e, впоследствии улучшенное самим Кантором. Публикации в Acta Mathematica сыграли большую роль в поддержке новой теории трансфинитных чисел, однако инцидент, связанный с публикацией «Основ теории отношений порядка», свёл все усилия Кантора на нет. Кантор в то время безуспешно пытался найти доказательство континуум-гипотезы, но ему не удавалось достичь сколько-нибудь значимых результатов. В упомянутой выше работе был дан новый толчок теории множеств, что, как считал Кантор, должно было упростить доказательство. Однако Миттаг-Леффлёр отложил публикацию статьи более чем на год, ссылаясь на то, что в ней не только отсутствовало доказательство континуум-гипотезы, но и она непременно вызвала бы негативную реакцию научного сообщества: в работе использовалось понятие трансфинитных чисел и новый математический язык, а также содержались далёкие от математики философские рассуждения. Кантор счёл этот инцидент, по его словам, «настоящей катастрофой» и для математики, и для него лично. Он усмотрел в этом влияние «чёрной руки» – так учёный называл группу берлинских математиков (в их числе были Куммер, Вейерштрасс и Кронекер), отвергавших его теории. Как мы уже отмечали, с Кронекером Кантор вёл крайне ожесточённую полемику.
Эксцентричность Кантора
В марте 1874 года, во время одной из частых поездок в Берлин, Кантор познакомился с Валли Гугтман, подругой своей сестры Софи, и в августе того же года женился на ней. Валли была увлекающейся натурой, она любила музыку, и Кантор всегда относился к ней с величайшей нежностью. Тем не менее, осознавая свои слабости, он ещё до свадьбы предупредил невесту, что его
«без явных на то причин… могут сломить жизненные тяготы».
Как бы то ни было, этот брак вполне можно назвать счастливым. У Кантора родилось четыре сына и две дочери. Унаследовав достаточную сумму, чтобы не беспокоиться о своём финансовом положении, учёный решил построить дом в Галле. На тот момент он оставил должность в Университете Галле и отказался от попыток получить работу в Берлинском университете.
К 1885 году Кантор устал от безрезультатных попыток доказать континуум-гипотезу. Он был глубоко разочарован тем, что представители математического сообщества избегали его, и отодвинул занятия математикой на второй план. В 1889 году учёный посвятил себя попыткам доказать, что произведения Шекспира (1564–1616) в действительности написаны Фрэнсисом Бэконом (1561–1626), противоречивым английским философом и политиком, который попытался претворить в жизнь важную научную реформу. В 1898 году Кантор даже прочёл курс лекций о жизни и творчестве Фрэнсиса Бэкона – и в том же году был исключён из Шекспировского общества. Исследователь собрал объёмную библиотеку английских авторов XVI–XVII веков, вложив в неё часть своего состояния, а также посвятил несколько лет философии и написал несколько философских работ. Интересовала его главным образом метафизика, особенно темы, имеющие отношение к актуальной бесконечности.
16 декабря 1899 года Кантор вернулся из Лейпцига, где выступал на конференции с докладом о Фрэнсисе Бэконе, и узнал о смерти своего сына Рудольфа: 13-летний музыкально одарённый мальчик отличался слабым здоровьем. После смерти сына Кантор неожиданно заявил, что сожалеет о том, что оставил музыку и занялся математикой, и в результате эта «вздорная идея» помешала ему посвятить себя истинному призванию.
Безумие
О душевной болезни Кантора, от которой он страдал в последние годы жизни, написано немало книг и высказано множество предположений. История болезни учёного не сохранилась, поэтому сложно сказать, каким был настоящий диагноз. Всё указывает на то, что Кантор страдал от заболевания, которое сегодня именуют биполярным аффективным расстройством – болезнью эндогенного характера, при которой фазы эйфории сменяются депрессией. Поэтому версия, согласно которой причиной болезни Кантора стали нападки со стороны его коллег, в особенности Кронекера, выглядит неубедительно.
В последние двадцать лет жизни исследователь периодически по собственному желанию лечился в психиатрических клиниках. Это не мешало ему продолжать работу и в промежутках между лечением публиковать свои исследования. В последний раз он был помещён в клинику в 1917 году. В то время Германия была близка к поражению в Первой мировой войне, экономика страны пришла в упадок, и без того тяжёлые условия пребывания в психиатрических больницах ещё больше ухудшились.
Это единственный раз, когда Кантор был помещён в больницу против своей воли.
В письмах он жаловался на холод, одиночество и скудное питание. Хотя к этому моменту его теории уже получили широкое признание научного сообщества, 6 января 1918 года Кантор умер в ужасных условиях и в полном одиночестве.
* * *
ТРАГИЧЕСКАЯ ГИБЕЛЬ
Помимо смерти сына, большим потрясением для учёного стала гибель его младшего брата Людвига. Братья были очень близки и вместе учились в начальной школе, правда с разными успехами. Людвиг, не слишком склонный к обучению, решил заняться торговлей, в то время как Георг поступил в университет. В 1863 году Людвиг эмигрировал в США, и информация об этом периоде его жизни практически не сохранилась. Достоверно известно лишь то, что в 1870 году он умер в психиатрической больнице, куда был помещён с жалобами на глубокую депрессию. Было высказано немало предположений о том, что оба брата страдали от наследственного психического заболевания.
* * *
Теории Кантора о бесконечности входят в число самых революционных теорий в истории математики за последние 2500 лет, а многие историки науки считают теорию множеств Кантора одним из наиболее выдающихся достижений человеческой мысли.
Была ли болезнь Кантора наследственной или она возникла под влиянием обстоятельств, не столь важно. Возможно, что свою роль в равной степени сыграли оба фактора. Как бы то ни было, Кантор, подобно всем гениям, ясно видевшим то, что для остальных имело лишь бесформенные очертания, страдал от одиночества. В одной из своих философских статей, опубликованной в 1883 году, он написал слова, которые можно в равной степени расценивать и как песнь свободе, и как крик отчаяния в адрес общества, задушенного собственным догматизмом:
«Математика в своём развитии совершенно свободна и связана только одним условием: её понятия должны быть непротиворечивы и согласованы с уже имеющимися понятиями посредством чётких определений. Сущность математики – свобода».
Кантор предпочитал использовать понятие «свободная математика» вместо более общего «чистая математика».
Он умер в одиночестве в больнице, но его имя никогда не будет забыто. Лучшая эпитафия Кантору, несомненно, принадлежит Гильберту, который сказал:
«Никто не может изгнать нас из рая, который Кантор создал для нас».
* * *
МНОЖЕСТВА И НАЦИЗМ
Математическое сообщество решило отдать дань уважения труду Кантора, для чего к его 70-летнему юбилею были организованы торжества, однако Первая мировая война помешала реализовать эти планы. Тогда группа немецких математиков собралась в его доме, чтобы вручить учёному в знак признания мраморный бюст, который в настоящее время хранится в Университете Галле. В период правления Гитлера этот бюст был убран, так как теория множеств считалась «еврейской математикой».
Бесконечность в XXI веке
До появления современной физики бесконечность упоминалась только в философских и богословских дискуссиях. В математике она присутствовала, можно сказать, естественным образом, так как, по словам Кронекера, «нам дана свыше» бесконечная последовательность натуральных чисел. Различия между актуальной и потенциальной бесконечностью затронули и геометрию, в которой использовалось понятие бесконечной прямой. Однако полноправным элементом математики бесконечность стала только с появлением математического анализа, анализа бесконечно малых.
Как говорил Гильберт,
«математический анализ можно в известном смысле назвать единой симфонией бесконечного».
Однако частью нашей повседневной реальности бесконечность стала лишь благодаря открытиям в физике и астрономии. До начала XX века астрономы считали, что Вселенная включает Солнце, планеты и далёкие звёзды. Спустя некоторое время они открыли, что Солнечная система – часть галактики, состоящей из нескольких миллионов солнечных систем. Постепенно пространство стало считаться достаточно большим, чтобы вместить несколько миллиардов галактик. Но почему на этом следовало остановиться? Кто сказал, что в космосе не будут обнаружены новые структуры большего размера, что позволит считать, что размеры Вселенной намного больше? Бесконечна ли Вселенная? Ответ на этот вопрос до сих пор не найден и, возможно, не будет найден никогда.
С другой стороны, чем больше учёные изучают субатомные частицы, тем более важную роль в физике начинают играть бесконечно малые величины. Атом как таковой перестал быть неделимым, каким его считали древние греки, и стал подобен Солнечной системе в миниатюре. Однако физики не остановились на этом: были открыты частицы, содержащиеся внутри атомного ядра, и их размеры составляют менее 10−15 метра. Пока что можно вести речь о невообразимо малых, но не бесконечно малых величинах. Тем не менее в одной из физических теорий, которую оказалось труднее всего подтвердить экспериментально, а именно в квантовой электродинамике, изучаются элементарные частицы, в частности электроны и кварки, которые с точки зрения математики рассматриваются как точки, следовательно, они подобны точкам вещественной прямой и ведут себя похожим образом.
Возможно, учёные когда-нибудь докажут, что в природе не существует и никогда не существовало различий между потенциальной и актуальной бесконечностью и что противоречие между ними лишь мнимое.
Приложение
Иррациональность √2
Первое известное доказательство иррациональности квадратного корня из 2 принадлежит философу-досократику, представителю пифагорейской школы Гиппасу из Метапонта (род. ок. 500 г. до н. э.), который, создав это доказательство, не только проявил способности к математике, но и затронул тему, табуированную в его среде. Не будем забывать о легенде, согласно которой за всякое упоминание о существовании иррациональных чисел пифагорейцы карали смертью.
Как и в большинстве подобных доказательств, включая и приводимое в некоторых неканонических изданиях «Начал» Евклида, в доказательстве Гиппаса используется метод доведения до абсурда. На современном языке его доказательство звучит следующим образом.
Если √2 – рациональное число, это означает, что его можно представить как частное двух целых вида
√2 = p/q
Отметим, что эта дробь является несократимой, то есть её числитель и знаменатель не имеют общих множителей. Возведя обе части равенства в квадрат, получим
2 = p2/q2
и, как следствие,
p2= 2q2
Это означает, что р2 чётно, поэтому р также чётно. Таким образом, р можно представить как число, кратное 2, то есть в виде р = 2n. Имеем
2q2 = р2 = (2n)2 = 4n2.
Упростив равенство, получим
q2 = 2n2.
Иными словами, q2 чётное, поэтому q также чётное. Мы пришли к выводу, что и р, и q – чётные числа, таким образом, числитель и знаменатель дроби p/q имеют общий множитель, что противоречит исходной гипотезе. Это означает, что √2 нельзя представить в виде частного двух целых.
Первые приближённые значения √2 содержали всего 4–5 знаков после запятой.
Достаточно точное значение, содержащее 65 знаков после запятой, записывается так:
√2 ≈ 1,41421356237309504880168872420969807856967187537694807317667973799.
С помощью современных компьютеров можно получить приближённое значение этого числа, содержащее несколько миллионов знаков после запятой.