355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Дэйв Голдберг » Вселенная. Руководство по эксплуатации » Текст книги (страница 1)
Вселенная. Руководство по эксплуатации
  • Текст добавлен: 7 октября 2016, 02:04

Текст книги "Вселенная. Руководство по эксплуатации"


Автор книги: Дэйв Голдберг


Соавторы: Джефф Бломквист

Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 1 (всего у книги 19 страниц)

Дэйв Голдберг,
Джефф Бломквист
ВСЕЛЕННАЯ.
РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ
Как выжить среди черных дыр, временных парадоксов и квантовой неопределенности

Если бы такая книга попала мне в руки в детстве, у меня была бы другая профессия!»

«Эта книга – для тех, у кого нет специального образования, зато есть мозги и неуемное любопытство. Современная физика подана в ней как стройная система, описанная легко, весело, понятно и даже с картинками – и безо всяких формул!»

«Настоящий подарок для всех, кого интересует современная наука и ее достижения,– от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.»





ВВЕДЕНИЕ

И чем Вы занимаетесь?

Занятия физикой обрекают на одиночество.

Только представьте себе: вы летите на самолете и сосед спрашивает, кто вы по профессии. Вы отвечаете, что физик. С этой минуты беседа может пойти по двум направлениям. В девяти случаях из десяти с уст собеседника срывается нечто вроде: «Боже мой, как же я ненавидел физику в школе!» [1]После чего остаток перелета (вечеринки, поездки в лифте, романтического свидания) вы будете извиняться за эмоциональную травму, которую физика, по всей видимости, нанесла вашему, так сказать, давнему знакомому.

Подобные случайные беседы зачастую выявляют, что к областям точных и естественных наук принято относиться с этаким веселым презрением. Фраза: «Ах, я ничего не смыслю в алгебре!» произносится прямо-таки хвастливым тоном, каким никогда не скажут: «Да я и читать-то толком не умею». Но почему?!

Физика незаслуженно считается наукой трудной, непрактичной и занудной. Трудная? Возможно. Непрактичная? Разумеется, нет. Более того, если пытаться «продать» физику широкой публике, почти всегда речь заходит о том, как с ее помощью строить мосты или запускать ракеты, то есть о том, каким образом физика служит фундаментом для техники и химии.

А как насчет занудства? Тут то и возникает главный вопрос. Как нам представляется, проблема в том, что практическая сторона физики выпячивается в ущерб интересной. Даже люди технического склада вроде инженеров или программистов обычно не идут дальше механики и электромагнетизма, а ведь там-то и начинается самое веселье. И очень жаль, ведь, откровенно говоря, в последние годы сделано удручающе мало сенсационных открытий в области физики блоков и рычагов.

Враждебное отношение к физике, похоже, крепко укоренилось в обществе, поэтому стало трудно вести дискуссии, не изнуряя слушателей. Затевая беседу о науке со «штатским*, мы, проповедники и пропагандисты физики, часто чувствуем, что пытаемся заставить человека есть полезные овощи и подводим под это какую-то рациональную базу. Мы никогда не начинаем разговор о физике со слов «Это же так весело и интересно!», а почти всегда говорим: «Это же так нужно и полезно», отчего, конечно, все веселье тут же и улетучивается.

В эпоху, когда постоянно появляются новые технологии, необходима всеобщая фундаментальная научная грамотность. С другой стороны, чтобы понимать науку, не нужно дополнительно получать пятилетнее высшее образование. Чтобы понимать, в чем состоит суть революционных открытий в квантовых вычислениях или космологии, совсем не требуется подробно знать, как устроена физика. Однако важно понимать, почему эти открытия так важны и как они способны воздействовать на технологию и на нашу жизнь.

И дело не в том, что людям просто надо понимать конкретную теорию. Физика – главная индуктивная наука на свете, и если человек научится пони

мать, как эта наука развивается, он сможет принимать куда более разумные решения по самым разным вопросам – от глобального потепления до «теории разумного замысла». Нам представляется, что мы лучше других умеем возражать тем, кто с нами не согласен, не просто настойчивым «нет», а доказанными фактами.

В частности, в США положение с обучением математике и точным наукам просто катастрофическое – школьники показывают результаты гораздо ниже среднего по сравнению с другими развитыми странами. Но в этом нельзя винить только подростков, их учителей или, если уж на то пошло, программу всеобщего среднего образования.

На самом деле эта проблема куда шире, она затрагивает все стороны жизни. Просто у школьников она проявляется ярче всего – ведь не станешь же задавать пятидесятилетним дядям и тетям наукообразные вопросы вроде «У тебя десять кур, пять ты съел, на сколько у тебя подскочит холестерин?». Бели посмотреть с точки зрения так называемой проблемы практического применения, вся прикладная математика кажется полным абсурдом. В каждом классе находится множество детей, которые поднимают руки и спрашивают: «Скажите, а в жизни мне алгебра когда-нибудь понадобится? » – и делают вывод, что единственная цель изучения этого предмета заключается в хороших оценках.

Джон Аллен Паулос в своей великолепной серии книг пишет об эпидемии «арифметической неграмотности», а в ряде интереснейших эссе, которые обычно не попадаются школьникам и студентам, пытается развить у читателей способность критически воспринимать численные концепции и показать (по нашему мнению, успешно), что математика интересна отнюдь не только своими практическими приложениями вроде подведения баланса ежемесячных расходов или проверки сдачи в магазине.

Возможно, вы уже успели убедиться на опыте, что в физике существует такой же разрыв между практикой и сенсацией. Сухие курсы механики вполне способны отвратить от физики, но научная фантастика, газетные статьи о крупных открытиях или последние снимки с космического телескопа «Хаббл» привлекают к ней снова.

Однако в научной фантастике и газетных статьях редко идет речь о сенсационных прорывах в области физики наклонной плоскости.

Нет – если уж публику что-то волнует, это, скорее всего, открытия, касающиеся эволюции Вселенной, или масштабные эксперименты вроде Большого адронного коллайдера, или сведения о жизни на других планетах. Мы уже говорили, что в девяти случаях из десяти попытки обсудить физику в аэропорту или за коктейлями приводят к тому, что нам таки не дают телефончик и приходится ехать домой в гордом одиночестве, но в оставшемся одном случае происходит настоящее чудо. Бывает и так, что у нас получается не поединок, а диалог. Иногда, очень редко, нам везет и нас усаживают рядом с человеком, у которого или в школе был феноменальный учитель физики, или дядюшка работает в НАСА, или он сам инясенер и считает, что наши ученые занятия – никакая не чушь, а просто милое интеллигентное чудачество.

В таких случаях беседа течет по совершенно иному руслу. Случается, что мы наталкиваемся на человека, которого давно интересовало, как устроена Вселенная, просто он никак не мог сообразить, какие ключевые слова искать в «Википедии». А может быть, в последнем выпуске научно-популярного журнала им попалась интересная заметка и хотелось бы узнать обо всем поподробнее. Вот какие вопросы задавали нам недавно:

•       Я слышал, Большой адронный коллайдер создаст такие маленькие черные дыры, которые уничтожат Вселенную. Это правда? (Вот вам лишнее доказательство – как будто их мало,– что физики в коллективном сознании не более чем чокнутые профессора, которые спят и видят, как бы уничтожить Землю.)

•       Возможно ли путешествие во времени?

•       Существуют ли параллельные вселенные?

•       Если Вселенная расширяется, то куда и во что?

•       Что будет, если посмотреть на себя в зеркало, когда путешествуешь со скоростью света? Именно такие вопросы в первую очередь и заставили нас в свое время полюбить физику всей душой. Более того, последний вопрос в этом списке задавал даже сам Эйнштейн – и именно этот вопрос стал одним из главных стимулов, побудивших разработать специальную теорию относительности. Иначе говоря, когда мы рассказываем, что мы делаем, то обнаруживаем, что некоторых людей – пусть даже эти люди встречаются крайне редко – интересуют в точности те же аспекты физики, что и нас.

Самый очевидный способ решить эту задачу – сделать ответы на вышеприведенные вопросы более достуцными, осветить их в учебных материалах по физике и математике. Большинство авторов учебников полагают, что сделают физику более увлекательной, если поместят на обложки своих творений изображения вулканов, локомотивов и молний [2]. По всей видимости, они считают, что в результате школьники посмотрят на книжку и воскликнут: «Круто! Вот теперь я вижу, что физика имеет отношение к жизни!» Наш опыт показывает, что на такой мякине школьников не проведешь. Даже если обложка их и привлечет, они заглянут в оглавление в поисках параграфа «Как вызвать молнию своими руками» и будут еще сильнее разочарованы, не обнаружив его.

Кстати, хотим упомянуть, что в настоящей книге мы этого подхода не придерживаемся. Здесь вы не найдете роскошной графики 2и вообще ничего такого, из-за чего издание книги могло бы стать дороже. Наш подход будет очень простым: физика интересна сама по себе. Да-да, так и есть! А если вас нужно уговаривать и дальше, мы торжественно обещаем обеспечить не менее пяти скверных шуток на главу (в том числе плоские каламбуры, бородатые анекдоты и убогие картинки с претензией на юмор). Чтобы дать вам представление о подобного рода юморе для семейного пользования, приведем пример.

Вопрос: Что делает фотон на дискотеке?

Ответ,'. Запускает световую волну!

Так вот, каждая глава этой книги будет начинаться с забавной картинки, иллюстрирующей непростительно дурацкий каламбур, и с вопроса о том, как устроена Вселенная. Отвечая на этот вопрос, мы предложим вам путешествие по той физике, которая с ним связана, а к концу главы, надеемся, покров тайны, окружающий этот вопрос, будет снят, а забавная картинка – при условии, конечно, что у вас будет возможность взглянуть на нее еще разок – внезапно станет уморительно смешной. Это мы проделаем именно так, как, по вашему мнению, положено ученым, то есть крайне заковыристо и обиняками.

Все это не значит, что для того, чтобы понять нас,. нужно непременно быть гением в области физики,– совсем наоборот. Наша цель – найти область пересечения между теми, кто понимает, как величавы и волшебны физические основы Вселенной, и теми, кто скорее убьется тяжелым предметом, как выраясается нынешняя молодежь, чем допустит, чтобы его застукали в радиусе ста метров от транспортира.

Многие авторы научно-популярной литературы, лишенные возможности иллюстрировать свои мысли формулами, прибегают к аналогиям – но беда в том, что читателю далеко не всегда понятно, что написанное – это именно аналогия, а не буквальное описание задачи. Очевидно, что при запрете на использование математики будет неизбежно утерян и существенный элемент физики. Мы же хотим донести до читателя, что над задачей стоит подумать, даже если не располагаешь формулами для ее численного решения: главное – понимать, что на самом деле происходит, а математические вычисления – это, в конце концов, не более чем математические вычисления.

Подобное описание наталкивает на вопрос: а что вам, яйцеголовым, нужно от меня? Когда мы писали эту книгу, то избавились от каких бы то ни было предвзятых представлений. Доказательства, которые мы приводим, все до единого основаны на самых элементарных сведениях. Мы вовсе не хотим запугивать вас математикой или жуткими формулами. И вообще намерены избавиться от них раз и навсегда. Пусть не путаются под ногами. Все, кроме одной. Вот она:

Е = mс 2 .

Ну, вот и все. Совсем не больно, правда?

Глава 1
СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ




Какими бы ни были воспоминания о школьных годах, в них всегда есть одна общая деталь: в каждом классе всегда находилась горстка детей – самых « крутых », – пылающих неутолимой страстью высмеивать все и вся вокруг. Вот почему нам так нравится считать себя «крутыми ребятами» в физике – если такое вообще возможно. Приведем пример [3]. Часть предисловия мы уделили тому, что потешались над авторами учебников, которым для «оживляжа» физики требуются природные катаклизмы, спорт или машины и механизмы чудовищной мощности. Так вот, мы вовсе не берем свои слова назад, однако справедливости ради стоит сказать, что в некоторых из этих дурацких примеров есть рациональное зерно. Очень маленькое.

Да, ведь в глубине души мы знаем, что фестиваль физики невозможно начать без фейерверков. Если бы вы когда-нибудь были на праздновании Дня независимости в местной Торговой палате и решили привнести в торжества немного физики, вы бы заметили, что между алыми вспышками в небе и грохотом разорвавшихся петард проходит некоторое время. Взрыв видно за несколько секунд до грохота. Вероятно, что-то подобное вы наблюдали и на масштабных рок-концертах, когда вам доставался билет в последний ряд: между музыкой и музыкантами образуется зазор. Звук распространяется очень быстро, но свет – еще быстрее.

В, 1638 году Галилей из Пизы (один из первых «крутых ребят» в физике) придумал, как вычислить скорость света. Эксперимент выглядел следующим образом: Галилей стоял на холме со светильником, а его помощник со своим светильником уходил далеко-далеко и взбирался на другой холм. Они сигналили друг другу светильниками – то закрывали шторку, то открывали. Каждый раз, когда Галилей видел, что помощник открывает или закрывает шторку, он делал то же самое со своим светильником – и наоборот. Галилей надеялся, что


ГАЛИЛЕЙ ИЗОБРЕТАЕТ ИДЕАЛЬНЫЙ СПОСОБ ОТШИБАТЬ НАДОЕВШИХ ПОКЛОННИЦ

если холмы будут достаточно далеко, можно будет измерить скорость света. Ни о какой точности речи не было, но Галилей все равно молодец, потому что хорошо придумал и к тому же пришел к весьма занятному выводу: скорость света либо бесконечна, либо чертовски велика.

В следующие несколько столетий физики несколько раз оценивали скорость света с большей точностью, но мы не будем мучить вас сложными вычислениями или детальными описаниями хитроумных экспериментальных установок. Достаточно сказать, что чем дальше, тем сильнее хотелось физикам пролить свет на свет. Несколько ученых, втом числе Альберт Эйнштейн, предположили, что неважно, стоишь ты или двигаешься, когда измеряешь скорость света, – величина ее от этого не меняется. Они были правы.

Сейчас считается, что скорость света равна 299 792 458 метров в секунду. В дальнейшем мы не будем сыпать цифрами, а просто договоримся называть скорость света с – от латинского слова се1егИа8 лчто значит «быстрота». Измерить ее при помощи кухонного таймера и рулетки не получится. Чтобы вычислить с настолько точно, нужны атомные часы на атомах цезия-133. Научное сообщество договорилось определять секунду как ровно 9 192631 770 характерных времен излучения сверхтонкого перехода в цезии-133. Может показаться, что это излишне все усложняет, но на самом деле так гораздо проще [4]. То есть секунда, как и размер вашей шляпы,– величина, которую мы определяем, опираясь на материальные данные: очень много

физиков могут сделать себе очень много цезиевых часов, и поскольку все атомы цезия ведут себя одинаково, все эти часы будут отмерять одинаковое время.

Итак, мы нашли крайне неординарный способ определения секунды – но как это поможет измерить скорость света? Скорость – это отношение расстояния ко времени, например, километры в час, а поскольку мы уже определили секунду, у нас есть некая точка опоры. Осталось всего-навсего определить метр. Казалось бы, в этом нет ничего сложного: ведь метр у нас ровно метр длиной. Берешь портновскую линейку, и дело с концом. Только вот сколько это – метр?

С 1889 по 1983 год, если человек хотел точно узнать собственный рост, ему нужно было поехать во Францию, в Международное бюро мер и весов в городе Севре, пойти в хранилище, взять там платиновый эталон метра и измерить себя. Это не только хлопотно (и противозаконно, если заблаговременно не попросить разрешения, не забыв сказать «пожалуйста» и «спасибо»), но и, как правило, крайне неточно. Большинство материалов, в том числе и платина, при нагревании расширяются. При старой системе в жаркую погоду метр оказывался чуточку длиннее, чем в холодную.

Так вот, вместо того чтобы пользоваться эталоном метра, мы берем часы, которые точно отмеряют секунды, и определяем метр как 1/ 2д9 7д2 458долю того расстояния, которое проходит свет за одну секунду. Чтобы окончательно расставить все по местам, поясню, что мы только что сделали. Мы сказали: «Скорость света мы знаем точно, и она постоянна. Но вот с метрами выходит некоторая путаница, и сейчас мы ее проясним». Все эти сложности означают, что мы можем задать метр через скорость света и секунду и что теперь все пользуются одной н той же системой измерения.

Однако не забывайте, что главное – то, что скорость света не бесконечна. Не понимаете, от чего тут приходить в восторг? Тогда приготовьтесь к взрыву философической бомбы: если скорость света не бесконечна, значит, мы вечно смотрим в прошлое. Сейчас, когда вы читаете эту книгу, которая находится в 30 сантиметрах от ваших глаз, вы видите ее такой, какой она была примерно миллиардную долю секунды назад. Солнечному свету требуется около восьми минут, чтобы дойти до Земли, так что если пять минут назад наше светило взорвалось, у нас нет никакой возможности узнать об этом [5]. Когда мы смотрим на звезды в нашей Галактике, свету требуется сотни и даже тысячи лет, чтобы дойти до нас, так что отнюдь не исключено, что некоторых из звезд, которыми мы любуемся, уже не существует.

I. Почему нельзя определить, с какой скоростью плывет корабль в тумане?

Ни в одном эксперименте не была получена частица, которая двигалась бы со скоростью больше скорости света [6].

Позвольте представить вам Рыжего по прозвищу Error! Bookmark not defined, бродячего физика, отвергнутого обществом из-за нетривиальных гигиенических стандартов, принятых среди людей его круга. Рыжий сумел «позаимствовать» платиновый эталон метра из Международного бюро стандартов (хотя это и не очень точный эталон, бродячему физику сгодится и он) и нашел где-то кучу атомов цезия, из которых можно еделать цезиевые часы.

Рыжий развлекается тем, что весь день напролет швыряет свои пожитки [7]вдоль движущегося вагона. Каждый раз он измеряет расстояние, которое пролетает узелок, и время, которое уходит на то, чтобы его пролететь. Поскольку скорость – это отношение расстояния ко времени, которое уходит на то, чтобы его пройти (километры в час), Рыжий может достаточно точно вычислить скорость узелка.

После утомительного дня, посвященного метанию узелка, Рыжий ложится спать, а Просыпается он в своем частном товарном вагоне. Поскольку окон в товарных вагонах нет, а поезд едет по ровному участку дороги, Рыжий, приоткрыв дверь и обнаружив, что поезд движется, чувствует себя несколько дезориентированным. Не знаю, замечали ли вы, что даже в машине иногда не знаешь, едешь или стоишь, если не глядеть в окно.

Скорее всего, не замечали. Вероятно, вы не замечали и того, что если стоишь на экваторе, то движешься со скоростью больше 1600 километров в час относительно центра Земли. А сама Земля движется вокруг Солнца еще быстрее – со скоростью 108 800 километров в час. А Солнце движется со скоростью примерно в 800 тысяч километров в час относительно центра галактики Млечный Путь, который, в свою очередь, несется по Вселенной со скоростью свыше полутора миллионов километров в час.

Нас интересует то, что вы (или Рыжий) не замечаете, что поезд (Земля, Солнце, галактика) движется, не говоря уже о том, насколько быстро, если движение происходит плавно и равномерно.

Галилей использовал этот довод, когда доказывал, что Земля движется вокруг Солнца. Большинство его современников считали, что если бы Земля летела вокруг Солнца, мы бы как-то ощущали это движение, а если нет, значит, она неподвижна.

«Ерунда!» – говорил на это Галилей. Он сравнил движение Земли с движением корабля по спокойному морю. При таких обстоятельствах моряк не может сказать, плывет корабль или стоит неподвижно. Этот принцип известен как «принцип относи* тельности Галилея» (не путать со специальной теорией относительности Эйнштейна, с которой мы познакомимся в самом ближайшем времени).

Согласно Галилею (и Исааку Ньютону, и в конечном итоге Эйнштейну), нет буквально никакого эксперимента, который в поезде, движущемся прямолинейно и равномерно, привел бы к иным результатам» чем если бы вы сидели неподвижно. Вспомните, как вы ехали в машине и швырялись в братишку фантиками, пока родители не грозились «немедленно развернуться и поехать домой, если ты не прекратишь обижать брата, негодник!». Хотя машина при этом ехала со скоростью 80 километров в час, а то и больше, вы бросали фантики в точности так же, как если бы машина стояла на месте. Нравится вам это или нет, а все эти шалости были не чем иным, как простейшим физическим опытом. С другой стороны, все это справедливо, только если скорость и направление машины/поезда/планеты/ галактики в точности (или почти-почти довеем) постоянны. Вы бы это почувствовали в полной мере, если бы родители выполнили свою угрозу и ударили по тормозам.

Так что, проснувшись после блаженной дремоты, чтобы вернуться к своим пожиткобросательным экспериментам„ Рыжий, вероятно, и не знает, что поезд равномерно и прямолинейно движется со скоростью около 20 километров в час* Рыжий кидает узелок вдоль вагона и оценивает его скорость, скажем, в 10 километров в час. Его соратник Пачкуля, тоже бродячий физик, стоит на земле, видит движущийся поезд и тоже решает поучаствовать в экспериментах. При помощи особых рентгеновских очков, которые позволяют видеть сквозь стены вагона (и входят в арсенал каждого бродячего физика), Пачкуля тоже измеряет скорость брошенного Рыжим узелка. С наблюдательного пункта вне поезда Пачкуля видит, что узелок движется со скоростью около 30 километров в час (20 км/ч – это скорость поезда, на котором едет Рыжий, плюс еще 10км/ч – скорость узелка).

Кто же прав? С какой скоростью движется узелок – 10 или 30 километров в час? Так вот, правы оба. Мы бы сказали, что узелок движется со скоростью 10 километров в час относительно Рыжего и 30 километров в час относительно Пачкули.

Теперь представьте себе, что в нашем поезде есть ультрасовременная лаборатория, оборудованная лазерами (лазерный луч сделан из света и, естественно, движется со скоростью с), В одном конце поезда расположен лазер, которым управляет Рыжий.


В другом конце поезда расположена открытая банка консервированной фасоли. Если Рыжий настроит лазер на короткие вспышки (само собой, чтобы разогреть фасоль, а вы что подумали?) и измерит время, через которое фасоль начнет подогреваться, то он сможет вычислить скорость лазера и обнаружит, что она равна с.

А как же Пачкуля? Резонно предположить, что он определит, что вспышка света достигла детектора через такое же время. Однако здравый смысл подсказывает, что он определит, что свет движется ео скоростью с + 20 км/ч» Как мы уже говорили, Эйнштейн предположил, что скорость света одинакова для всех наблюдателей, но по нашим рассуждениям выходит, что луч движется вовсе не со скоростью с. Совсем не со скоростью с! Неужели великий Эйнштейн ошибался?

Позади всего каких-то 28 страниц книги, а мы уже нарушили законы физики. Нам не было бы так стыдно, даже если бы мы заявились на вечеринку точь-в-точь в таком же платье, как хозяйка дома. Похоже, мы сели в лужу. Если бы только поблизости нашелся какой-нибудь маньяк-ученый, кото-


рый проследил бы, чтобы это больше не повторилось, и привел бы какой-нибудь конкретный пример, железно доказывающий, что с – константа,..

Так вот, такой ученый у нас есть. Зовут его Альберт Майкельсон, и он любил свет так, что сегодня его назвали бы «двинутым» или по крайней мере «со странностями». Его научная карьера началась в 1881 году, когда он уволился из флота, чтобы заняться физикой. Некоторое время он измерял скорость света самостоятельно, подрабатывая в Берлине, Потсдаме и Канаде, а затем познакомился с Эдвардом Морли. Ученые объединились, чтобы создать еще более хитроумные устройства для измерения скорости света, впоследствии заняв первую строчку хит-парадов со своей песней «Мост над бурной рекой», которая продержалась там шесть недель подряд [8].

Все эти устройства были основаны на следующем принципе: поскольку Земля совершает полный оборот вокруг Солнца за год, их лаборатория должна в разное время года двигаться в разном направлении и с разной скоростью. А измерять, меняется ли скорость света при движении в разные стороны, должен был «интерферометр» Майкельсона. Здравый смысл подсказывает, что, поскольку Земля движется по орбите в разных направлениях, значение с должно меняться.

Здравый смысл вас обманывает. Майкельсон и Морли ставили один эксперимент за другим H доказали, что, куда бы ни двигалась Земля, скорость света везде одинакова.

Для 1887 года это была та еще головоломка, к тому же она противоречила здравому смыслу, так как почему-то получалось, что этот закон справедлив только для света. Если едешь на велосипеде и вдруг видишь разъяренного быка, то, прямо скажем, очень важно и даже судьбоносно, куда ты едешь – навстречу взбешенному животному или от него. С другой стороны, с есть с, куда бы ты ни двигался – в сторону источника света или от него.

Приведем еще более яркий пример (на тот невероятный случай, если вам до сих пор не очевидно, насколько все это странно). Вы светите лазерной указкой на некое высокотехнологичное измерительное устройство, а затем определяете, что фотоны (частицы света) выходят из лазерной указки со скоростью примерно 300 миллионов метров в секунду. Если при этом вы находитесь на хрустальном звездолете, который улетает от лазера со скоростью, равной половине скорости света, то есть 150 миллионов метров в секунду, и кто-то направляет лазерный луч на тот же детектор сквозь ваш звездолет, вы все равно определите, что луч летит со скоростью света.

Разве такое может быть?1

Чтобы это объяснить, надо поближе познакомиться с героем физической науки, чемпионом мира в весе фотона [9]– с самим Альбертом Эйнштейном.

II. С какой скоростью летит луч света, если бежишь рядом с ним?

Когда Эйнштейн в 1905 году обнародовал принципы специальной теории относительности, он сделал два простых предположения.

1.   Как и Галилей, он предположил, что если двигаться равномерно и прямолинейно, можно проделывать какие хочешь эксперименты, и их результаты будут неотличимы от результатов таких же экспериментов в неподвижном положении.

(Ну, не совсем. Юристы советуют настаивать на том, что сила тяжести придает ускорение, а специальная теория относительности предполагает, что никаких ускорений нет. Есть определенные поправки, учитывающие силу тяжести, но в данном случае мы вправе преспокойно их проигнорировать. Поправка на силу тяжести в условиях Земли крайне, крайне мала в сравнении с поправкой на краю черной дыры, где без нее невозможно сделать осмысленные физические выводы.)

2.    В отличие от Ньютона, Эйнштейн предположил, что все наблюдатели оценивают скорость света в пустом пространстве одинаково, независимо от того, движутся ли они. В нашем примере Рыжий швырял узелок и измерял его скорость, деля длину вагона на время, за которое узелок долетает до дальней стенки. Пачкуля сидел возле рельсов и смотрел, как поезд и узелок пролетают мимо, а поэтому видел, что узелок за то же время пролетел дальше (вдоль вагона и вдоль того участка земли, который вагон за это время проехал). Пачкуля видел, что узелок двигался быстрее, чем наблюдал Рыжий.

Теперь рассмотрим тот же опыт с лазерной указкой. Если Эйнштейн был Нрав (а опыты Майкельсона и Морли еще за два десятка лет до него доказали, что так и есть), значит, Рыжий измерит, что лазерный луч движется со скоростью с, и Пачкуля намеряет ту же самую скорость.

Большинство физиков глазом не моргнув соглашаются, что с —константа, и пользуются ею направо и налево. В частности, они беззастенчиво эксплуатируют с, зачастую выражая расстояния через время, за которые свет покроет эти расстояния. Например, световая секунда – это около 300 тысяч километров, то есть примерно половина расстояния до Луны. Естественно, чтобы покрыть расстояние в одну световую секунду, свету требуется одна секунда. Астрономы чаще пользуются термином «световой год» – это 9 460 528 177 426,82 километра, примерно четверть расстояния до ближайшей звезды.

Теперь давайте сделаем предыдущий пример еще более фантастическим и подарим нашему бродячему физику межгалактический товарный вагон. Длиной вагон будет в одну световую секунду, и у Рыжего появляется не только уйма места, чтобы хорошенько потянуться после сладкого сна, но и возможность снова провести эксперимент с лазером. Он стреляет из лазерной пушки с одного конца вагона, и, по его соображениям, лазеру требуется одна секунда, чтобы пролететь вагон из конца в конец. Иначе ведь и быть не может – ведь свет движется со скоростью света (еще бы)!

Однако Пачкуля наблюдает лазерный луч в движущемся поезде и говорит (справедливо), что пока луч летел, передняя стенка вагона тоже двигалась, а следовательно, согласно Пачкуле, луч пролетел дальше, чем по расчетам Рыжего. То есть Пачкуля обнаруживает, что луч пролетел всего 1,5 световые секунды. Поскольку свет должен двигаться со скоростью света, Пачкуля делает вывод, что вспышка света добиралась от лазера до цели 1,5 секунды.

Еще раз: Рыжий говорит, что определенная последовательность событий (лазер испускает луч, а затем луч достигает цели) заняла одну секунду, а Пачкуля говорит, что та же последовательность событий заняла больше времени. У обоих есть замечательные сверхточные часы, сделанные в одном и том же межгалактическом депо для бродячих физиков. Оба проделали все измерения и вычисления одинаково точно. Кто прав?

Оба!




Нет, правда. Если скорость света одинакова для Рыжего и Пачкули, значит, Пачкуля должен объяснять то, что он наблюдает, тем, что у него спешат часы – или что у Рыжего часы отстают. Самое непостижимое, что отстают все часы в поезде Рыжего. Пачкуля видит, что маятники качаются медленно, часы тикают медленно, и даже сердце Рыжего бьется медленнее обычного (если есть чем это измерить).

Это общий закон. Когда вы видите, как мимо кто-то проносится, имейте в виду, что, с вашей точки зрения, часы у них будут идти медленнее, просто у вас нет достаточно точных часов, чтобы это доказать. Если вы поднимете голову и увидите, что над вами летит самолет со скоростью около 1000 километров в час, а зрение у вас, предположим, настолько острое, что вы разглядите часы пилота, то вы увидите, что его часы идут медленнее ваших, но всего лишь на одну десятитриллионную долю! Иначе говоря, если бы пилот летел сто лет, к концу этого срока он был бы моложе, чем ему было бы положено, на целую секунду. Так что хотя этот закон (закон замедления времени) действует всегда, на самом деле в обычной жизни вы его никогда не заметите.


    Ваша оценка произведения:

Популярные книги за неделю