355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Воробьев » Циолковский » Текст книги (страница 7)
Циолковский
  • Текст добавлен: 31 октября 2016, 00:36

Текст книги "Циолковский"


Автор книги: Борис Воробьев



сообщить о нарушении

Текущая страница: 7 (всего у книги 13 страниц)

ГЛАВА VIII
РАБОТЫ ЦИОЛКОВСКОГО ПО АВИАЦИИ

Еще до переезда в Калугу, в 1891 году, при разработке вопроса о сопротивлении среды, Циолковский, переходя от отвлеченной проблемы давления несжимаемой жидкости на некоторую плоскость к вопросу о давлении воздушной среды на крыло птицы или летательного аппарата, написал весьма ценную работу «К вопросу о летании посредством крыльев» размером около двух печатных листов.

Н. Е. Жуковский, статья которого по вопросу о летании была опубликована всего лишь за год до этого, дал президиуму Московского общества любителей естествознания положительный отзыв о работе Циолковского:

«Сочинение г. Циолковского производит приятное впечатление, так как автор, пользуясь малыми средствами анализа и дешевыми экспериментами, пришел по большей части к верным результатам.

Хотя большинство этих результатов уже известно, но тем не менее оригинальные методы исследования, рассуждения и остроумные опыты автора не лишены интереса и, во всяком случае, характеризуют его, как талантливого исследователя... Рассуждения автора применительно к летанию птиц и насекомых верны и вполне совпадают с современными воззрениями на этот предмет»[55]55
   Циолковский, «Простое учение о воздушном корабле», стр. 8. 1904 год.


[Закрыть]
.

Первая часть рукописи была тогда же напечатана в Четвертом томе трудов Московского общества любителей естествознания под заголовком: «Давление жидкости на равномерно движущуюся в ней плоскость». Описанный в этой статье прибор для опытов по определению сопротивления воздуха был экспонирован профессором Жуковским в январе 1894 года на механической выставке в Москве.

Второй отрывок работы «Устройство летательного аппарата насекомых и птиц» удалось напечатать лишь через девятнадцать лет в журнале «Техника воздухоплавания». Полностью же интересная работа К. Э. Циолковского «К вопросу о летании посредством! крыльев» еще никогда не была напечатана и появится впервые в собрании его научных трудов, издаваемом Аэрофлотом.

К усердным занятиям вопросами прикладной аэродинамики Циолковского побуждали прежде всего следующие соображения.

Большинство его оппонентов из VII Воздухоплавательного отдела в своем отрицании возможности управления аэростатами исходили в первую очередь из предполагаемого лобового сопротивления корпуса дирижабля, наполненного газом. Это сопротивление казалось им огромным. Они противопоставляли конструкции дирижаблей более выгодное в этом отношении устройство летательного механизма птиц и насекомых. Подражание «аэропланам в природе» большинству из них представлялось лучшим средством для решения задачи летания человека. Фактически же они тормозили развитие воздухоплавания, игнорируя сказанные еще в 1880 году замечательные слова Д. И. Менделеева о том, что в воздухоплавании рабское подражание природе недопустимо и вредно.

В то время имелось еще далеко не ясное представление об истинной величине сопротивления воздуха движущимся в нем телам различной формы, равно как и о научно обоснованных методах определения этой величины. И те, кто утверждал, скажем, что дирижабль таких-то размеров будет иметь «огромное» сопротивление при продвижении его в воздухе, в сущности и сами не знали сколько-нибудь точно, о величине какого порядка здесь может итти речь.

С другой стороны, многочисленные планерные полеты Лилиенталя и его подражателей и последователей выдвинули новую важную проблему – исследование подъемной силы крыла, условий, при которых она возникает, ее величины. Словом, на очередь становились основные вопросы аэродинамики.

Чтобы перевести дело на действительно научную почву, Циолковский решил теперь, в развитие своих предшествующих работ, проанализировать вопрос, в первую очередь о «птицеподобных летательных машинах»[56]56
   Слово «аэроплан» лишь в отдельных случаях начало тогда появляться в литературе.


[Закрыть]
.

Момент для исследований такого рода был весьма подходящий. В эти годы в развитии мировой авиации происходили важные события. 9 октября 1890 года француз Клеман Адер сделал попытку оторваться от земли на аппарате тяжелее воздуха – паровом аэроплане «Эол», структура крыльев которого была заимствована у летучей мыши. Размер крыльев «Эола» равнялся 14 метрам, поверхность их – 28 квадратным метрам; аппарат вместе с паровой машиной и котлом со спиртовой топкой весил 101 килограмм. Мощность его составляла 20 лошадиных сил. Крылья были складные. Адер продолжал свою деятельность и в последующие годы.

С 1891 года в Германии происходили полеты Отто Лилиенталя на планерах. Книга его «Полет птиц, как основа искусства летать», вышедшая в 1889 году и для многих явившаяся целым откровением, изучалась работниками нарождавшейся авиации с величайшим вниманием. Во Франции, Англии и США Лилиенталь уже нашел учеников и продолжателей своей отважной работы[57]57
   О. Лилиенталь погиб 9 августа 1896 года во время одного из своих многочисленных и смелых полетов па планерах, опрокинутый резким порывом ветра.


[Закрыть]
.

В Англии с 1894 года производил постройку своего огромного аэроплана Хайрам Максим, американец, принявший английское подданство и составивший себе состояние фабрикацией изобретенных им пулеметов.

Задуманный им самолет был для того времени неслыханной мощности и размеров. Лишь через восемнадцать лет в России самолеты Сикорского, типа «Илья Муромец», впервые превзошли этот английский самолет. Достаточно сказать, что сооружавшийся аэроплан имел общий вес в 3 624 килограмма, при ширине в 31,5 метра, максимальной длине 21,3 метра и высоте 10,6 метра. Пропеллеры приводились в движение двумя паровыми машинами, топливом для которых служил бензин. Каждая из них могла развивать мощность до 180 лошадиных сил. Однако аэроплан Максима оказался неспособным подняться на воздух.

В процессе проектирования своего воздушного корабля Максим создал целую лабораторию для производства всевозможных опытов и исследований, связанных с постройкой (в частности, он первый применил аэродинамическую трубу).

Для описываемого времени в отличие от предыдущего периода характерно, что крупный капиталист и делец рискнул вложить большие средства в сооружение самого большого в мире летательного аппарата, стремясь опередить своих конкурентов.

Самолет X. Максима (1894).

В дальнейшем X. Максим делал новые попытки приняться за фабрикацию аэропланов, и самое упорство «короля пулеметов» отчетливо показывает, насколько ясна была уже тогда для наиболее передовых и предприимчивых деятелей капиталистического мира огромная грядущая роль воздушных судов, в первую очередь военная.

Все это незамедлительно нашло свой отклик и по ту сторону океана – в Соединенных штатах Америки, ревниво следивших за всяким шагом старой Англии в деле овладения воздухом. Видный американский ученый С. П. Ланглей сумел добиться в соответствующих кругах отпуска средств на подготовку и выпуск своего обширного труда «Experiments in aerodynamics» («Опыты по аэродинамике»). Классический труд этот вышел в свет в 1891 году и явился большим событием в истории авиации.

Одновременно Ланглей разрабатывал также проект модели самолета. И уже явно в ответ на постройку самолета Максима правительство США ассигновало две крупные премии для изобретателей самолетов (согласно определенным техническим условиям) в 100 тысяч и 25 тысяч долларов.

В 1896 году Ланглей произвел на своем паровом аэроплане удачный полет в продолжение более минуты.

В России к этому времени вышла уже третья работа H. Е. Жуковского, посвященная вопросам летания[58]58
  В 1890 году была напечатана первая работа Жуковского—«К теории летания», в 1891 году вторая – «О центре парусности» и в 1892 году третья – «О парении птиц».


[Закрыть]
, и уже несколько лет как был построен аэроплан морского инженера А. Ф. Можайского.

Аппарат Можайского монопланной конструкции с матерчатой обтяжкой крыльев был снабжен паровой машиной облегченного типа мощностью в 30 лошадиных сил. Площадь крыльев равнялась 37,3 квадратного метра. Общий вес аэроплана составлял 912 килограммов. При попытке совершить опытный полет аэроплан был сильно поврежден. К этому времени денежные средства изобретателя совершенно истощились. Однако никакой поддержки он не получил и был вынужден прекратить свои многообещающие работы.

Самолет бр. Райт (1903).

Таким образом, в своей работе, которую Циолковский писал в феврале 1894 года, он частично смог использовать и последние достижения пионеров авиации того периода.

Сопоставив и проанализировав все доступные ему материалы, Циолковский сумел тонко подметить основные тенденции в развитии нарождающейся авиации и дал на много лет вперед поразительно верный прогноз развития летательных аппаратов тяжелее воздуха.

Несмотря на то, что строившиеся тогда немногие опытные самолеты и более многочисленные их модели имели очень мало общего по своим формам с современными нам самолетами, изображенная Циолковским в его работе в 1895 году схема аэроплана ближе всего напоминает именно современный нам аэроплан.

Циолковский без колебаний указал на мотор внутреннего сгорания как на основной двигатель для авиации, придал фюзеляжу самолета обтекаемую форму, предусмотрел утолщенный профиль крыла, снабдил фюзеляж колесами, предложил автоматический жироскопический стабилизатор и т. д.

Словом, Циолковский, оторванный от русских и заграничных научно-технических центров, подошел к форме современного нам аэроплана несравненно ближе, чем все его современники в Англии, США и Франции. Более того, в этом отношении он далеко опередил и последующих конструкторов – братьев Райт, Блерио, Фармака, Сантос-Дюмона и других.

Разрабатывая проблемы аэродинамики, Циолковский убедился, что летание с помощью крыльев требует далеко не такой малой энергии, как казалось с первого взгляда. Это затем полностью подтвердилось на практике. «Вследствие этого,—писал он в дальнейшем, – меня опять стало клонить к аэростату». Циолковский пришел к заключению, что с точки зрения интересов воздушного транспорта наиболее рентабельным и экономическим воздушным судном все же будет дирижабль, при этом именно больших размеров —примерно на 600 пассажиров.

Циолковский не был одинок в этих выводах. Мы знаем, что подобных же взглядов придерживался и Менделеев. А три года спустя профессор Жуковский говорил в своей речи «О воздухоплавании» на X съезде естествоиспытателей и врачей:

Собственноручная схема самолета Циолковского (1895) с обложки брошюры «Защита аэроната» (1911).

«С увеличением размеров управляемого аэростата будет, при сохранении коэфициента транспорта, увеличиваться горизонтальная скорость, и потому такая машина, может быть, будет служить в будущем для транспорта пассажиров. Машина же более тяжелая, нежели воздух, даст нам, по нашему мнению, средство для быстрого полета одного или двух человек в любом направлении».

Свою работу, озаглавленную «Аэроплан, или птицеподобная летательная машина», Циолковский поместил в журнале «Наука и жизнь» за 1894 год (№ 43, 46), а отдельные оттиски выпустил небольшой книжкой.

Это новое и исключительно интересное для того времени исследование не нашло никакого отклика. Столетов, неизменно поддерживавший Циолковского, был тогда тяжело болен и вскоре скончался (1896), Жуковский находился в научной командировке за границей. Руководители же VII Отдела на этот раз просто замолчали книжку неугомонного школьного учителя, хотя она и касалась аэропланов, за которыми сами они только и признавали будущее. Но Циолковский не желал мириться с их «приговором» дирижаблям и даже в книжке об аэроплане не упустил случая указать на преимущества дирижабля для воздушного транспорта.

Замалчивание было новым средством борьбы руководства VII Отдела с Циолковским. Враждебное отношение к ученому особенно усилилось после того, как Циолковский доказал в печати наличие элементарной математической ошибки в научной работе одного из виднейших членов VII Отдела М. М. Поморцева.

Книга «Привязной, свободный и управляемый аэростаты», появившаяся в 1896 году, была написана крупным русским ученым Поморцевым специально для того, чтобы доказать неосновательность попыток создать управляемые аэростаты. Свои пессимистические для дирижаблей выводы автор основывал на решении уравнения, которым он определял наибольший диаметр поперечного сечения управляемого аэростата. Прекрасный математик и образованный военный инженер, Поморцев оказался крайне рассеянным человеком.

К. Э. Циолковский с дочерью (1899). Фотография А. В. Ассонова.

При решении своей формулы он совершил грубую ошибку, смешав диаметр окружности с ее радиусом и получив в результате для управляемого дирижабля фантастический объем в 2 миллиона кубических метров, что и должно было неопровержимо доказать всю неосновательность идеи дирижаблестроения.

Внимательно проверив подсчет, Циолковский открыл ошибку и легко доказал, что в действительности по формуле объем дирижабля равняется всего лишь 4 тысячам кубометров, что ничего неосуществимого собой не представляет.

Таким образом, в исправленном Циолковским виде выводы книжки служили отнюдь не к посрамлению идеи дирижаблестроения, а, наоборот, к ее подтверждению.

Циолковский, обнаружив ошибку, немедленно послал письмо в редакцию журнала «Технический вестник». М. М. Поморцеву пришлось пережить много неприятных минут, разъезжая на извозчике по Петербургу и собирая розданные по книжным магазинам «на комиссию» свои злосчастные книжки. Изъять их целиком, конечно, не удалось. Последовали достаточно неприятные объяснения с коллегами по VII Отделу. Все это еще более раздражило «казенных воздухоплавателей» в отношении Циолковского. Продолжалась тактика замалчивания его научных трудов, как бы правильны они ни были. Подобное отношение являлось, по признанию самого Константина Эдуардовича, наиболее тяжелым и оскорбительным для него из всего пережитого им в борьбе за свои идеи.

Циолковский решил обратиться за границу, где техника стояла на большей высоте и где, как он надеялся, к его предложениям должны были отнестись с большим вниманием.

В необходимости подобного шага особенно настойчиво убеждал ученого П. П. Каннинг. Друг Циолковского твердо верил в осуществимость цельнометаллического дирижабля (как впоследствии и межпланетной ракеты), притом не в будущем, а сегодня же. Нужно было, по его мнению, лишь найти людей, которые захотели бы вложить в это дело необходимые денежные средства.

Каннинг видел, правда, воочию, что не только реализация какого-либо проекта, но даже и печатание научных работ, на которое требовалось всего несколько десятков рублей, удавалось Циолковскому лишь после долгих мытарств и неудач, а напечатанные работы замалчивались и не находили отклика. Но это не смущало энтузиаста Каннинга. Он полагал, что все это происходило единственно от того, что Циолковскому не удавалось напасть на «настоящих деловых людей».

Для ознакомления заграничных научных кругов с трудами Циолковского решено было издать эскизные чертежи цельнометаллического дирижабля и его наиболее важных деталей, сопроводив соответствующим описанием. Чертежи помещались на отдельном большом листе хорошей бумаги формата газеты средней величины, а текст описания, по-русски и по-французски, на двойном листе такого же формата с заголовком:

«ЖЕЛЕЗНЫЙ УПРАВЛЯЕМЫЙ АЭРОСТАТ НА 200 ЧЕЛОВЕК, ДЛИНОЮ С БОЛЬШОЙ МОРСКОЙ ПАРОХОД, К. ЦИОЛКОВСКОГО»

(«Ballon dirigeable en fer, portant 200 hommes et ayant 210 mеtres de Iongueur. Par C. Tziolkovsky».)

В описании большое место было уделено истории проекта дирижабля и полемике с руководством VII Отдела. Текст заканчивался следующим «резюме»:

«Наш аэростат на 200 человек устроен из волнистой лампочной жести или из алюминия толщиною в 1 мм. Оболочка покрыта солидными и близко расположенными друг от друга цилиндрическими обручами, составляющими с ней одно целое. Несомненно, что волнистая жесть растягивается и изгибается гораздо больше, чем нужно, что всякий интересующийся может видеть у меня на дому. Воздухоплавательный отдел Имп. Русского технического общества находит весьма вероятным, что аэростаты со временем будут строить металлические.

Подражая Гираму Максиму, можно употребить двигатели в 50 раз более энергичные, чем принимаемые нами; запас подъемной силы позволяет еще увеличить их силу в 4 раза; всего сила двигателей может быть увеличена в 200 раз. Г-н Поморцев дает формулу, из которой вытекает полная управляемость аэростатов даже очень малых размеров (по объему – в 19 раз меньше моего). Аэростат может быть полезен не менее парохода и паровоза.

Хотя разум и говорит за аэростаты, однако, не скрою, что при построении их из металла на практике могут встретиться такие затруднения, которые я теперь решительно не вижу.

Итак, прошу вас, защитите истину».

Перевод был сделан Гончаровой. Она же перевела статью «Возможен ли металлический аэростат», а также часть второго выпуска книги «Аэростат металлический управляемый».

Переводы были отправлены во французскую Академию наук и различные другие научные учреждения, а также в редакции заграничных журналов и газет, в библиотеки и т. д.

Разумеется, вся эта наивная затея не дала ни малейшего эффекта, если не считать случайного упоминания имени Циолковского и его дирижабля года через два в одном из номеров французского журнала «Revue Scientifique» за 1897 год.

В статье, посвященной отправлению воздушного шара шведского инженера Андре на Северный полюс, говорилось, что если бы Андре ознакомился с книгой Циолковского (подразумевалась, очевидно, работа «Аэростат металлический управляемый»), то он никогда не предпринял бы своего рискованного полета. Самого же Циолковского ни одна из зарубежных научных организаций не удостоила даже ответом.

ГЛАВА IX
ПЕРВАЯ АЭРОДИНАМИЧЕСКАЯ ТРУБА В РОССИИ

Изучение сопротивления воздуха начало теперь занимать все внимание Циолковского. Он был глубоко убежден, что точное, научное разъяснение этого вопроса докажет окончательно права гражданства дирижаблей как воздушных судов и выбьет почву из-под ног всех противников дирижаблестроения.

Циолковский прямо указывал впоследствии, что он «вынужден был производить опыты по изучению сопротивления воздуха, защищая управляемость аэростата, так как представители VII Отдела Технического общества теоретически давали громадные коэфициенты сопротивления даже тел лучшей, идеальной формы»[59]59
   «Изданные труды К. Э. Циолковского», стр. 6. Калуга, 1927 год.


[Закрыть]
.

Разрешение этой проблемы одновременно должно было дать ключ и к наивыгоднейшему устройству аэропланов. Но точных, бесспорных данных опыта по этому вопросу в литературе не было. Выход поэтому оставался один – и в этой области итти своим собственным путем.

Циолковский не был первым в России, кто практически работал над изучением законов сопротивления воздуха. Еще за пятьдесят с лишним лет до него военный моряк Р. Черносвитов, задавшийся целью создать проект управляемого аэростата, самостоятельно произвел в течение нескольких лет ряд опытов в этом направлении. Он производил их по методу, давно применяемому при испытании моделей морских судов, которые протаскивали с разными скоростями в бассейне с водой. Черносвитов заставлял двигаться в воздухе тела различной формы, измеряя величину сопротивления воздуха.

Из этих опытов Черносвитов сделал, между прочим, тот вывод, что «самое меньшее сопротивление претерпевает цилиндр, имеющий на обоих концах конические продолжения, ограниченные дугами круга, касательными к бокам цилиндра, коего диаметр служит основанием этому кругу, и притом сопротивление это тем меньше, чем больше высота конуса» г. Опыты повторялись им несколько раз.

Для определения силы тяги винтового пропеллера в воздухе он устроил вентилятор из железа диаметром в 1,5 метра; опыты, а также расчеты убедили его, что применение пропеллера для продвижения в воздухе корпуса дирижабля соответствующей формы – вещь вполне возможная. Все это дало ему основание выступить с проектом управляемого аэростата, который он и описал в кратких чертах в статье «О воздушных локомотивах».

В начале 70-х годов русский ученый М. А. Рыкачев, впоследствии академик и директор Главной метеорологической обсерватории, также производил опыты над воздушным пропеллером, определяя его подъемную силу.

Несколько позднее вопросами сопротивления среды вплотную занялся Д. И. Менделеев, выпустивший в свет замечательную работу «О сопротивлении жидкостей и воздухоплавании», о которой уже говорилось. В процессе ее подготовки Менделеев поставил ряд опытов. Излагая их в своей книге, он дал блестящую критику работы своих предшественников – Скотта, Росселя, Фроуда, Колардо, Дюшмена, Ранкина и других. Сопоставляя иногда противоречивые результаты их трудов, он доказал, что точной теории сопротивления не существует, а есть лишь ряд теорий и гипотез.

Кроме того, в конце 80-х годов опытами по изучению сопротивления воздуха занимался также в связи с попыткой сооружения геликоптера один из самых выдающихся русских ученых-металлургов, профессор Д. К. Чернов[60]60
   См. доклад Д. К. Чернова на заседании VII Отдела 17 и 23 декабря 1893 года «О наступлении возможности механического воздухоплавания без помощи баллона».


[Закрыть]
.

Вот за разрешение этой трудной задачи и взялся Константин Эдуардович Циолковский.

Первое время опыты над сопротивлением воздуха производились Циолковским совсем примитивно, но и они уже показали правильность его утверждений, что при полете дирижаблей сопротивление воздуха вовсе не представляет такой громадной величины, как ошибочно предполагали М. М. Поморцев и руководители VII Отдела.

«Мои опыты показали, – пишет Циолковский, – что оно [сопротивление воздуха] далеко не так значительно, и коэфициент сопротивления уменьшается с увеличением скорости движения аэростата...

Опыты производились отчасти в комнате, отчасти на крыше, в сильный ветер. Помню, как я был радостно взволнован, когда коэфициент сопротивления, при сильном ветре, оказался мал: я чуть кубарем не скатился с крыши и земли под собой не чувствовал»[61]61
  Предисловие ко второму изданию книги К. Э. Циолковского «Простое учение о воздушном корабле», стр. X—XI.


[Закрыть]
.

Факсимиле фрагментов письма К. Э. Циолковского в президиум Русского физико-химического общества (1897).


Факсимиле фрагментов письма К. Э Циолковского в президиум Русского физико-химического общества (1897).

Таким образом, для первых опытов Циолковский, подобно Лилиенталю, Ланглею и некоторым другим зарубежным экспериментаторам, использовал струю ветра. Вот как описывает сам Константин Эдуардович некоторые из этих своих экспериментов:

«Для непосредственного определения коэфициента сопротивления продолговатых тел, при больших скоростях движения, я устроил прибор (фиг. 9), состоящий из двух горизонтальных труб, укрепленных на треножнике; они имели в длину около 75 сант. и в отверстии около 25 сант. В одной из них помещалась на стержне (фиг. 8 и 9) испытываемая форма, а в другой пластинка; стержень, конечно, проходил в трубы через особые отверстия, и средняя часть его, как всегда, вращалась свободно на острие. Трубы выносились на крышу и ставились по направлению ветра. Я становился сбоку и смотрел на промежуток между двумя трубами на стержень, чтобы заметить, на какую его половину давление воздуха было больше, т. е. какая его половина перетягивала...Мною испытывалась форма в 62 сант. длины. Скорость ветра в месте наблюдения постоянно и быстро изменялась, переходя от 0 до 5 метров в секунду. Я употреблял последовательно, в роли пластинок равного сопротивления, медные монеты с площадями в 11,6, 8 и в 6,2 кв. сант. Когда скорость ветра мала, перетягивает форма, но лишь скорость ветра достигает 2—3 метров – и перевес на стороне пластинки (площ.– 11,6; соответствующий коэфициент – 1/7). При скорости около 4 метров перетягивает площадь в 8 кв. сант.; соответствующий коэфиц. – 1/10. При скорости, большей 5 метров, перетягивает даже монета с площадью в 6,2 кв. сант.; соответствующий коэфициент будет 1/13.

Я делал еще многие опыты с поверхностями других форм. Так, для шара и цилиндра, при скорости около одного метра, я получил коэфициенты 4,9 и 0,6. Для больших скоростей коэфициент сопротивления шара близок к 0,4».

Разумеется, сделать в таких условиях какие-либо точные выводы не представлялось возможным. Но уже одно то обстоятельство, что даже в первом грубом приближении получались данные, совпадавшие с его предположениями, окрылило Циолковского и заставило его мысль интенсивно работать над тем, как можно было бы с наименьшей затратой средств добиться точных данных, согласующихся с современной ему наукой.

Но скоро он подошел в своих размышлениях к единственно правильному решению вопроса – к созданию искусственного воздушного потока, скорость которого можно было бы регулировать. Вводя в этот поток тела различной формы, точным замером возникающего сопротивления этих тел потоку воздушной струи можно определять необходимые коэфициенты.

Факсимиле собственноручной схемы первой (1897) и второй (1900– 1901) аэродинамической трубы Циолковского.

До Циолковского к такому же решению пришел Хайрам Максим в Англии, построивший за три-четыре года до этого первую аэродинамическую трубу[62]62
   Максим именовал ее «ветровым каналом» («wind channel»). Термин «аэродинамическая труба» появился много позднее.


[Закрыть]
.

Однако для крупного капиталиста Максима не представляло особых трудностей найти и соответствующее здание, и необходимое оборудование, и обслуживающий персонал. Циолковскому же, располагавшему самыми скудными средствами и обремененному большой семьей, пришлось проявить огромнейшую изобретательность и неистощимую энергию, чтобы своими средствами проделать такую работу. О том, каким лишениям подвергалась в это время его семья, знали только его домашние. Достаточно сказать, что все они вынуждены были ютиться в одной из двух занимаемых ими комнатушек, ибо аэродинамическая труба, или «воздуходувка» (как ее называл Циолковский), с деталями и моделями занимала целую комнату.

Аэродинамическая труба, которую Циолковский, преодолев все трудности и лишения, все же построил впервые в России, в наши дни считается необходимым прибором при проектировании и строительстве воздушных судов. Она сыграла также огромную роль в развитии аэродинамики.

Сейчас имеются самые различные типы аэродинамических труб в соответствии с многообразием важнейших задач, которые ставятся ныне перед воздушными судами. Есть гигантские трубы, в рабочей части которых помещается уже не крошечная модель, а целый самолет в натуральную величину. Есть вертикальные трубы в виде высоких башен или шахт, в которых изучаются сложнейшие явления «штопора» и других важных моментов полета самолета. Есть и специальные трубы, в которых, например, изучаются явления, возникающие при сверхскоростных полетах, в которых достигаются скорости, превышающие скорость звука (1 330 метров в секунду) и т. д.

Циолковский с его блестящим даром научного предвидения отчетливо понимал, какие важные практические результаты принесет для человечества перевод этого дела на научные рельсы. Поэтому, желая посоветоваться с виднейшими учеными о наилучшей программе опытов и одновременно зафиксировать свое авторство, Циолковский обратился к президиуму Русского физико-химического общества, которое, как мы помним, благожелательно отнеслось к нему с самого начала его научной деятельности в 80-х годах.

Сохранились лишь отдельные места переписки по этому интересному вопросу. Из переписки видно, что общество откликнулось на письма изобретателя и создало специальную комиссию для рассмотрения проекта программы предложенных Циолковским работ по сопротивлению среды.

Имеется подлинное письмо Циолковского профессору А. Л. Гершуну, одному из виднейших деятелей общества в тот период.

Вот начало первой страницы этого письма от 5 октября 1897 года:

«1897 г. 5 октября. Калуга.

В С.-Петербург —

Университет,

Его Высокородию А. Л. Гершуну от К. Э. Циолковского

Из Калуги (Георгиевская, дом Сперанской).

Для передачи в Комиссию, рассматривающую проект моих опытов по сопротивлению.

Прежде всего прошу гг. многоуважаемых членов комиссии, дав свое мнение Обществу, не сообщать ничего и никому о моих работах и планах до окончания их и напечатания. (подчеркнуто автором. – Б. В.).

Все предлагаемые чертежи схематические и сделаны от руки, потому что не предназначены пока для печати».

Далее в тексте письма следует собственноручный эскиз как самой «воздуходувки», так и всего расположения приборов при опытах по сопротивлению воздуха. Факсимиле этого эскиза, ввиду его принципиальной важности, мы приводим.

После рисунка идет описание «воздуходувки»:

«НР – лопастная воздуходувка (род веялки). Подобный построенный мною прибор имеет высоту 150 сант., а ширину 40 сант. Воздушный поток, постепенно расширяясь и ослабляясь, выходит из Р, и в начале у устья имеет в высоту и в ширину около 40 сант. Р – означает ряд горизонтальных пластинок, назначенных для выправления потока, который внизу отверстия Р (без них) не совсем равномерен. В Н мы видим ось (стойки и подшипники ее не изображены) и охватывающий ее нажим (в роде нажима Прони). Нажим этот имеет рукоятку (черный кружок), за которую лопасти (Л) приводятся во вращение. Нажим снабжен двумя винтами с гайками. Завинчивая их более или менее сильно, получим ту или другую величину трения между железною осью и двумя деревянными брусками нажима. Вращая лопасти скорее и скорее, мы, наконец, достигнем момента, когда нажим будет скользить по оси и скорость воздушного потока сделается максимальной и постоянной. При всех опытах давление воздуха на формы будет определяться при этой наибольшей скорости, соответствующей величине нажатия и зависящей от нас. Скорость при каждом отдельном опыте определяется по давлению воздушного потока на пластину, согласно коэфициентам Кальете и Колардо (или Ланглея), зная барометрическое давление и температуру воздуха.

Модели (работы Циолковского), служившие при опытах по сопротивлению воздуха.

Фотография Циолковского (1910).

(Я) – есть прямоугольный жестяной ящик с водою, в которой плавает другой такой же ящик, но меньших размеров. К последнему, на 4-х столбиках (или другими способами), прикрепляется испытываемая форма, давление на которую мы хотим определить. На том же столике, на котором расположен ящик с водою, прикреплена отсечка, а на ней свободно качается маятник из длинной, тонкой железной проволоки. К проволоке привязана ниточка, за которую тянет плавающая форма, стремящаяся удалиться по направлению воздушного потока. От этого проволока уклоняется от вертикального положения более или менее сильно. Величина уклонения определяется, на опытах, тангенсом угла отклонения, при посредстве линейки, разделенной на миллиметры. Сила давления потока будет пропорциональна числу давлений, указываемых проволокой. Путем особого опыта заранее определяется, скольким миллиграммам соответствует уклонение на 1 мм. Таким образом, все уклонения и соответствующие давления воздушного потока можно выразить в миллиграммах...

Внутренний ящик снабжен двумя легкими рычагами, которые делают его движение почти строго параллельным направлению воздушного потока (чертеж 2). Во время опыта наружный ящик закрывается крышкой, в которой проделаны узкие щели для свободного движения столбиков, поддерживающих форму...

Формы я устраивал чрезвычайно легкие, из бумаги. Если нужно устроить форму в виде поверхности вращения, то я сначала тщательно вычерчивал кривую главного продольного сечения формы. По этой кривой (это мы делали в местном железнодорожном училище)... вытачивалась на токарном станке половина формы, до наибольшего поперечного сечения ее (чертеж 3).


    Ваша оценка произведения:

Популярные книги за неделю