355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Энрике Грасиан » Открытие без границ. Бесконечность в математике » Текст книги (страница 8)
Открытие без границ. Бесконечность в математике
  • Текст добавлен: 9 октября 2016, 23:25

Текст книги "Открытие без границ. Бесконечность в математике"


Автор книги: Энрике Грасиан


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 8 (всего у книги 10 страниц)

Больше чем бесконечность

Ты всем известен, но никем не охвачен, ибо умеренное кажется большим, большое – бесконечным и ещё раз бесконечным.

«Герой». Бальтазар Грасиан (1601–1658)

Кантор знал, что ни вещественная прямая, ни какой-либо из её отрезков не являются счётными. Далее он совершил гигантский шаг и встретился с бесконечностью лицом к лицу.

Напомним, что для того чтобы получить множество вещественных чисел, необходимо добавить к множеству рациональных чисел множество иррациональных чисел, которые нельзя представить в виде частного двух целых. Множество вещественных чисел также является бесконечным и плотным. Однако оно не является счётным, в отличие от двух предыдущих, то есть этому множеству никоим образом нельзя поставить в соответствие ряд натуральных чисел 1, 2, 3, 4, 5, …

Поэтому Кантор сформулировал следующую задачу: имеются бесконечные множества, в каждом из которых число элементов одинаково, например множества натуральных, чётных или рациональных чисел. Однако в этом случае появляется новое множество вещественных чисел, которое также является бесконечным, но в нём больше элементов, чем в этих трёх множествах. Здесь Кантор вводит одну из самых революционных идей за всю историю математики: возможно, не все бесконечности одинаковы, а некоторые из них больше, чем другие? В качестве отправной точки он использовал бесконечное множество натуральных чисел. Затем он доказал, что множество вещественных чисел  не является счётным и содержит больше элементов, чем , то есть больше, чем множества натуральных и рациональных чисел.

Кардинальное число множества  он обозначил как алеф-один –  Так родился раздел математики, посвящённый трансфинитным числам.

* * *
ПРОВИДЕЦ ИЗ IX ВЕКА

Сабит ибн Курра (ок. 836–901) был авторитетным арабским учёным, жившим в IX веке. Известно, что он родился в Харране, в Междуречье. Помимо большого числа текстов по богословию и философии, он создал любопытный математический трактат, посвящённый, главным образом, арифметике. В нём ибн Курра, продемонстрировав невиданную для своего времени смелость, рассматривает возможность существования различных видов бесконечности в том смысле, что некоторые её виды могут быть больше других. Таким образом, ибн Курру можно считать подлинным предшественником Кантора.

* * *

Кантор знал, что – число  точек, содержащихся на любом отрезке прямой.

Это означает, что вне зависимости от размера двух отрезков прямой число точек на них будет одинаковым. Может показаться удивительным, но очень простое доказательство этого утверждения было известно ещё древним грекам.

Даны два отрезка, а и b. Чтобы установить взаимно однозначное соответствие между их точками, достаточно выполнить следующее построение. Соединим концы отрезков прямыми с и d, которые пересекутся в точке Е.


Выберем произвольную точку F отрезка а и соединим отрезком эту точку с точкой – точкой пересечения прямых с и d. Точка G, в которой эта прямая пересечёт отрезок b, и будет искомым отображением точки F. Очевидно, что таким образом можно сопоставить каждой точке отрезка а точку отрезка b и наоборот. Это доказывает, что число точек на обоих отрезках одинаково.

Затем Кантор выполнил смертельный номер: взяв за основу один из этих отрезков, он построил квадрат


и смог доказать, что кардинальное число множества всех точек квадрата равно , то есть число точек квадрата равно числу точек на любой его стороне. Затем он сделал ещё один шаг и, использовав этот квадрат в качестве основания, построил куб:


И вновь доказал, что число точек, содержащихся в кубе, также равно .

«Я вижу это, но я в это не верю», – писал Кантор Дедекинду в 1877 году, пытаясь объяснить эти взаимно однозначные соответствия между фигурами, имеющими разное число измерений. Кантор доказал положение, противоречащее любым интуитивным и математическим представлениям о размерности: все одномерные, двумерные и трёхмерные объекты, с которыми он работал, содержали одно и то же число точек, равное .

Это было невероятно, и этот результат означал, что на любом, сколь угодно малом, отрезке содержится столько же точек, сколько во всей известной Вселенной. Внутри бесконечно малого оказалось заключено нечто бесконечно большое.

В действительности дело этим не ограничивается:  также равно числу точек в произвольном гиперпространстве. Иными словами, если бы мы могли проникать в пространства высших измерений (четырёх-, пятимерные пространства и т. д.),  означало бы число точек, содержащихся в этих пространствах.

Трансцендентные числа

Вы увидели, что множества  (натуральных чисел),  (целых чисел) и  (рациональных чисел) содержат одинаковое число элементов (то есть являются равномощными) – бесконечное число, обозначенное Кантором как . Множество вещественных чисел получается, если расширить множество рациональных чисел иррациональными. Возникает вопрос: существует ли столько иррациональных чисел, чтобы общее количество вещественных чисел равнялось ?. Ответ на этот вопрос достаточно любопытен и не лишён таинственности. Однако чтобы понять его, сначала следует узнать о так называемых трансцендентных числах.

Уравнение одной переменной x степени n с рациональными коэффициентами – это равенство вида

Cnхn + Cn−1хn−1 +… + C1х + С0 = 0.

Тому, кто не знаком с подобными выражениями, оно может показаться сложным, но это не так. В этом контексте уравнение – не более чем равенство, в левой части которого записаны слагаемые с неизвестным х, возведённым в некоторую степень и умноженным на некие числа (коэффициенты), а в правой части записан ноль. Решить уравнение означает найти такое значение x, при котором уравнение обращается в верное равенство. Например, в уравнении

х 2 = 0

коэффициенты равны 1 и −2, а решением является х = 2.

Иррациональное число, например √2, является результатом решения уравнения вида

х2 2 = 0.

По определению, число х является алгебраическим, если оно выступает корнем (решением) алгебраического уравнения с целыми коэффициентами. Проясним некоторые понятия, чтобы сделать это определение более понятным. Алгебраическое уравнение представляет собой многочлен, приравненный к нулю, например

2 5х 1 = 0,

где 3, 5 и −1 – коэффициенты. Выражение

√3х5 2 = 0

также является уравнением, но его первый коэффициент не является целым числом, следовательно, это уравнение нельзя назвать алгебраическим.

Число 3 является алгебраическим, так как оно выступает решением уравнения

х 3 = 0.

Очевидно, что любое рациональное число является алгебраическим, так как всегда можно записать алгебраическое уравнение, решением которого будет это число.

Как мы уже показали, √2 является решением уравнения х2 2 0, и, следовательно, это также алгебраическое число.

Если число не является алгебраическим, его называют трансцендентным. Этот термин, введённый Эйлером, происходит от латинского transcendere – «превосходить» и означает, что вычисление таких чисел в некотором роде выходит за рамки привычных математических операций. Доказать трансцендентность числа порой очень и очень непросто. Французский математик Жозеф Лиувилль (1809–1882) доказал существование трансцендентных чисел и открыл метод, позволяющий получить некоторые из них. Первым числом, которое удостоилось чести быть помещённым в список трансцендентных, стало (число Лиувилля), определение которого слишком сложно, чтобы приводить его здесь. Записывается оно следующим образом:

L = 0,1100010000000000000000010000…

В 1873 году французский математик Шарль Эрмит (1822–1901), ученик Лиувилля, доказал, что e (основание натурального логарифма, приближённое значение которого равно 2,718281828459043235360287471352…) не является алгебраическим числом. Получить это доказательство было непросто – оно не далось самому Эйлеру.

Одно из самых известных чисел в истории математики – это число π («пи»), равное отношению длины окружности к её диаметру. Доказательство трансцендентности е оказалось столь сложным, что Эрмит не решился взяться за аналогичное доказательство для числа π, о чём написал Карлу Вильгельму Борхардту (1817–1880): «Я не осмелился приступить к доказательству трансцендентности числа π. Если кто-то другой попытается это сделать, не будет человека счастливее меня, но поверьте мне, любезный друг, что это доказательство потребует немалых усилий».

Трансцендентность числа π была доказана Линдеманом лишь несколько лет спустя, в 1882 году. Это открытие стало важной вехой в истории математики, так как означало невозможность решения задачи о квадратуре круга.

Сегодня доказано, что трансцендентными являются числа е, π, еπ, 2√2, sin(1), ln2, ln3/ln2 и некоторые другие, однако до сих пор остаётся открытым вопрос о трансцендентности таких чисел, как ei, ππ и πe. Известно, например, что по меньшей мере одно из двух чисел (возможно, оба сразу) πe и π+e является трансцендентным, но доказать трансцендентность каждого их них по отдельности до сих пор не удалось. Трансцендентные числа – редкие создания, обнаружить их непросто. Это наводит на мысль о том, что таких чисел немного, но в действительности это совершенно не так: их много, очень много, бесконечно много и даже больше.


Шарль Эрмит на фотографии 1887 года. Этот французский математик доказал, что число е не является алгебраическим.

Бесконечное множество вещественных чисел содержит рациональные числа, которые являются алгебраическими, и иррациональные числа, часть которых является трансцендентными. Однако трансцендентных чисел больше, чем алгебраических.

Кантор, обнаружив подлинную гениальность (полученные результаты изумили его самого), сформулировал простое доказательство того, что существует бесконечно много трансцендентных чисел. С одной стороны, известно, что множество вещественных чисел не является счётным. С другой стороны, множество алгебраических чисел является счётным. Из этих двух утверждений следует, что существуют числа, которые не являются алгебраическими. Более того, Кантор доказал, что множество этих чисел не является счётным.

Вывод: множество вещественных чисел так велико именно благодаря трансцендентным числам.

Трансфинитные числа

Арифметика трансфинитных чисел отличается от арифметики конечных чисел.

Георг Кантор

Как мы показали в предыдущем разделе, если дано множество А = {а, b, с, d}, можно образовать ряд его подмножеств

{а}, {b}, {с}, {d}, {а, b), {а, с}, {a, d), {b, с}, {b, d), {с, d), {а, b, с}, {а, b, d}, {а, с, d}, {b, с, d},

которые будут так называемыми собственными подмножествами А. Кроме них, подмножествами А также являются само множество А и пустое множество, обозначаемое символом Ø и не содержащее никаких элементов. Считается, что пустое множество является подмножеством любого множества, и эти два множества (исходное и пустое) считаются несобственными подмножествами. Добавив к вышеприведённому списку собственных подмножеств эти два множества, мы получим полный перечень всех подмножеств А:

{Ø}, {а}, {b}, {с}, {d}, {а, b}, {а, с}, {а, d}, {b, с}, {c, d}, {с, d}, {а, b, с}, {а, b, d}, {а, с, d}, {b, с, d}, {а, b, с, d}, —

итого 16 подмножеств.

Заметим, что 24=16, таким образом, число подмножеств А равно 2 в степени, равной числу элементов А. Нетрудно доказать, что это соотношение справедливо для всех множеств. Таким образом, для любого множества, содержащего n элементов, число его подмножеств будет равно 2n.

Множество, образованное всеми подмножествами А, называется множеством степенью A и обозначается . Кантор доказал, что для любого множества его множество-степень больше, чем само множество, то есть оно содержит больше элементов, или, если быть математически корректными, его кардинальное число больше, чем у исходного множества. Будем обозначать кардинальное число А как |А|.

Изложенный выше результат можно записать так:


Учёному принадлежит доказательство нескольких теорем, но когда речь идёт о теореме Кантора, обычно имеют в виду именно этот результат, который можно записать в виде

|А|< 2|A|

Теорема Кантора позволяет упорядочивать бесконечности. Кантор считал, что «самая маленькая» бесконечность соответствует кардинальному числу множества  – множества натуральных чисел. Это кардинальное число он обозначил .

Таким образом, имеем


По теореме Кантора получим:


Последовательность кардинальных чисел, фигурирующую в этом неравенстве, Кантор назвал числами алеф, присвоив каждому из них порядковый номер: алеф-ноль, алеф-один и т. д. Они записываются буквой еврейского алфавита алеф с индексом:


Это так называемые трансфинитные числа.

В упорядоченной последовательности трансфинитных чисел содержится любое число, которое может существовать, в том числе такое, которое мы даже не можем себе представить. Если до Кантора считалось, что ничто не может быть больше бесконечности, то благодаря его открытиям мы можем с уверенностью утверждать, что всегда существует другая бесконечность, которая будет больше данной. Кантор превзошёл самого Создателя: сколь большое число ни создал бы Бог, всегда будет существовать другое, большее число. И этот научный результат противоречил религиозным взглядам самого Кантора.

* * *

ПОЧТИ БЕСКОНЕЧНОСТЬ

За рамки нашей конечной природы выходят не только бесконечные или трансфинитные числа.

Например, число

которое может быть результатом неких математических расчётов, невероятно велико. Процессор компьютера, выполнив необходимые инструкции, может получить это число за разумное количество шагов. Это возможно потому, что и язык математики, и языки программирования предоставляют все необходимые для этих вычислений инструменты. Но если бы нам потребовалось записать все цифры этого числа на бумаге, мы не смогли бы этого сделать: для такой записи требуется лист бумаги, число частиц в котором превышает число частиц во всей Вселенной. Кроме того, для записи этого числа потребовалось бы время, значительно превышающее возраст Вселенной.

Континуум-гипотеза

Пока что мы говорили о кардинальности применительно к множеству. Мы увидели, что понятие кардинальности обозначает число элементов множества, а также что каждому элементу конечных множеств можно последовательно присвоить натуральное число. С другой стороны, когда речь идёт о множествах с бесконечным числом элементов, пронумеровать их составляющие можно с помощью взаимно однозначного соответствия, при котором каждому элементу множества ставится в соответствие натуральное число. Множества, для которых возможно установить такое соответствие, называются счётными. Однако мы также увидели, что существуют множества, которые не являются счётными, и чтобы как-то обозначить количество их элементов, нам пришлось обратиться к понятию кардинальности. Таким образом, кардинальность множества – это не совсем число, а скорее понятие, связанное с числовой величиной. По сути, на этом понятии основан удивительный трюк, позволяющий узнать, насколько велико множество. Заключается он в сравнении множеств по определённым правилам, которые позволяют однозначно сказать, когда множества одинаково велики, а когда – нет. При этом не имеет значения, о конечных или бесконечных множествах идёт речь.

* * *

СВОБОДА МАТЕМАТИКИ

Можно сказать, что в настоящее время мечта Кантора о свободной математике полностью сбылась. По меньшей мере, никто и ничто (в так называемых цивилизованных странах) не ставит палки в колёса авторам математических теорий по философским или религиозным причинам.

Сегодня в математике используются так называемые «большие кардиналы», которые столь велики, что рядом с ними трансфинитные числа Кантора кажутся карликами. Их определение очень сложно, хотя они строятся по правилам, схожим с теми, что применяются к алеф-числам: рассматривается последовательность множеств, включённых одно в другое, затем анализируются соответствующие множества их частей.

* * *

Кантор назвал алеф-нулём кардинальное число множества натуральных чисел , а кардинальное число множества вещественных чисел  он обозначил термином «континуум» и символом с. Сделал он так потому, что вещественные числа полностью заполняют вещественную прямую, а так как эта прямая представляет собой непрерывную последовательность чисел (в ней отсутствуют промежутки), её можно обозначить словом «континуум» (от лат. continuum – «непрерывное»).

В соответствии с этим


Однако числа алеф образуют возрастающую последовательность


Здесь Кантор сформулировал следующий вопрос: существует ли такой кардинал, который заключён между кардинальным числом множества натуральных чисел и континуумом? Каким-то образом ему удалось понять, что выполняется равенство


Иными словами, не существует множества, размер которого заключён между размером множества натуральных и вещественных чисел, – эта гипотеза называется континуум-гипотезой. Чтобы доказать её, Кантору потребовалось приложить невероятные усилия. Не раз он считал, что континуум-гипотеза доказана, но ему так и не удалось сформулировать доказательство, которое его полностью устраивало бы.

Континуум-гипотезу безуспешно пытались доказать многие современники Кантора, в том числе Гильберт, Рассел и Цермело. Венгерский математик Денеш Кёниг (1849–1913) на конгрессе в Гейдельберге в 1904 году представил доказательство ложности континуум-гипотезы. Но Кантор верил своей интуиции и считал, что доказательство Кёнига не может быть истинным, хотя так и не смог найти в нём ошибку. Обнаружил её Цермело, таким образом, вопрос доказательства континуум-гипотезы оставался открытым, и Гильберт включил его в свой знаменитый список из 23 наиболее важных нерешённых задач математики.

В 1963 году американский математик Пол Джозеф Коэн (1934–2007), основываясь на результатах о непротиворечивости аксиом, полученных Гёделем, доказал, что континуум-гипотеза может быть истинной или ложной в зависимости от выбранной системы аксиом, использованной для построения теории множеств. Таким образом, сложилась та же ситуация, что и со знаменитым пятым постулатом Евклида о параллельности прямых («в плоскости через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной»): в зависимости от выбранной геометрии этот постулат либо выполняется (в геометрии Евклида), либо нет (в геометрии Лобачевского).

Несмотря на это некоторые до сих пор считают, что вопрос о доказательстве континуум-гипотезы окончательно не решён, так как ситуацию может изменить новая система аксиом, на которой будет выстроена теория множеств. Более того, пока не появится новая система аксиом, мы не можем гарантировать, что ясно представляем себе, что такое вещественное число.


Американский математик Пол Джозеф Коэн в 1963 году доказал, что континуум-гипотеза недоказуема в системе аксиом теории множеств, решив тем самым одну из важнейших открытых задач математики.

Глава 6. Ад Кантора

Когда люди открывают новые земли, которые предстоит нанести на карты и описать в книгах, они платят за это свою цену, ведь ничего не даётся даром. Некоторые благодаря своим открытиям обретают славу и известность, а другие умирают в абсолютном забвении, так и не узнав, какую важную роль они сыграли.

Детство

Георг Кантор родился в Санкт-Петербурге 3 марта 1845 года. Его отец, ГеоргВольдемар Кантор, датчанин по происхождению, переехал в Санкт-Петербург ещё ребёнком. Во взрослые годы он основал процветающее предприятие по торговле импортными тканями. Несколько лет спустя он оставил дело и стал биржевым маклером. Георг-Вольдемар Кантор, глубоко религиозный человек, заработал значительное состояние благодаря терпению, знаниям и самоотречению. Эти же качества он прививал детям, которых воспитывал в духе лютеранской морали. Его женой стала Марианна Бойм, католичка русского происхождения, дочь дирижёра в оркестре Санкт-Петербургской оперы. Георг-Вольдемар Кантор также происходил из семьи с крепкими музыкальными традициями, поэтому неудивительно, что они с женой отводили важное место обучению детей музыке.

Георг Кантор был старшим из четырёх детей. В ранние годы он обучался на дому, а в 1856 году поступил в начальную школу в Санкт-Петербурге. Детство в России он всегда называл самым счастливым периодом в жизни.

В 1856 году, после перенесённого воспаления лёгких, отец Кантора был вынужден оставить Россию с её суровым климатом и переехать с семьёй в Германию.

Ненадолго остановившись в Висбадене, семья в итоге обосновалась во Франкфурте. В 1860 году Георг окончил реальное училище в Дармштадте – небольшом городке близ Франкфурта. В это время он уже проявлял исключительные способности к математике, особенно к тригонометрии. Однако его отец не представлял, какую работу в будущем сможет найти математик, поэтому предложил сыну изучить инженерное дело. Кантор, как всегда, последовал совету отца и в 15 лет поступил в училище в Висбадене.


Георг Кантор, создатель теории множеств, считается одним из наиболее выдающихся математиков в истории.

Отец часто писал Кантору, стремясь воспитать в сыне моральную твёрдость, основанную на религиозных принципах. Среди переписки очень выделяется письмо от 25 мая 1862 года, в котором он, помимо прочего, пишет:

«[…] Часто наиболее многообещающие личности сдаются, столкнувшись с незначительными трудностями, возникающими при решении практических вопросов. Они оказываются абсолютно сломленными и в лучшем случае переживают серьёзное потрясение… Поверь мне, дорогой сын: твоим самым близким, верным и опытным другом, который должен жить в тебе и укреплять твоё сердце, должен быть дух истинной веры… Чтобы предупредить все возможные проблемы и трудности, которые неизбежно возникнут по причине зависти и злословия тайных и явных недоброжелателей, вызванных стремлением к успеху в нашем деле или торговле, чтобы успешно справиться с ними, тебе прежде всего потребуется обрести как можно больше знаний и умений… Закончу письмо такими словами: твой отец, вернее твои родители и все остальные члены нашей семьи и в Германии, и в России, и в Дании смотрят на тебя как на старшего сына и ожидают, что твоя звезда ярко засияет на небосводе науки. Да дарует тебе Господь здоровья, сил, твёрдости характера и да пребудет с тобой его благословение. Неизменно следуй Его путём.

Аминь!»

В этом письме Георг-Вольдемар Кантор во многом предугадал дальнейший жизненный путь сына. Вне сомнений, он был достаточно умным человеком и понимал, что его увлечённый математикой сын отличается беспокойной и творческой натурой.

Отец хотел подготовить юношу к возможным трудностям, с которыми тому предстояло столкнуться. И в том же году он разрешает сыну начать заниматься математикой. В ответ будущий учёный с благодарностью пишет:

«Дорогой отец, представьте себе, с каким удовольствием я прочёл ваше письмо. Оно определило моё будущее… Теперь я счастлив, поскольку вижу, что вам придётся по душе, если я последую своему желанию. Ожидаю, что вы, дорогой отец, найдёте удовольствие в моём поведении, так как моя душа и всё моё существо живёт в моём призвании. То, что хочет совершить человек и к чему его толкает его внутреннее стремление, обязательно исполнится».

Кантор, как и всякий юноша, которому семейство разрешило заниматься любимым делом, чувствовал по отношению к родным глубокую благодарность. Некоторые биографы сходятся на том, что безоговорочное подчинение Кантора отцу стало одной из важнейших причин, по которой учёный всегда очень неуверенно чувствовал себя в университетских кругах.

В 1862 году он начал изучать математику, философию и физику в университете Цюриха, однако его обучение было недолгим: после смерти отца в июне 1863 года Кантор перевёлся в Берлинский университет. Интересно, что после этого он ни разу не упоминал об отце.

До начала XIX века центром математики была Франция, однако в годы юношества Кантора она уступила место Германии. Учителями Кантора были Кронекер, Куммер и Вейерштрасс. Кронекер, обучивший его азам теории чисел, впоследствии стал и самым суровым критиком идей учёного, но наибольшее влияние на Кантора оказал Вейерштрасс.

Большинство работ Кантора, изданных в тот период, были посвящены арифметике и алгебре. Летом 1866 года учёный вошёл в математические круги Гёттингенского университета – одного из престижнейших центров математики в Европе.

По возвращении в Берлин Кантор стал членом группы молодых математиков, которые каждую неделю собирались в баре, чтобы поговорить о своей работе в неформальной обстановке. В 1867 году Кантор защитил докторскую диссертацию, в которой подробно проанализировал «Арифметические исследования» Гаусса.

Во введении к его работе содержится фраза, выражающая неспокойный дух человека, который в будущем стал одним из самых заметных математиков в истории науки: «В математике искусство ставить задачи намного важнее, чем искусство решать их».

Защита докторской диссертации позволила Кантору занять должность приват-доцента в университете Галле. Жалование учёного напрямую зависело от числа студентов, посещавших его занятия, но Галле был небольшим городом близ Лейпцига, и университет здесь был гораздо менее престижным, чем Берлинский или Гёттингенский. Кантор понимал это, но никогда не пытался покинуть Галле и проработал там до конца жизни.

В 1873 году учёный впервые предположил возможность существования разных видов бесконечности. Он чувствовал, что между множеством натуральных чисел и множеством вещественных чисел могут существовать не только качественные, но и количественные различия. Качественные различия были ясны: множество натуральных чисел является счётным, а множество вещественных чисел – нет. Если бы кто-то смог доказать, что бесконечное множество вещественных чисел больше, чем бесконечное множество натуральных, это стало бы настоящим потрясением для математики в целом. Первое доказательство, сформулированное Кантором, было опубликовано в 1874 году в журнале Крелле. Следует учитывать, что в то время о множествах нельзя было говорить так свободно, как мы это делаем сейчас. Первая работа Кантора на эту тему вышла в 1878 году под названием «Вклад в теорию множеств» и также была опубликована в журнале Крелле. Статья содержала абсолютно неожиданные результаты, касавшиеся алгебраических чисел. В ней шли первые наброски идей о трансфинитных числах, и эта работа ознаменовала начало нового этапа в математике. Однако прежде чем идеи Кантора получили признание в научных кругах и он смог занять должность, позволявшую продолжить работу, ему пришлось преодолеть тернистый путь: некоторые математики, в том числе его бывший преподаватель Кронекер, активно выступили против Кантора и препятствовали его карьере, что было для учёного очень серьёзным потрясением.


Университет Галле, в котором Кантор преподавал начиная с 1872 года. Учёный прожил в этом маленьком немецком городе до самой смерти.


    Ваша оценка произведения:

Популярные книги за неделю