Текст книги "Вселенная. Руководство по эксплуатации"
Автор книги: Дэйв Голдберг
Соавторы: Джефф Бломквист
Жанр:
Физика
сообщить о нарушении
Текущая страница: 12 (всего у книги 19 страниц)
С другой стороны, плоские (и открытые) вселенные принято считать бесконечными. Объяснить, что это на самом деле значит, не так-то просто, но в этом случае края у вселенной точно нет. Кроме того, это, вероятно, означает, что вселенная именно что бесконечна – в буквальном смысле. То есть по ней можно путешествовать вечно и не побывать дважды в одном и том же месте.
А может быть, и нет.
Общая теория относительности, в сущности, описывает так называемую геометрию вселенной. Если свернуть лист бумаги в трубку, он останется листом бумаги, то есть с геометрической точки зрения он по-прежнему «плоский». Все, что мы тут наговорили о треугольниках, справедливо для листа бумаги, скатанного в шар.
Не исключено, что вселенная свернута сама на себя, примерно как лист бумаги в трубку. Это называется « топология вселенной », и у нас нет ни одной физической теории, которая говорила бы, свернута вселенная или нет и если да, то как именно.
В принципе, доктор Калачик мог бы посмотреть в ночное небо и увидеть кланконскую звезду на противоположных сторонах небосвода. В 1998 году Нил Корниш из Университета штата Монтана и его сотрудники решили посмотреть, не наблюдается ли подобный феномен в виде сигналов на микроволновом уровне – то есть на уровне отголосков Большого взрыва. Нет, таких сигналов обнаружено не было. Это не означает, что вселенная не свернута, но если она свернута, то это происходит на масштабах куда дальше горизонта.
VIII. Куда расширяется Вселенная?
Может показаться, будто все эти разговоры о*геометрии и динамике к делу не относятся. Однако теперь мы готовы разобраться, куда же на самом деле расширяется Вселенная. Ведав том, что общая теория относительности и наши наблюдения на этот вопрос не отвечают. Помните: физика говорит нам только о том, что происходит при определенных обстоятельствах, а не о том, как на самом деле устроена Вселенная на фундаментальном уровне. А у космологии вообще свои проблемы. Мы же в принципе наблюдаем только одну Вселенную. И если ответы вам не нравятся, вероятно, вы задаете неправильные вопросы.
Так вот, к сожалению, мы не можем дать вам определенного ответа на этот вопрос. Зато можем предоставить уйму поводов для размышления.
Итак, куда расширяется Вселенная? Выбирайте.
А. Никуда.
По нашему мнению, это самый лучший ответ. Бели вспомнить о том, как.устроена общая теория относительности, единственное," что определяет устройство пространства,– это метрика, то есть то, насколько отстоят друг от друга две точки. В результате никакого «вне вселенной» не существует. С этой точки зрения мы и писали данную главу. Можно лететь сколько угодно и так и не добраться до края. Даже ограниченная вселенная может быть свернута сама на себя.
Б. Неважно.
Мы понимаем, это не ответ. Но дело в том, что единственная наблюдаемая физика – это то, что происходит в пределах нашего горизонта. Вполне можно представить себе, что вне наблюдаемой Вселенной нет ничего, кроме полной пустоты, в которой нет никакой материи. Вероятно, там все фиолетовое в крапинку или плавают другие «островные вселенные», устроенные совсем не так, как наша.
Мы не знаем. Если это находится за пределами нашего горизонта, то и не узнаем никогда. Помните, что предположение Коперника о том, что в нас нет ничего особенного, предполагает, что Вселенная одна и та же, где бы ты ни находился, поэтому, вероятно, ничего интересного мы не пропускаем.
С другой стороны, Вселенная продолжает расширяться, и наши горизонты тоже раздвигаются, мы видим все больше и больше и все лучше и лучше понимаем, занимаем мы особое место во Вселенной или нет. В определенных рамках.
Случилось так, что в нашей Вселенной есть темная энергия, и хотя с течением времени обычная материя и темная материя проникают друг в друга все сильнее, темная энергия ни с чем не смешивается. Все это просто ускоряется, а значит, каждая конкретная точка в пространстве улетает от нас все быстрее и быстрее. А это значит, что в нашей Вселенной горизонт когда-нибудь совместится с некоторым максимально далеким горизонтом. Если дальше что-нибудь и есть, мы об этом никогда не узнаем.
В. Другие измерения?
Мы упоминали о вероятности того, что во Вселенной кроме привычных для нас измерений – вправо-влево, вверх-вниз и вперед-назад – есть и другие измерения. Конечно, еще одно измерение – это время, и в некотором смысле Вселенная расширяется и во время, но как физическая теория это ничего не дает.
В последние несколько десятилетий появился целый фейерверк моделей Вселенной, основанных более чем на трех пространственных измерениях, среди которых самая известная – теория струн, а самая сложная – М-теория, с которой мы Познакомились в главе 4 и которая предполагает 10 измерений. Как вы помните, согласно теории струн, разница между частицами – чистой воды выдумка. По сути все частицы – это струны, и одна струна способна расщепиться на две, а две – слиться в одну 1.
1Возьмите обычную струну, сделайте из нее петлю, а потом разрежьте струну пополам и сделайте по петле из каждого куска.
Однако М-теория, в частности, предсказывает существование более сложных структур. Если «струна» в теории струн на самом деле представляет собой одномерную структуру, М-теория опирается на существование более сложных – двух– и трехмерных – «бран» (сокращение от «мембран»). Отдельные частицы, например фотоны, «прилипают» к конкретной бране.
Для нас главное то, что Вселенная в целом, вероятно, представляет собой просто гигантскую трехмерную брану, а мы движемся вокруг в пространстве с более высоким числом измерений. Вероятно, рядом парят и другие «вселенные», но поскольку наши фотоны «заключены» в нашей собственной бране, а их фотоны – в их бране, мы их не видим. М-теория предполагает, однако, что мы в состоянии их почувствовать – или по крайней мере ощутить их гравитационное воздействие,– а еще эти браны время от времени случайно сталкиваются, от чего наша «вселенная» погибает и возрождается.
В этом смысле наша Вселенная, наша «брана», возможно, на самом деле движется во вселенную с более высоким количеством измерений.
Итак, в конечном итоге Вселенная, по всей видимости, расширяется в никуда. Конечно, еще может оказаться, что то «вовне», куда мы расширяемся (или по крайней мере движемся),– это более высокие измерения, которые мы, вероятно, не в состоянии воспринять непосредственно. Ну что, достаточно «головокружительная картина Вселенной»?
ГЛАВА 7 БОЛЬШОЙ ВЗРЫВ
У нас, создателей «Руководства», детей пока что нет, но мы об этом наслышаны. Один из самых неловких диалогов с маленькими детишками (по крайней мере нам так говорили) начинается с того, что крошка Билли спрашивает: «Откуда я взялся?» Но этот день, если он, конечно, наступит, не застанет нас врасплох: у нас уже готов план. Мы собираемся протянуть время, начав с самого начала 1, а речь поведем о пиратах, поскольку детишки обожают пиратов.
Кроме того, мы хотели бы польстить себе мыслью, что уж наши-то детки будут понимать сложные вопросы вроде расширения Вселенной, Всеобщей теории всего и происхождения материи еще в колыбельке. Нет уж, никакого сюсюканья, а только зарождение Вселенной и приключения в бурных морях!
Хотя мы могли бы начать с самого начала и добраться до нынешнего момента в хронологическом порядке, на самом деле разумнее было бы объяснить происходящее задом наперед. Наша история начнется с конца и расскажет, как мы дошли до жизни такой. Наш бравый капитан пиратского судна по прозвищу Кровавая Борода только что потерпел сокрушительное поражение от испанской армады и героически утонул вместе со своим кораблем. Некоторые его матросы оказались не такими храб-
рыми и спаслись в шлюпках, а теперь расплываются во все стороны. Одни гребут быстро, другие медленно.
Наблюдатель, прибывший на место происшествия с опозданием, увидит только спасательные шлюпки (поскольку Кровавая Борода уже давно оказался в гостеприимных объятиях Дейви Джонса), но если он (наблюдатель) достаточно умен, то сообразит, что все они расплываются из одной точки. Отметив, на какое расстояние успели отплыть трусливые пираты, наблюдатель даже сможет сказать, давно ли произошла битва.
Все это, как вы понимаете, метафора. На самом деле шлюпки – это галактики, а как мы видели в последней главе, почти все галактики разлетаются друг от друга. Разумно предположить, что когда– то в незапамятные времена галактики буквально сидели друг у друга на голове – примерно как шлюпки на пиратском судне.
Как и во всех сказках, в нашей пиратской истории есть не только зерно правды, но и вопиющие противоречия. Было бы очень просто сказать, будто галактики расплываются от некоей общей точки в пространстве, – но мы не можем пойти на такую ложь. Зато можем сказать вот что: Большой взрыв произошел повсюду и одновременно. Это очень важно*. поскольку почти все, а не только крошка Билли, уверены, будто Большой взрыв произошел в каком-то определенном месте. Та же история, как мы видели в главе 6, произошла и с расширением Вселенной: это пространство расширяется, а галактики на самом деле стоят на месте.
В нашей истории есть и еще одна деталь, которую мы пригладили и завуалировали. Вселенная не создавалась сразу готовенькой, со встроенными галактиками. Поначалу были всего-навсего газ и темная материя. Это все равно что трусливые пираты покинули бы тонущий корабль с коробками из ИКЕА и, покачиваясь на волнах, потихоньку собирали бы свои шлюпки. Главный инструмент в наборе «Сделай сам галактику» – это гравитация . Из главы 2, если не из школьного курса физики, вы запомнили, что вся материя во Вселенной притягивается друг к другу. Вскоре после Большого взрыва получилось так, что в отдельных областях пространства оказалось больше материи, чем в других, и если бы мы понаблюдали над небольшим комочком материи, который был чуточку плотнее среднего, то увидели бы кое-что интересное. Близлежащий газ и темная материя притягивались бы к нашему комочку, и он постепенно становился бы все больше и больше и в конце концов превратился бы в галактику – совсем как те, которые мы наблюдаем сегодня.
Но в главном мы вас не обманули: все атомы (и темная материя, и темная энергия), из которых состоит все, что мы видим (и не видим), изначально были навалены в одну громадную кучу, а теперь нам надо объяснить, что произошло с тех пор и по сей день. Начали мы со вселенной, которая была бесконечно мала. Так что можете смело объяснить крошке Билли, откуда он взялся: он появился в результате Большого взрыва [92].
Но крошка Билли развит не по годам и обязательно заметит, что мы на самом деле не ответили на его вопрос. Если причина возникновения Вселенной – это Большой взрыв, то что стало причиной Большого взрыва? Но мы покроем вопрос крошки Билли козырной картой: разве мы уверены, что Большой взрыв вообще был? Наблюдать его* похоже, было некому. Более того, даже хотя мы можем заглянуть в прошлое, наблюдая все более и более далекие объекты, Большого взрыва мы не видим, так что доказательства у нас только косвенные. Именно поэтому мы и начали разговор с того, что знаем наверняка.
По самым точным оценкам, основанным на расширении Вселенной, она насчитывает 13,7 миллиарда лет, и в данный момент пространство в основном пусто, о чем мы и говорили в предыдущей главе. Однако пространства ужасно много, и по нему разбросано ужасно много вещества – оно просто сильно рассеяно. Помимо темной материи, темной энергии, звезд, пыли и газа, с которыми вы уже знакомы, Вселенная битком набита светом. Да, конечно, на вид она темная, и вас, вероятно, обманом заставили считать, будто весь этот свет происходит от ярких светлых объектов вроде Солнца. Не дайте себя одурачить! Вклад звездного света (в том числе и солнечного) в общий свет во Вселенной ничтожно мал. На каждый атом во Вселенной приходится около миллиарда фотонов, и эти фотоны – или подавляющее их большинство – зародились почти что в начале времен. Несмотря на то, что фотоны кругом так и роятся, мы их почти никогда не замечаем, поскольку, хотя фонового излучения очень много, оно обладает крайне низкой энергией. Это следствие того факта, что все разгоряченные тела излучают свет [93], даже если глазом его не видно. Солнце, температура на котором составляет около 5800 градусов выше абсолютного нуля, светится видимым светом. Люди при комнатной температуре светятся инфракрасным светом. Вселенная при температуре около 3 градусов выше абсолютного нуля светится в микроволновом (радио) диапазоне, и мы довольно долго не подозревали о существовании этого излучения.
В 1964 году Арно Пензиас и Роберт Уилсон работали в лабораториях Белла над разработкой первых образцов спутниковой связи. Включив свои приемники, они зарегистрировали интерференцию – но поступивший сигнал БЫЛ НЕ ИЗ НАШЕГО МИРА. Радиоприемник зафиксировал постоянный шум, который не исчезал, куда бы ни направляли антенну. Внеземной сигнал, который услышали исследователи, и был микроволновым излучением ранней Вселенной.
В старые времена (лет десять назад) вы бы могли засечь это излучение безо всякого специального оборудования. Когда большинство телевизоров получали сигнал через радиоволны; примерно 1% шума на каждом канале, где не было сигнала, приходился на долю первобытного излучения. Теперь, когда все переведено в цифровой формат, повторить опыт Пензиаса и Уилсона при помощи своего телевизора уже невозможно. Да и незачем. Они свою Нобелевку уже получили.
Фоновое излучение имеет практически постоянную температуру, какой участок неба ни возьми. Практически, но не совсем. Если сравнивать температуру малюсеньких участков неба, излучение окажется чуть теплее или чуть холоднее – пусть и в пределах нескольких миллионных долей градуса.
В 2001 году НАСА запустило Уилкинсоновский датчик микроволновой анизотропии (WMAP) с целью исследовать мозаику «горячих» и «холодных» участков во Вселенной, и ниже мы приводим полученную карту. Она похожа на обычную карту Земли, которую вы, наверное, видели в атласе, с тем исключением, что вы стоите не на поверхности глобуса – представьте себе, что вы стоите в середине, а карта показывает, как выглядит небо.
Уйлкинсоновский датчик микроволновой анизотропии (ЛГМАР): результаты пяти лет работы. Хиншоу и коллеги, 2009
Перед вами – детская фотография Вселенной. Вы думали, нет ничего хуже капризного ребеночка в фотоателье? Так вот эту фотографию делали пять лет и потратили на нее около ста сорока миллионов долларов. В отличие от детишек, Вселенная растет отнюдь не на глазах,– тогда зачем же вообще было делать это фото?
Взгляните на светлые и темные крапинки. Это области, где фоновое излучение чуть холоднее или чуть теплее среднего. Наше «чуть», повторяем,– это различие в одну стотысячную, а то и миллионную долю. Однако мы завели этот разговор не из праздного интереса. Давным-давно, назаре Вселенной, крошечные колебания температуры соответствовали крошечным колебаниям плотности атомов и темной материи. Чуть более плотные участки стали зародышами галактик, о которых мы говорили ранее.
Присмотреться к фоновому излучению стоит и еще по одной причине. Чем дальше мы заглядываем в прошлое, тем меньше становится Вселенная. Это значит, все на свете – фотоны, атомы, темная материя – будет сползаться все ближе и ближе друг к другу, а Вселенная в целом станет все более и более насыщена энергией. Вклад фотонов становится особенно важным, именно когда мы заглядываем в прошлое, поскольку, когда Вселенная становится меньше, длины волн отдельных фотонов тоже уменьшаются. Это мы видели в главе 6, когда говорили о «красном сдвиге», происходящем из-за расширения Вселенной. Коротковолновой свет означает, что раньше у каждого фотона было больше энергии. Получается, что раньше не только сахар был слаще и небо голубее, но и излучение плотнее и фотоны энергичнее.
Главный вывод из всего этого таков: чем дальше мы заглядываем в прошлое, тем горячее становится Вселенная и тем выше относительный вклад фотонов в общую энергетическую плотность. Поэтому, например, когда размер Вселенной был всего 1% от нынешнего, то есть примерно через 17 миллионов лет после Большого взрыва, во всей Вселенной царила комнатная температура. А до этого… здесь начинается самое интересное.
I. Почему мы не можем проследить все развитие Вселенной до самого Большого взрыва?
Комбинация (I = 380 000 лет)
Давным-давно, в главе 4, мы говорили о частях атомов и упоминали о том, что водород, самый простой атом, сделан из протона, окруженного электронным облаком. Водород – не только самый простой, но и самый распространенный элемент. Сегодня, как и в ранней Вселенной, водород составляет около 93% всех атомов. При комнатной температуре водород без электрона не встречается. Однако при высоких температурах, например, внутри Солнца или в ранней Вселенной, атомы подвергались постоянной бомбардировке крайне высокоэнергичными фотонами.
Представьте себе, что капитан Кровавая Борода – это протон. Ни один уважающий себя пират не сочтет свой костюм завершенным без попугая на плече, так вот, пусть попугай – это электрон. Ранняя Вселенная очень похожа на напряженную битву в открытом море. Мимо Кровавой Бороды то и дело свистят пушечные ядра (фотоны), и то и дело его попугая – бац! – сшибают с плеча. Не волнуйтесь, все обойдется, они оба будут целы и невредимы. Разумеется, пираты и попугаи неразлучны,
словно булка с колбасой» так что не пройдет и нескольких минут, как на плечо Кровавой Бороде спорхнет другой попугай.
Между тем во время сражения по всему полю битвы летают попугаи и ядра, попугаи и ядра. Более того, самим кораблям ничего не угрожает, поскольку ядра, как правило, сшибают летящего попугая, не успев натворить беды. Но всему приходит конец, даже пиратским сражениям. Ядра перестают летать, а попугаи, устав от бесконечных полетов, присаживаются на плечи – по птице на пирата, как и предназначено природой.
Вот как все было в настоящей Вселенной. Примерно через 380 тысяч лет после Большого взрыва во Вселенной царила страшная жара – 3000 градусов по Цельсию,—а сама Вселенная была всего в 1/1 200 своего нынешнего размера. Мы выбираем именно этот момент и договоримся называть его «комбинацией» 1, поскольку именно в этот миг все изменилось.
До комбинации во Вселенной было так жарко, что практически не существовало нейтральных атомов водорода – по Вселенной носились лишь отдельные протоны и электроны, словно смешанный рой ядер и попугаев. Все детали были в наличии, но шныряли туда-сюда, как безумные. Фотоны постоянно сталкивались, абсорбировались и снова испускались. При всех этих столкновениях они не могли долго лететь в одном направлении – их быстро отбрасывало в другую сторону. Даже если бы вы, например, жили спустя 350 тысяч лет после Большого взрыва, то страдали бы близорукостью, поскольку для того, чтобы видеть, нужно, чтобы свет прошел по прямой от предмета до вашего глаза [94].
А после комбинации Вселенная остыла до такой степени, когда фотоны уже не могли отрывать электроны от их протонов, и быстро-быстро начал образовываться обычный нейтральный водород. Все углы и закоулки внезапно оказались набиты нейтральным веществом, а фотонам стало не с кем играть. Фотоны любят заряженные частицы, а нейтральные – не очень. И теперь фотоны стали летать вечно по пустой-пустой Вселенной, пока некоторые из них, особенно везучие, не попали 13,7 миллиарда лет спустя в радиоприемник на Земле или на Тентакулюсе VII.
Поскольку «заглянуть» во времена до комбинации мы не в состоянии, то о самой ранней Вселенной мы можем судить лишь по остаточному излучению, которое летает повсюду, и по всему, что мы видим в звездах, галактиках и скоплениях вокруг нас в наши дни. Как выясняется, если присовокупить к этим наблюдениям кое-какие физические соображения, кусочки мозаики отлично складываются в цельную картинку.
II. Разве Вселенная не наполнена (до половины) антиматерией?
Говорят, нет ничего хуже полузнания, но в этом случае его как раз хватает. Напомним вам два важных факта, а затем выжмем из них все возможное , чтобы описать происходившее в ранней Вселенной. Итак, напоминаем:
1. Е = mс 2 .
2. Если столкнуть частицу с античастицей, они обе будут уничтожены и превратятся в высокоэнергичные фотоны. Сколько именно у них будет энергии? См. выше факт N 1.
Если электрон и позитрон (или любая частица с античастицей) способны сталкиваться друг с другом и превратиться в свет, обратное тоже может случиться – фотоны, сталкиваясь друг с другом, создают позитрон и электрон. Или, если уж на то пошло, могли бы создать протон и антипротон. Только поди их поймай.
Создание частиц происходит, только если энергии фотонов достаточно высоки. Чтобы сделать электроны, нужно много энергии» но чтобы сделать протоны и нейтроны и их античастицы, энергии нужна просто прорва, поскольку массы у них гораздо больше.
Но постойте! Если вы внимательно следили за ходом нашей мысли, то заметили, что космический
бульон кишмя кишел высокоэнергичными фотонами – настолько энергичными» что они могли создавать тяжелые частицы. Они повсюду. В ранней Вселенной постоянно "создавались с нуля большие тяжелые частицы и античастицы: кварки с антикварками, мюоны с антимюонами, электроны с позитронами – в общем, сами понимаете. Но время не стоит на месте, и при этом фотоны становятся менее энергичными, а это значит, что можно создавать все менее и менее массивные частицы и античастицы, а в конце концов они вообще перестают получаться. Примерно это и происходит сегодня.
Проиллюстрируем это числами: когда Вселенная насчитывала от роду около одной миллионной доли секунды, она остыла до температуры примерно 10 триллионов градусов Цельсия. Это сокрушительно горячо – гораздо горячее, чем нынешние температуры даже в центрах звезд. Даже настолько энергичные фотоны все равно уже ослабели настолько, что не могли производить протоны с антипротонами и нейтроны с антинейтронами. Однако при столкновении двух фотонов по-прежнему хватало энергии на производство кучи всякой всячины – в том числе электронов и позитронов,– и эта всякая всячина производилась целых пять секунд после Большого взрыва.
Только подумайте, Вселенная-то, оказывается, вундеркинд! Почти все, что касается сотворения материи, она проделала в первые пять секунд после рождения. Мы в ее годы только пищали и писались, а она уже создавала все вещество, которое нам понадобится в жизни.
Есть и еще одна тонкость, которая на поверку оказывается очень важной. Когда фотоны сталкиваются, то создают частицу и античастицу, а частица и античастица полностью уничтожают друг друга и создают фотоны. Пока что, насколько мы видели, нет ни одного взаимодействия, при котором создается или уничтожается только частица, без античастицы. Из этого следует, что нельзя создать протон без антипротона или электрон без позитрона. А значит, частиц и античастиц, то есть материи и антиматерии, во Вселенной всегда должно быть строго поровну.
Если вы не понимаете, в чем тут сложность, мы бы попросили вас объяснить, как так вышло, что мир состоит исключительно из материи. И ведь не только Земля. Если бы Луна состояла не из обычной материи, бедняга Нейл Армстронг был бы покойник, стоило ему коснуться поверхности в своем модуле «Орел». Солнце тоже состоит из обычной материи, как и все остальные звезды в нашей Галактике. Если бы это было не так, то космические лучи, бомбардирующие Землю, производили бы уйму антипротонов – а это не так.
А вдруг существуют галактики, состоящие из антиматерии? Вполне вероятно. Только галактики то и дело сталкиваются друг с другом, а мы никогда не видели внегалактического столкновения, при котором выделилось бы столько чистой неукротимой энергии, сколько получилось бы, если бы галактика из материи столкнулась с галактикой из антиматерии. Короче говоря, по всему выходит, что наша Вселенная состоит только из материи. Так вот, если материя и антиматерия создаются и уничтожаются в равном количестве, почему у нас оказалось столько лишней материи?
Во-первых, мы должны кое в чем признаться. На самом деле мы не знаем, чем объяснить такой дисбаланс, но чем бы он ни был вызван, этот процесс произошел почти сразу после большого взрыва, когда энергии были очень высоки. Однако хотя мы не можем объяснить, откуда взялась асимметрия, зато можем объяснить, насколько она велика. В самом начале во Вселенной было примерно миллиард один протон на миллиард антипротонов и примерно столько же фотонов. Затем, когда Вселенная остыла настолько, что протоны уже не могли создаваться, каждый миллиард антипротонов был уничтожен вместе с миллиардом протонов, после чего остался всего один протон на каждый миллиард фотонов, и это соотношение мы и наблюдаем сейчас.
Что же изменилось с тех пор и до наших дней? Почему в те далекие времена нейтроны могли превращаться в протоны, а мы не можем это сделать, не создав тут же еще и антипротон или антинейтрон? Почему раньше так не было?
III. Откуда берутся атомы?
Рождение элементов (t = 1 секунда – 3 минуты)
Мы уже очень далеко уклонились от первоначального вопроса крошки Билли «Откуда я взялся?» , зато теперь готовы дать на него ответ получше. Сначала надо рассказать малышу, из чего он на самом деле сделан. Как вы прекрасно знаете, мальчики сделаны «из колючек, ракушек и зеленых лягушек», а те, в свою очередь, состоят из углерода, водорода, кислорода и других атомов.
Это привычное вещество собирательно называется барионной материей, а это всего-навсего научное название всего, что состоит из протонов и нейтронов. Если мы составим список элементов, составляющих большую часть массы, то сразу увидим старых приятелей:
• Водород (75%) – 1 протон.
• Гелий (23%) – 2 протона, 2 нейтрона.
• Кислород (1%) – 8 протонов, 8 нейтронов.
• Углерод (0,5%) – 6 протонов, 6 нейтронов.
• Неон (0,13%) – 10 протонов, 10 нейтронов.
Учить этот список наизусть вам не нужно, но в нем прослеживается очевидная закономерность. У всех самых популярных элементов, за исключением водорода, количество нейтронов равно количеству протонов. Существует даже разновидность водорода под названием дейтерий, у которого один протон и один нейтрон, и хотя его распространенность составляет всего около одной стотысячной обычного водорода, он все равно сыграет в нашей истории очень важную роль.
Если мы чего-то стоим как профессионалы, то способны не просто учинить краткий обзор содержимого Вселенной, но и объяснить, откуда берутся эти цифры, и сделать все необходимое, чтобы перевести часы на одну секунду после Большого взрыва. До сих пор мы делали скачки, достаточно длинные по сравнению, скажем, с тем временем, которое мы способны удерживать внимание читателей, но чем дальше мы углубляемся, тем короче становятся наши прыжки (как и положено). Представьте себе, что с первой до десятой секунды жизни Вселенной произошло столько же важных физических событий, сколько с миллиарда до десяти миллиардов лет ее биографии.
В возрасте одной секунды Вселенная была раскалена до 15 миллиардов градусов по Цельсию, примерно в тысячу раз выше, чем температура в центре Солнца. И все равно в это время фотоны уже остыли настолько, что не могли создать протон или нейтрон, даже если бы захотели. Но между протоном и нейтроном не такая уж большая разница, как принято думать,– примерно как между капитаном Кровавая Борода и бестрепетным морским офицером, с которым он сражается. Превратить протон в нейтрон проще простого – достаточно пульнуть по нему антинейтрино. Если хотите, можно сделать и наоборот. Возьмите нейтрон и нейтрино – вуаля, получаются протон и электрон, главное – чтобы заряд сохранялся.
Легко сказать, трудно сделать: при нормальных обстоятельствах, стоит нам запустить нейтрино в протон, нейтрон, капитана Кровавая Борода или даже в свинцовую проволоку длиной в один световой год, в результате, скорее всего, не получится ровным счетом ничего. На самом деле нейтрино не любят взаимодействовать с другими частицами, если их не заставить, а когда они это делают, то при помощи слабого взаимодействия. Как скажет вам любой лингвист, слабое взаимодействие – оно и есть слабое.
Однако до одной секунды после Большого взрыва (п. Б. в.) все было такое плотное, а нейтрино – такие энергичные, что нейтрино и антинейтрино постоянно бомбардировали протоны и нейтроны соответственно и превращали их один в другой, отчего соблюдалось приблизительное равновесие. Условно приблизительное, так как протоны легче нейтронов, а поскольку природа предпочитает держать энергию на самом низком уровне, протонов было намного больше, чем нейтронов.
После одной секунды п. Б. в. расстояния между частицами стали слишком велики, и энергии нейтрино стали слишком низки, уже не было никакой речи ни о каких протонах и нейтронах, и нейтрино просто жили себе припеваючи, и больше о них никто ничего не слышал. Но не попадайтесь на эту удочку – подобно фотонам после комбинации, они по-прежнему среди нас. Просто мы о них как-то забываем. А зря, поскольку они сделали на ранних этапах одну очень важную вещь – обеспечили приблизительный баланс протонов и нейтронов. Когда нейтрино ушли на покой, протоны, нейтроны и фотоны затеяли сложный танец слияния и разделения, в ходе которого:
1) нейтроны, протоны и дейтерий налетали друг на друга, создавая таким образом все более и более тяжелые элементы;
2) с другой стороны, высокоэнергичные фотоны разбивали атомные ядра.
Оставшиеся холостыми, нейтроны в конце концов махали рукой на свои холостяцкие принципы и распадались на протоны.
Все это время Вселенная становилась все более и более диффузной и остывала, отчего вышеописанный процесс приходилось завершать в крайней спешке. Когда танец начался, нейтронов было почти столько же, сколько и протонов, так что если бы атомы формировались очень быстро, то все нейтроны нашли бы себе пару, и самым распространенным элементом был бы гелий. Гелий – самый простой атом, в котором есть нейтроны, у него равное количество нейтронов й протонов, и он очень и очень стабилен. Не правда ли, вы догадывались, что все эти разговоры о «балансе» – отнюдь не праздная болтовня?
Нам повезло: протоны и нейтроны не стали сохранять баланс, поскольку иначе Вселенная была бы очень скучной. Почему? А вы попробуйте сделать из гелия что-нибудь стоящее. А мы вам пальто подержим.
Так вот, после большого взрыва у нас в распоряжении оказался не только гелий. Главная причина, по которой это произошло, заключалась в том, что весь процесс занял несколько минут, за которые многие нейтроны решили из карьерных соображений превратиться в протоны. Они распались и ни о чем не жалели. Поэтому нейтронов для танцев оказалось маловато, и оставшимся протонам пришлось танцевать шерочка с машерочкой. Вот почему у нас так много водорода.