355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Дэйв Голдберг » Вселенная. Руководство по эксплуатации » Текст книги (страница 16)
Вселенная. Руководство по эксплуатации
  • Текст добавлен: 7 октября 2016, 02:04

Текст книги "Вселенная. Руководство по эксплуатации"


Автор книги: Дэйв Голдберг


Соавторы: Джефф Бломквист

Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 16 (всего у книги 19 страниц)

Это хорошие новости, поскольку отрицательный результат означает, что в обозримом будущем нам не придется спонтанно распадаться на высокоэнергичные частицы. С другой стороны, это плохие новости для некоторых ВТУ, поскольку теперь их можно легко опровергнуть. В наши дни остается все меньше и меньше моделей, соответствующих все более и более долгой минимальной жизни протонов, но многие из них предполагают примерно 10 36лет.

Учитывая, насколько мы близки к точному определению этого периода, стоит ли удивляться, что мы уверены, будто определим его совсем скоро?

III. Какова масса нейтрино?

Обсуждая кандидатов на роль темной материи, мы поговорили и о нейтрино и тут же отмели его. «Легковат»,– сказали мы. Если бы вы спросили нас, какова на самом деле масса нейтрино, мы бы начали ерзать и опускать глаза. Попросту говоря, мы не знаем, а долгое время вообще полагали, что нейтрино лишены массы. Оказывается, это не так, но первые признаки того, что нейтрино обладают массой, мы пронаблюдали практически случайно.

Природные фабрики нейтрино

Нейтрино – этакие проказливые чертенята. Поскольку они участвуют только в слабом взаимодействии, их нельзя взвесить, а поскольку они электрически нейтральны, на них не действуют электромагнитные поля. Зато мы можем создавать их в ядерных реакторах, и природные реакторы, они же звезды, производят их в изобилии.

Мы расскажем вам одну историю. Примерно 160 тысяч лет назад в одной галактике неподалеку от нас – в Большом Магеллановом Облаке – произошла вспышка сверхновой. Поскольку свет добирается до нас не мгновенно, увидели мы эту вспышку лишь в 1987 году, и это было одно из самых примечательных астрономических событий в истории человечества. Вместе с излучением во время вспышки высвободилось громадное количество нейтрино но – настолько громадное, что очень много нейтрино долетели до Земли. Нам повезло, у нас были наготове мощные детекторы, и мы засекли пик нейтрино в тот самый момент, как только увидели свет вспышки. То есть нейтрино прибыли к нам если не со скоростью света, то по крайней мере настолько близко к скорости света, что мы не были в состоянии отметить разницу. Это было предпоследнее свидетельство в пользу того, что если нейтрино и не лишены массы, они необычайно легкие даже по субатомным стандартам.

Наверное, вы думаете, будто то, что мы установили и настроили мощные детекторы как раз перед вспышкой сверхновой 1987А – это крайнее везение. Ну что вы, везение тут ни при чем, и вам это станет понятно, когда мы расскажем, как выглядят некоторые детекторы нейтрино. Это гигантские подземные бассейны с суперчистой водой. Вспомнили? Ну конечно. Многие из установок для опытов по распаду протонов в результате сослужили двойную службу [116]– стали обсерваториями нейтрино.

Предсказать вспышку сверхновой невозможно, поэтому представляется несколько неконструктивным дожидаться сверхновой в надежде наловить нейтрино. К счастью, сверхновые – не единственные фабрики нейтрино. Наше собственное Солнце вырабатывает нейтрино в похожих количествах вместе с фотонами в ходе своих термоядерных упражнений. Просто фотоны больше бросаются в глаза.

Ловлей нейтрино мы занимаемся уже довольно давно. В 1960-е годы большой интерес вызывали попытки засечь нейтрино с Солнца, поэтому Рай-

монд Дэвис из Брукхавенской национальной лаборатории и Джон Бакалл, который тогда работал в Калифорнийском технологическом институте, возглавили работу по строительству… да, вы угадали: гигантского подземного бассейна. Обсерватория Хоумстейк, построенная в заброшенных золотых копях в Южной Дакоте, на самом деле была бассейном на тысячи кубометров, наполненным моющим средством [117]. Нейтрино влетает, ударяется о какой– нибудь атом хлора, превращает хлор в радиоактивный аргон, а аргон распадается, испуская свет. Проще некуда!

Единственная сложность состоит в том, что детекторы не принесли ожидаемых результатов. Бакалл предсказывал, что будет получено раза в два-три больше нейтрино, чем засекли на самом деле. Последующие эксперименты, в которых вместо моющего средства использовалась вода, показали то же самое.

Кто-то крадет почти все нейтрино! Но кто?1

Подлог и мошенничество в мире нейтрино

До сих пор мы старательно обходили некоторые вопросы, которые, вероятно, возникли у вас при осмотре нашего полицейского архива в главе 4. Существует три разных типа нейтрино – электронное, мю и тау. Мы не рассказали, чем они различаются, однако в процессе термоядерного синтеза образуются именно электронные нейтрино, поскольку в процессе участвуют еще и электроны. Первые детекторы нейтрино регистрировали только электронные нейтрино, а остальные два типа оказывались попросту невидимыми. Вероятно, «исчезнувшие» нейтрино каким-то образом (по мановению волшебной палочки?) превращались из электронных нейтрино во что-то другое.

Красота физической науки [118]заключается в том, что можно взять на первый взгляд несовместимые л идеи, чтобы объединить и истолковать явления, которые иначе ничем не объясняются. Рассмотрим три соображения – вроде бы никак не связанные между собой.

1.   Частицы, которые представляются нам одинаковыми, например электрон со спином, направленным вниз, и электрон со спином, направленным вверх, на самом деле при некоторых обстоятельствах ведут себя как разные частицы. Верно и обратное. Две частицы, которые представляются нам разными, при некоторых обстоятельствах ведут себя как одинаковые. Например, протоны и нейтроны ведут себя совершенно одинаково, когда происходит только сильное взаимодействие. Бели разница достаточно велика, мы говорим, что это две разные частицы, а если разница незначительна (например, электрон со спином, направленным вниз, и электрон со спином, направленным вверх), говорим, что это два разных состояния одной и той же частицы.

2.   Многие частицы не находятся в том или ином конкретном состоянии, а являют собой сочетание двух и более разных состояний. В главе 3 мы видели, что направление спина электрона совершенно случайно и становится определенным, только если мы его наблюдаем. Иначе говоря, он одновременно направлен вверх и вниз, и каждое состояние моясет быть наблюдаемо с некоторой вероятностью. Квантовая механика изобилует частицами, которые одновременно предаются двум (на первый взгляд) взаимоисключающим занятиям.

3.   Частицы ведут себя как волны. Когда мы рассказали вам об этом в главе 2, то пренебрегли одной тонкостью, которая сейчас окажется нам полезной. Если волна» осциллирует (то есть колеблется) между двумя различными состояниями, то чем больше разница в энергии между этими состояниями, тем быстрее будут осцилляции.

А теперь объединим эти три соображения, соберемся с духом и сделаем обескураживающее,"однако совершенно верное предположение – нейтрино разных видов могут превращаться друг в друга.

Эксперименты показали, что у нас есть три разновидности нейтрино: одно взаимодействует с электроном, другое – с мюоном и третье – с тау-частицей. Мы представляем себе электрон как комбинацию двух частиц – электрона со спином, направленным вниз, и электрона со спином, направленным вверх; так вот и нейтрино тоже можно представить себе подобным же образом. Давайте считать, что существует три разных типа нейтрино —N 1, N 2 и N 3 в порядке увеличения массы.

Нейтрино N 1 состоит по большей части из электронного нейтрино в сочетании с хорошей дозой мю-нейтрино и капелькой тау-нейтрино. Нейтрино N 2 устроено иначе, а нейтрино N 3 представлено третьим набором качеств. Неважно, как мы будем их называть – тремя состояниями одной частицы или тремя разными частицами. Важно другое: нейтрино не будут выглядеть каждый раз одинаково. Это соображение получило название осцилляции нейтрино, поскольку нейтрино осциллируют между тремя «личинами» – электронным, тау и мю.

Где же тут. красота? А вот где: все это возможно, только если нейтрино обладают массой, мало того, разной массой. Это прямо следует из квантовой механики. Если они не обладают разной массой, значит, энергия между разными состояниями равна нулю ( Е = mc 2 !!!), никакой нейтринной осцилляции не будет, и мы не будем наблюдать это явление.

Как измерить разницу в массах

Понять, что нейтрино осциллируют и, следовательно, обладают массой, достаточно просто, это почти что очевидно, но взвесить их на практике трудно – поскольку эксперимент должен быть чистым и с соблюдением ряда условий.

1.    Разживитесь атмосферой и подвергните ее бомбардировке космическими лучами. К счастью, атмосфера у нас уже есть. Космические лучи атакуют молекулы воздуха и в числе прочего производят антинейтрино – мю и электронные.

2.  Выройте глубоко под землей большой бассейн, наполните сверхчистой водой и снабдите детекторами. Поскольку мы все равно дожидаемся распада протона, такие бассейны у нас тоже уже есть.

3.   Подсчитайте электронные и мюонные антинейтрино и посмотрите, сходится ли ответ.

Если нейтрино обладают массой, то на пути из атмосферы к датчику множество мюонных антинейтрино превратятся в электронные антинейтрино, так что детектор нейтрино обнаружит дефицит нейтрино по сравнению с ожидаемым количеством.

В 1998 году этот эксперимент напал на золотую жилу – на «Супер-Камиоканде» первыми обнаружили недвусмысленные признаки осцилляции нейтрино, а следовательно, нейтрино обладают массой. Последующие эксперименты это подтвердили и наложили ограничения на массу нейтрино.

Наверное, вы понимаете, что без осложнений не обошлось. Первое осложнение – в ходе экспериментов масса нейтрино измерена не была, зато выяснилось соотношение нейтрино разных типов, например количество мю-нейтрино в нейтрино N 1. Стандартная модель не дает нам абсолютно никаких объяснений, почему нейтрино смешиваются именно в таком соотношении, а между тем нам крупно повезло, что эти соотношения именно таковы. Иначе было бы крайне трудно обнаружить тот факт, что они вообще смешиваются.

Второе осложнение – непонятно, почему у нейтрино вообще есть масса. Стандартная модель изначально не предполагает массу у нейтрино, и большинство изданных в последнее время учебников по физике частиц предполагают, что нейтрино лишены массы. Но если считать, что масса у них все-таки есть, почему она такая маленькая? Нынешний верхний предел для массы нейтрино – примерно в миллион раз меньше массы электрона, самой легкой элементарной частицы, масса которой установлена. Ответа на этот вопрос у нас нет, как нет и никакой причины выбрать то или иное значение массы.

Третье осложнение – то, что массу нейтрино в результате этих экспериментов узнать невозможно. Математические выкладки позволяют только выяснить разницу между квадратом масс разных типов нейтрино. Если мы сумеем вычислить массу одного из типов, будет проще простого подсчитать массы остальных двух.

Как найти абсолютное значение масс

Последние двадцать лет физики ставят перед собой цель вычислить абсолютные значения масс нейтрино, а для этого надо узнать, какова масса какого-нибудь одного типа нейтрино. В Германии сейчас ставят эксперимент под названием KATRIN в надежде, что он сумеет непосредственно установить массу электронного нейтрино.

Устройство эксперимента относительно просто. Берете большой чан трития [119]. Тритий – сравнительно редкая разновидность водорода, состоящая из X протона и 2 нейтронов. Он довольно-таки нестабилен, поэтому в скором времени начнет распадаться на гелий-3, а главное – испустит электрон (засечь который проще простого) и электронное нейтрино, существование и энергию которого можно будет вычислить. Поскольку мы знаем общее количество энергии, которое выделится при распаде, и можем измерить количество энергии электрона, значит, вся остальная энергия будет принадлежать нейтрино. А поскольку мы пронаблюдаем очень много распадов отдельных атомов, то сможем измерить минимальное количество энергии в нейтрино, то есть энергию, необходимую, чтобы получить его массу согласно Е = mс 2. Этот и последующие эксперименты позволят нам вычислить массу электронного нейтрино с точностью до 0,04% массы электрона.

Подготовка эксперимента завертится в 2011 году, так что мы полагаем, что получим точный ответ – причем скорее рано, чем поздно.

IV. Чего мы не сможем узнать в ближайшем будущем?

Уже довольно давно ведутся разговоры о том, что будто бы не за горами «конец физики». Это была расхожая тема интеллектуальных бесед еще в начале XX века. Джеймс Клерк Максвелл на тот момент великолепно описал электричество и магнетизм, а все остальное, как полагали ученые, описывала ньютонова теория гравитации. Затем были открыты квантовая механика и теория относительности, и в результате мы оказались дальше прежнего от унификации физических представлений в аккуратную, простую и полную картину Вселенной. Мы еще не оправились после открытий начала XX века, а некоторые тайны квантового мира еще ждут разгадки, о чем мы, собственно, и писали в этой книге.

Мы хотим сказать, что еще очень и очень рано почивать на лаврах. Стандартная модель физики частиц описывает все до единой частицы и их взаимодействия – но для этого ей требуется четыре разные силы и около 20 свободных параметров. Стандартная модель космологии описывает историю Вселенной и даже предлагает вполне правдоподобную версию событий темного Средневековья до эпохи Комбинации. Но все эти успехи достигнуты с определенными оговорками. Мы подставляем в теоретические формулы некие числа – но понятия не имеем, откуда эти числа взялись. Мы не в состоянии убедительно увязать гравитацию с остальными силами, хотя и описали каждую из них по отдельности очень и очень хорошо. И во множестве случаев мы даже не знаем, что собой представляют эти параметры.

Есть и другие вопросы, которые нам бы очень хотелось прояснить, но по которым невозможно ни достичь согласия, ни даже надеяться на консенсус. Приведем наши любимые.

1. Верна ли теория струн, ошибочна или ни то ни другое?

Посмотрите вверх-вниз, вперед-назад, вправо– влево. По всей видимости, ничего другого пространство предложить не может. Разумеется, дополнительные измерения обладают теми же мерзкими особенностями, что и зубная фея и пиратские клады: если вы их не видели, это не значит, что их не существует.

В этой книге мы пару раз упомянули о теории струн. Казалось бы, это чуть ли не панацея от всех болячек современной физики. Теория струн предполагает, что с фундаментальной точки зрения все частицы одинаковы – всего-навсего кусочки струн. Она претендует на роль Теории Всего, а значит, если она справедлива, то общая относительность и слабые, сильные и электромагнитные силы объединятся в единую теорию. Есть надежда, что естественным следствием некоторых моделей теории струн станет исчерпывающее объяснение, что такое темная материя и темная энергия, а значит, мы сразу поймем, почему Вселенная экспоненциально расширяется.

Однако за все надо платить. Теория струн в ее нынешнем виде предполагает, будто Вселенная

имеет 10 измерений плюс время. Чтобы понять, что представляют собой дополнительные семь измерений, вообразите канатоходца под куполом цирка. Сторонний наблюдатель скажет, что движение канатоходца ограничено двумя направлениями – вперед и назад, и никаких других вариантов у него нет [120]. Зритель, который смотрит представление, вероятно, даже не разглядит, есть ли у каната толщина,– а если он совсем неотесанный провинциал, поверит, будто канат имеет бесконечно малую толщину и на самом деле является одномерной структурой.

А вот у муравья, ползущего по канату, никаких подобных иллюзий нет. Он может ползти не только взад-вперед по веревке, но и вокруг каната – и это эквивалентно одному из скрытых измерений в теории струн. Некоторые измерения, вероятно все недостающие семь, весьма и весьма компактны. Вероятно, мы не замечаем этих компактных измерений, поскольку обречены плыть на трехмерной бране по Вселенной, где измерений больше.

Между тем маленькие измерения могут играть очень важную роль, поскольку главный режиссер этого спектакля – квантовая механика. Что будет, если вокруг одного из маленьких измерений обернется петля из струны? В главе 2 мы видели, что если поместить частицу в крошечную коробочку (или в крошечное измерение), частица приобретает уйму дополнительной энергии. В нормальной обстановке мы увидим выражение этой энергии – частица начнет метаться туда-сюда. Единственная сложность состоит в том, что метаться она не может. А следовательно, дополнительная энергия становится, согласно великому уравнению Е = mс 2 , массой частицы.

Беда в том, что нужная для этого энергия примерно в 10 16раз превышают энергии, которых мы способны добиться в БАК. Иначе говоря, эту теорию, по всей видимости, нельзя проверить экспериментально, так как еще очень и очень долго у нас не будет никакой технической возможности проделать такой эксперимент.

Что бы нам ни говорили, точность научной теории никогда не удается доказать. Если мы говорим, будто теория «верна», значит, нам не удалось ее опровергнуть. Признак хорошей научной теории – то, что ее сторонники должны придумать эксперимент или несколько экспериментов, в ходе которых теория может оказаться ошибочной, но не оказывается. Концепцию «опровергаемости», ставшую основой современной науки, ввел философ Карл Поп– пер. Это и есть главный недостаток так называемой теории разумного замысла. Недостаточно просто провозгласить, будто ваша теория верна, даже если она объясняет все наблюдаемые на сегодня феномены. Домашнее задание: придумать тест, а в идеале – много тестов, которые ваша теория может не пройти, и если она их не пройдет, вам придется признать, что вы заблуждались. Теория разумного замысла этого не делает.

Как обстоят дела с этим у теории струн? Вспомним некоторые популярные книги, вышедшие в последние годы, с названиями вроде «Даже не ошибка» (Питер Войт) или «Упрямая физика» [121]. Главная мысль обеих этих книг – что теорию струн можно привести в соответствие со стандартной моделью, причем нельзя поставить эксперимент, который бы ее опроверг. Отчасти сложность состоит в том, что единой версии теории струн не существует. Количество теорий струн на сегодняшний день колоссально – Смолин насчитывает 10 500, число настолько нелепое по размаху, что даже Знак, герой «Улицы Сезам», подумал бы о смене карьеры.

Похоже, что под теорию струн со всеми ее вариантами вполне можно подогнать любые искажения физических законов. А мы надеялись на нечто прямо противоположное. В идеале мы хотели получить фундаментальный физический закон, который не только опишет все существующие законы физики, но и не потребует для этого никакой подгонки теории.

В результате нет никакого определенного представления о том, что такое теория струн, а следовательно – как ее проверить. Как пишет Смолин: «На сегодня нет никакой реальной возможности проделать эксперимент, который определенно подтвердил бы или опроверг какое бы то ни было конкретное предположение этой теории». Мы готовы сделать крупную ставку на то, что в обозримом будущем не будет проделан никакой опыт по исследованию количества измерений во Вселенной, так что даже если мы живем не в трехмерном мире, надо вести себя так, словно измерений именно три.

2. Что такое темная энергия?

Наблюдения показывают, что во Вселенной, похоже, существует невидимая, однако вездесущая темная энергия, которая подталкивает Вселенную к экспоненциальному расширению. Стандартная модель даже выдвигает кандидата, обладающего всеми качествами темной энергии. Это так называемая энергия вакуума, и, как мы видели, главная сложность состоит в том, что наша теория предполагает, будто ее примерно в Ю 100раз больше, чем показывают наблюдения. Мы бы еще пережили, если бы темная энергия равнялась нулю – это как– то «естественно». Но такое масштабное расхождение как-то нервирует. Одна из самых крупных проблем – то, что теории струн и квантовой гравитации нужно очень уж видоизменять, чтобы подогнать под ту плотность темной энергии, которую мы видим. По нашим представлениям, Теорию Всего можно было бы считать хорошей, если бы плотность темной энергии следовала из нее сама собой, и это одна из первых проверок, которым следует подвергать подобные теории.

3. А чем нам не нравятся свободные параметры?

Пытаясь описать основные принципы, управляющие физикой, мы ловко обошли тот факт, что существует множество чисел, которые приходится просто вписывать от руки. Самые естественные числа – это те, которые представляют собой простое сочетание физических констант, а значит, мы были бы вправе предположить, будто все элементарные частицы обладают планковской массой – если бы у нас не было других данных. Нет, масса у них не планковская – поэтому мы вправе спросить, почему электрон настолько легче планковской массы, а нейтрино настолько легче электрона. Мы не знаем, откуда у электрона берется именно такой заряд, и пока что не знаем, почему сильное взаимодействие обладает именно такой силой.

В стандартную модель кроме этих коэффициентов входит еще уйма параметров, а в теории струн – еще больше. Например, мы упомянули о том, что различные нейтрино превращаются друг в друга и что существует некоторое численное соотношение, которое показывает вероятность этого перехода. Откуда берутся эти числа? Неизвестно. В целом в стандартную модель входит больше 20 свободных параметров – и это только стандартная модель. Среди них есть числа, которые с точки зрения всех наших фундаментальных теорий могут объясняться чем угодно.

Остается надежда, что Теория Всего, когда она наконец будет сформулирована, теоретически объяснит все свободные параметры. Но так ли это? В главе 8 мы говорили об условиях, которые должны были создаться на ранних стадиях существования Вселенной, чтобы зародилась разумную жизнь. Не исключено, что в разных вселенных и параметры разные, а в таком случае мы никогда не выявим «глубинную» причину, по которой фундаментальные параметры имеют именно те, а не иные значения. Лично нас это крайне огорчает, и мы надеемся, что до этого дело не дойдет.

Разумеется, мы можем заблуждаться.

Этот перечень никоим образом нельзя считать исчерпывающим. Самое прекрасное в физике – то, что всегда найдется новая задача, которая потребует немедленного внимания, сколько бы задач вы ни решили. Чем больше ответов на вопросы вы найдете, тем интереснее будет для вас следующий вопрос.

Ко всему прочему, Вселенная не статична. Ее жизнь устроена очень просто. Все меняется – постоянно, но (как правило) предсказуемо. А мы по традиции подсматриваем через дырочки в заборе и пытаемся сложить цельную картину из всего, что увидели.

Шесть невозможных физических открытий (и шесть маловероятных впридачу)

Говорят, что нет ничего на свете невозможного, стоит только захотеть. Те, кто это говорит,– сборище идиотов. Мы со всем уважением относимся к ведущим тренингов по мотивации, но все же есть тонкое различие между тем, что кажется невозможным, и тем, что и вправду невозможно,—что есть тонкое различие между ужасно большим и бесконечным, хотя это не всегда удается понять. Например, нам очень-очень трудно двигаться со скоростью 99,99999% скорости света, но Технически это достижимо. А вот двигаться со скоростью 100,00001% скорости света абсолютно невозможно, хотя это всего-навсего на 210 километров в час быстрее. Это не просто сложно, не просто интересная и трудная задача – это невозможно, что бы вы ни придумывали, как бы ни пыжились и как бы ни давили на газ. Поскольку в этой книге мы поговорили о многом, то хотели бы дать вам наглядную сводную таблицу невозможных вещей на тот случай, если вас втянут в занудный спор с каким-нибудь сторонником псевдонауки.

Якобы невозможно, а на самом деле возможно:

•              создать машину времени (вероятно);

•              что Вселенная расширяется быстрее скорости света;

•              быть в двух местах одновременно;

•              что Вселенная обладает более чем тремя пространственными измерениями;

•              параллельные вселенные и мультивселенная;

•              что Вселенная циклична;

В принципе невозможно:

•               при помощи машины времени изменить ход истории или вернуться в прошлое до того момента, как вы создали свою машину времени;

•               перегнать луч света – даже в расширяющейся Вселенной;

•              точно засечь, где находится электрон;

•              путешествовать в другие измерения – вы уже «находитесь» во всех измерениях во Вселенной;

•              посетить другую вселенную;

•              сказать чтобы то ни было до времени до Большого взрыва—это такие же глупости, как говорить о направлении на юг, стоя на Южном полюсе.

[1]Когда миссис Голдберг прочитала рукопись, она наконец призналась, что на нашем первом свидании прикусила язык и титаническим усилием воли заставила себя не говорить ничего подобного.

[2]На одной такой «юмористической* обложке были изображены кегли, разлетающиеся от мяча для боулинга, что, по мысли автора, символизировало студентов, пораженных мощью и размахом физической науки.

[3]Заодно и дадим очередного пинка.

[4]По крайней мере так гораздо проще для тех ученых, которые знают, что такое сверхтонкий переход. Вам этого знать не надо, на контрольной этого не будет.

[5]По крайней мере в ближайшие 180 секунд.

[6]Те из вас, кто особенно поднаторел в научной фантастике, вероятно, слышали о гипотетической частице под названием тахион, которая движется быстрее света. Такую частицу пока никто не поймал. Тахион как физическая частица, а не математическое понятие пока что принадлежит к области научной фантастики, а не наших интересов.

[7]Если вы забыли, напомним, что это узелок в горошек, при– вязанный к палке.

[8]«Мост над бурной рекой» (bridge over troubled water) – знаменитый хит Саймона и Гарфункеля.– Примеч. перев.

[9]Поняли, в чем соль?

[10]Как и вероятность того, что Рыжий выйдет из своего вагона на планету, населенную сверхинтеллектуальными, подлыми, грязными обезьянами.

[11]Зато вы пойдете домой с этой книгой в качестве утешительного приза. И никто, кроме вас, не узнает, какой вы мастер догадываться, если, конечно, не заглядывает сейчас в книгу вам через плечо-

[12]Не трогайте эту кнопку! (фр.)

[13]То есть над тем вопросом, который нам известен. Дети в этом возрасте такие почемучки…

[14]Физики обожают напоминать, что при ядерных реакциях никакого горения не происходит. Горение – это не ядерный, а химический процесс, и для него нужен кислород.

[15]Если вы опустили глаза и обнаружили, что на вас пижама, значит, вам опять снится этот треклятый сон.

[16]Примерно как прыщ перед выпускным балом.

[17]Если вы янки, он известен вам как офицер полиции.

[18]Вот, скажем, Халк («Фантастическая четверка») черпает силу не в рентгеновских, а в космических лучах, о которых мы поговорим в следующей главе.

[19]Тот факт, что действиями в настоящем мы, оказывается, способны изменять прошлое, крушит не только мировоззрение, но и глагольные времена.

[20]А фраза «посидеть дома одному в субботу вечером» дополнительных объяснений не требует. Сидите, невежды, дома и дочитывайте эту книгу, причем с радостью, кому сказано?!

[21]Да, мы понимаем, что технически они одно и то же лицо. Вот это мы и называем метафорой.

[22]Строго говоря, это не скорость, а импульс. Если вы уже разбираетесь в физике настолько, что понимаете, чем скорость отличается от импульса, значит, мы доверим вам высокую честь остаться на перемене в классе и вытереть доску.

[23]Воистину этот человек – настоящее чудовище.

[24]Если речь идет о Хайде – то врагу.

[25]Когда физики так говорят, они имеют в виду «исчезающе малую» вероятность. А когда мы говорим «нетривиальный», то

имеем в виду «почти невозможный».

[27]Как именно, мы расскажем в следующей главе.

[28]Фанфары!

[29]Чтобы расставить все точки над и уточним, что эксперимент этот сугубо мысленный. Однако он наводит на самые печальные мысли относительно психического склада Шредингера.

[30]Что, в свою очередь, позволяет нам лениться, а это мы любим…

[31]Видите ли, когда он выдумывал эксперимент с котом в ящике, то как раз хотел поиздеваться над копенгагенской интерпретацией.

[32]Надеемся, что вы, главный солипсист, это учтете.

[33]Если вам кажется, что мы опять впали в демагогию, проверьте сами.

[34]У этой медали есть и обратная сторона. Наверняка кто-то из «вас» болтал по мобильнику в театре во время спектакля или запустил лапу в кружку для церковных пожертвований. После такого мы никогда не подадим вам руки.

[35]Альфред Э. Ньюмен – популярный в США персонаж карикатур, придурковатый мальчишка, который вечно дожидается, когда сзади подкрадется жареный петух и… «А мне-то о чем беспокоиться?» – девиз всей его жизни.– Примеч.. пе– рев.

[36]Если правы создатели музейных диарам, этот сценарий вполне оправдался для некоторых пещерных людей. Кто мы такие, чтобы сомневаться в этом?

[37]В котором наверняка замешана Трехсторонняя комиссия. Как же без нее.

[38]В частности, Межправительственный комитет по переменам климата. Звучит очень официально. Не сомневаемся, Герман это учтет.

[39]Кроме того, вы рискуете оказаться посреди проезжей части, бросая в воздух мелочь. Такие опасные эксперименты лучше предоставить самим математикам.

[40]Мы писали эти строки в начале 2009 года, когда рыночные тенденции в целом представляются определенно неслучайными.

[41]Хотя чего она от него хочет – это еще вопрос. Нам это известно не лучше вашего.

[42]Глупости. Герман с 15 лет живет на чердаке.

[43]Если вы понимаете сакральный смысл набора из трех игральных кубиков, значит, вам можно повышать очки за харизму.

[44]Даже когда там торчит тетя Мейвис, которая постоянно жалуется на бурсит и кашляет в тесто для пудинга.

[45]Тот изотоп урана, который кладут в бомбы и реакторы, называется уран-235, но уран-238 – тоже порядочная гадость.

[46]Примерно как карьера М.-К. Хаммера, который только что был рэлером» ан глядь – уже проповедник.

[47]К тому же это железный способ нокаутировать друзей своей научной эрудицией.

[48]Напомним, что Бор – автор копенгагенской интерпретации. -

[49]Это не преувеличение – ничто не способно двигаться бы 1– стрее света, зато можно бесконечно к ней приближаться.

[50]Например, телевидение позволило многое узнать о пороге чувствительности у человека – для этого достаточно было пускать некоторые сериалы по четыре сезона кряду.

[51]И от романтических свиданий – по сходным причинам.

[52]Постарайтесь-постарайтесь, мы уверены: у вас получится.


    Ваша оценка произведения:

Популярные книги за неделю