Текст книги "Жизнь океанских глубин"
Автор книги: Борис Сергеев
Жанр:
Зоология
сообщить о нарушении
Текущая страница: 15 (всего у книги 20 страниц)
Эти эксперименты дали повод для сенсационных публикаций в журналах и газетах и приковали к себе внимание прессы. Бастиан гораздо скромнее оценивал результаты своих опытов. Он заявил, что они не дают оснований утверждать, что дельфины обладают развитым языком, так как не было установлено, издавала ли самка свои сигналы произвольно, вкладывала ли в них какой-то определенный смысл или это были обычные эмоциональные реакции, которыми самец научился пользоваться.
Не только разгадать язык дельфинов – просто убедиться в его существовании оказалось труднее, чем расшифровать египетские иероглифы. Многие ученые, не надеясь добиться успеха, решили последовать примеру Дж. Лилли и обучить дельфинов новому языку, но не английскому, а специально для этого созданному, который животным легче освоить и которым нетрудно пользоваться людям.
Впервые опыт с искусственным языком организовал профессор машиностроения Д. Батто из университета Тафта. Он сконструировал прибор, преобразующий звуки человеческой речи в свисты, и транслировал их в бассейн к дельфинам. Были придуманы специальные слова, не слишком длинные, чтобы их было легче воспринимать, и, как правило, начинающиеся и кончающиеся согласными. Обучение шло медленно, но в результате два дельфина научились выполнять 15 команд такого характера: «Толкни ластом мяч», «Подними хвост», «Проплыви сквозь обруч», «Кувыркнись», «Издай локационный щелчок» и т. д. Во время эксперимента все звуки, издаваемые дельфинами, записывались.
Когда обучение животных достаточно продвинулось, их обучили команде «повтори» (повтори только что прослушанное слово). Эксперименты не довели до конца. Может быть, позже дельфины и заговорили бы, хотя их не учили практически ничему, с чем им имело бы смысл обратиться к человеку. Впрочем, хорошо, что до этого дело не дошло. Ученые, конечно, могли выполнить некоторые «просьбы» дельфинов, вроде: «Толкни ластом мяч», но, вероятно, были бы в затруднительном положении, если бы им предложили ударить хвостом по воде.
Эксперимент Батто подтвердил умение дельфинов ориентироваться в достаточно сложной обстановке. Во время опыта на них обрушивался целый каскад команд. Сначала называлась кличка дельфина, затем следовала стандартная команда «вперед», после чего давался приказ на выполнение одного из 15 заданий и подтверждался распоряжением «выполняй». Если приказ был выполнен правильно, следовала оценка «хорошо» и животное награждалось рыбкой. В случае ошибки дельфина стыдили – «плохо» и рыбешки, естественно, не давали.
В других экспериментах в качестве слов языка, которому пытались обучить дельфинов, использовали случайные звуки. Ими обозначали обычные для животных предметы и действия. За четыре месяца дельфин запомнил названия трех предметов и обучился выполнять три действия. В дальнейшем дельфин должен был выполнять команды, составленные из двух слов – действия и названия предмета, на который направлено действие. Из заученного дельфином набора слов можно было составить девять предложений. Задача для животного оказалась посильной.
В экспериментах, осуществленных на других группах дельфинов, словарный запас звуковых команд или сигналов, подаваемых жестами, удалось довести до 25 и научить животных выполнять 45 двусловных распоряжений. Дельфины оказались способны понять команды из трех слов, но это давалось им с трудом. Только половина таких команд выполнялась правильно.
Эксперименты с искусственным языком были направлены на выявление возможности его пассивного усвоения, способности понимать язык, но не говорить на нем. Лишь много позже сделали попытку научить дельфинов активно пользоваться заученными сигналами. Как и в предыдущем случае, использовали язык звуков и жестов. Дельфины научились с помощью «жестов» просить рыбу, игрушку или чтобы их погладили. Это немного! Любая со средними способностями собака без нашего специального обучения сама «придумывает» несложный набор коммуникационных сигналов для общения с нами. Она будет лаять у двери, когда ей нужно на улицу, греметь пустой миской, если почувствует жажду, и принесет игрушку, чтобы с ней поиграли.
Невелики успехи и в области изучения дельфиньего языка. Лишь зоологи и зоопсихологи добились ощутимых результатов. Они обнаружили сигнал бедствия и сигнал для выражения протеста в виде особого свиста, напоминающего пронзительный скрип, когда животному что-то очень не нравится. Резкий щелчок – предупреждение об опасности. Тявканье издается во время брачных игр. Хлопок челюстями означает угрозу. Серии громких, быстро генерируемых свистов используются при общении матери с детенышем или между членами семейной группы. С их помощью потерявшийся малыш зовет мать, а отставший от стаи дельфин просит его подождать.
Зоопсихологи подтвердили предположение, что каждое животное имеет собственный опознавательный сигнал. Когда дельфина отсаживают в отдельный бассейн, он начинает беспрерывно генерировать сигнал, пытаясь сообщить членам стаи, где его искать. Иногда животные генерируют чужие позывные. Что это значит, пока неясно. Может быть, звери, как попугаи, передразнивают друг друга, однако не исключено, что это приглашение пообщаться, адресованное вполне определенному члену стаи.
Мы видели, что в опытах Бастиана дельфины обменивались информацией с помощью серий эхолокационных щелчков. Трудно судить, случайно ли это или Бастиану удалось обнаружить важную закономерность. Ясно одно, что при общении животных эхолокационные щелчки имеют большое значение. На это в последние годы обращают внимание многие видные отечественные и зарубежные зоопсихологи. Усилия, нередко титанические, не дали положительного результата. Пока никому не удалось расшифровать сложные сигналы дельфинов, отождествляемые со словами их языка, и составить словарь.
Неразрешимые трудности в изучении речи дельфинов не вызывают у меня недоумения. Наблюдения за этими удивительными животными и целый ряд исследований дают мне основание утверждать, что подобного языка просто не существует. Это не значит, что китообразные лишены возможности широкого обмена информацией. Эхолокация – активный способ анализа окружающей среды. Она создает предпосылки для возникновения особой системы коммуникации, недоступной другим животным. Владея в совершенстве своим звукогенератором и имея склонность к звукоподражанию, хотя и не в такой степени, как считает Лилли, дельфины имеют возможность пользоваться имитацией эха, чтобы сообщать своим сородичам новости. Замечено, например, что дельфины азовки постоянно применяют для общения сигналы, напоминающие локационные посылки.
Использование для передачи информации копии эха может сделать общение очень полным и всеобъемлющим. Локационная посылка, вернувшись к дельфину слабым эхом, содержит достаточно полную, всестороннюю информацию об отразившем ее предмете. Почему бы теперь дельфину не повторить этот эхосигнал, но уже громко, чтобы слышало все стадо. Такой способ передачи информации должен сочетаться с врожденными коммуникационными сигналами.
Предположим, один из членов стаи обнаружил сети. Он подает свистовой сигнал тревоги и одновременно генерирует копию локационной посылки, которая отразилась от сетей и принесла о них весть. Теперь члены стада будут не только предупреждены о возникшей опасности, но и информированы, в чем она заключается. Дельфин-разведчик, обнаруживший косяк ставриды, может дать сигнал, приглашающий товарищей по стаду начать охоту, и воспроизвести копию эха, полученную при зондировании скопления рыб. Стадо будет иметь возможность самостоятельно решить вопрос, перспективное ли это дело, получив из уст разведчика информацию о размере косяка и о том, какие там рыбы.
Ватерлиния
Если приглядеться к любой рыбе, нетрудно заметить на ее боках линию, начинающуюся от самых жаберных крышек приблизительно на уровне глаза и кончающуюся у основания хвостового плавника. У одних рыб она бывает ярко окрашена и сразу бросается в глаза, у других менее заметна, но можете быть уверены, она непременный атрибут рыбьих аксессуаров. Прочерк на рыбьем боку, напоминающий ватерлинию, – это место расположения рецепторов, предназначенных для восприятия движения воды и колебаний ее давления. Ими обладают только истинно водные представители хордовых: миноги, рыбы и наиболее примитивные амфибии. Совокупность рецепторов, размещенных вдоль ватерлинии, называют органами боковой линии.
У древних водных животных боковую линию образовывали своеобразные рецепторные клетки, снабженные чувствительными волосками. Они находились в поверхностных слоях кожи, располагаясь здесь правильными рядами, а их волоски выступали наружу. До сих пор аналогичную организацию органов боковой линии сохранили миноги и некоторые костистые рыбы, вроде всем известной корюшки. У химер и низших акул чувствительные волосковые клетки залегают в желобке, а у подавляющего большинства современных рыб собраны в почкообразные группы и спрятаны в трубки, соединенные с окружающей средой короткими мини-колодцами. Тела чувствительных клеток вмонтированы в стенки заполненных слизью труб, а в их просвет выступают лишь волоски. У рыб каналы, в которых помещаются датчики, расположены не только на боках, но заходят даже на голову, распадаясь здесь на надглазничные и подглазничные, на каналы нижней челюсти и жаберных крышек.
Любые рецепторные клетки, для сбора какой бы информации они ни предназначались и кому бы из животных ни принадлежали, построены по единому типовому проекту и отличаются лишь незначительными конструктивными особенностями, помогающими выполнять специфические обязанности. Рецептор представляет собою клетку с одним или несколькими подвижными жгутиками. Они служат воспринимающими элементами и называются антеннами. Непрерывное движение жгутиков способствует созданию наиболее благоприятных условий их взаимодействия с тем видом энергии, для восприятия которой они предназначены.
Рецепторные клетки органов боковой линии имеют одну антенну и пучок неподвижных волосков. Антенна не входит в состав пучка, а всегда расположена где-нибудь сбоку. Рецепторная клетка реагирует на движение слизи в канале только в том случае, если оно направлено от пучка неподвижных волосков в сторону антенны. Тогда под напором слизи антенна сгибается, вызывая возбуждение рецепторной клетки, о чем та шлет информацию в мозг. А если слизь движется в противоположную сторону, антенна упирается в пучок волосков, и клетка затормаживается.
Органы боковой линии являются рецепторами дистантного осязания. Они помогают рыбам ориентироваться в характере течений и обнаруживать движущиеся объекты. Любое существо, передвигающееся вблизи рыбы, вызывает хотя бы небольшое движение воды и тем самым выдает свое присутствие. Рыбаки неоднократно вылавливали хищных рыб, полностью лишенных зрения. К всеобщему удивлению, они оказывались хорошо упитанными, ничем не отличаясь от своих зрячих сородичей. Наблюдения в аквариуме за слепыми щуками показали, что хищницы великолепно чувствуют приближение мелких рыб, и хватают их почти без промаха, а на мертвых неподвижных рыб не обращают никакого внимания. Другое дело, если приманку подвигать. Они обнаруживают любой движущийся объект и с одинаковым проворством кидаются на карандаш, чайную ложку или руку экспериментатора. Когда с помощью трубочки в щуку под водой направляли струйку воды, рыба вхолостую щелкала челюстями. Чувствительность боковой линии феноменальна, рыбы замечают движение стеклянного волоска толщиною 0,25 миллиметра.
Информация органов боковой линии помогает рыбам поддерживать взаимный контакт. Особенно важна она в брачный период, чтобы синхронизировать поведение половых партнеров. Оболочки икринок у многих рыб под воздействием воды всего за 20–40 секунд становятся непроницаемыми для сперматозоида. Чтобы течение не успело унести облачко сперматозоидов, и за отпущенные природой мгновения произошло оплодотворение икринки, действия самцов и самок должны быть строго согласованными. Обмен информацией ведется на языке водяных струй. Самцы, ухаживая за самками, усиленно бьют хвостом, подавая сигнал к началу икрометания. Команды самца нетрудно имитировать. Двигая стеклянной палочкой около хвоста колюшки, можно заставить созревшую самку откладывать икру.
Рыбы широко пользуются дистанционным осязанием.
Оно для них важнее, чем зрение. Заядлые рыбаки знают, что при ловле щук не имеет большого значения, как выглядит блесна: достаточно, чтобы она просто поблескивала в воде. Гораздо важнее, как она движется и вибрирует. Дистанционное осязание одинаково необходимо и для хищных рыб, и для вегетарианцев. Первым оно сообщает о приближении добычи, вторых предупреждает об опасности.
Обнаружение подвижных предметов – это пассивная локация. Рыбы владеют и активной локацией. Ученые заметили, что слепые караси способны обнаруживать неподвижные предметы. В аквариуме они ведут себя более осмотрительно, чем зрячие рыбы, и не натыкаются на его прозрачные стенки, не сталкиваются с подводными камнями, корягами, отлично чувствуют, где находится дно и где вода переходит в воздушную среду.
Активная локация основывается на том, что при движении в воде любой предмет вызывает волнообразные колебания. Волны давления, распространяясь впереди плывущей рыбы, обгоняют ее. Они первыми докатываются до встречных предметов, отражаются от них, возвращаются назад и улавливаются волосковыми клетками органов боковой линии. Для морских глубоководных рыб, живущих в вечном мраке океанской бездны, активная локация имеет огромное значение и полностью заменяет зрение. В толще воды, где нет никаких крупных объектов, кроме живых существ, легко анализировать окружающую обстановку, и достоверность полученной информации может быть очень высокой. Не случайно у глубоководных рыб боковая линия обычно развита лучше, чем у живущих на мелководье.
Вольтметр
В солидных научных трудах, посвященных физиологии органов боковой линии, можно столкнуться с упоминанием двух типов рецепторов: обычных, или механорецепторов, и «особых», «специализированных». «Особые» рецепторы стоят того, чтобы им посвятить отдельный рассказ. Начну с того, что они не принимают участия в выполнении исконных функций органов боковой линии и не способны реагировать на слабые механические воздействия воды. Ученые подозревают, и для этого достаточно оснований, что «особые» рецепторные клетки являются датчиками, реагирующими на температурные и химические воздействия. Они информируют организм о концентрации солей в морской воде.
Важнейшей функцией «специализированных» датчиков является электрорецепция. Они работают или как вольтметры постоянного тока, или как приборы, способные уловить напряжение высококачественных электрических импульсов, и хорошо различаются по внешним признакам. Рецепторы для высокочастотных импульсов называют бугорковыми органами. Здесь мы их касаться не будем, так как они более характерны для пресноводных рыб. Второй тип рецепторов получил название ампулированных. В этом случае чувствительные датчики упрятаны на дне крохотных колбочек. Наибольшую известность получили ампулы Лоренцини, характерные для акул и скатов. Впервые их описал еще в 1678 году итальянский ученый, именем которого названы эти образования. Сам Лоренцини считал ампулы слизистыми железами, каких немало в коже рыб.
Ампулы Лоренцини представляют собою крохотные, не слишком аккуратно сработанные длинногорлые колбочки, открывающиеся на поверхности тела рыбы крохотной порой. В дно вмонтировано несколько рецепторных клеток, снабженных ресничками, выступающими в полость колбы. Это воспринимающие элементы рецептора. Стенки канала и самой ампулы служат для электрорецептора изолятором, предохраняющим от электрических разрядов собственной мускулатуры рыбы. Полость колбы и ее горла заполнена желеобразным веществом, хорошо проводящим электричество. Это входной канал рецептора, клемма вольтметра.
У морских рыб отличные электрорецепторы. У скатов их пороговая чувствительность равна 0,00000000005 ампера. Рецепторы наиболее плотно покрывают переднюю часть головы. На хвосте их значительно меньше. В результате лоб рыбы в 30 раз чувствительнее к электричеству, чем ее хвост. Электрорецепторы размещены на коже в определенном порядке, что позволяет акулам и скатам хорошо ориентироваться в электрической обстановке и уверенно реагировать на электрические поля с градиентом, то есть с постепенным изменением напряженности порядка 0,02 микровольта на сантиметр, и безошибочно обнаруживать источник сверхслабых электрических импульсов на расстоянии 10–15 сантиметров.
Мне случилось познакомиться с тем, как пользуются рыбы своими электрорецепторами. Я плыл над огромной песчаной отмелью. Дно медленно понижалось. Передо мной расстилалась однообразная равнина. Одиноко и неуютно было в этой подводной Сахаре. Прежде мне не приходилось бывать в таком унылом месте. Сюда меня привела надежда увидеть камбал. Увы, упорные поиски оказались тщетными. Рыбы маскировались так ловко, что их невозможно было отыскать.
Вылазка в подводное царство затянулась до сумерек. Возвращаясь к берегу, уже на мелководье я встретил морскую лисицу, плывущую параллельным курсом. Было интересно понаблюдать за удивительной рыбой, и я поплыл быстрее, но старался держаться поодаль. Мое присутствие не напугало ската, рыба не обращала на меня внимания, продолжая плыть в сторону берега. Вдруг она метнулась на дно и забилась, поднимая облака мути, стараясь оглушить обнаруженную дичь. Это была небольшая молоденькая камбала. Глаза у скатов расположены таким образом, что рыба видит, что находится непосредственно под ней, да и в воде было уже темно. Совершенно очевидно, что зрение не могло помочь скату отыскать в сумерках камбалу, которую и при ярком свете заметить практически невозможно. Помочь хищнику могли только электрорецепторы, точно указав место, где скрывалась дичь.
Эксперименты, проведенные в лаборатории, показали, что ромбовые скаты, к которым относится и морская лисица, реагирует на переменное электрическое поле с градиентом до 0,02–0,01 микровольта на сантиметр. Такая же чувствительность рецепторов свойственна и кошачьим акулам. Этого вполне достаточно, чтобы в соленой воде обнаружить электрические потенциалы действия дыхательных и плавательных мышц небольших рыбешек. Какой бы покровительственной окраской ни обладала камбала, как бы хорошо ни маскировалась и как бы тихо себя ни вела, скат все равно ее обнаружит. Ни одно существо не может обойтись без дыхания. И пусть сами дыхательные движения останутся незаметными, электрические импульсы, возникающие в жаберных мышцах, выдадут камбалу с головой.
Способность скатов отыскивать добычу поразительна. Морская лисица не только обнаруживала камбалу, посаженную к ней в аквариум, но даже находящуюся в соседней комнате или в помещении этажом выше, если их аквариумы были соединены металлическим проводником.
Изучение электрорецепции представляет большой интерес. Те, кто наблюдал в море косяки стайных рыб, вероятно, не раз восхищались слаженностью их маневров, когда десятки, сотни или даже тысячи рыб одновременно, как по команде, меняют направление движения. Может быть, сигналом для совместных действий служат электрические импульсы, возникающие в двигательной мускулатуре у кого-нибудь из членов стаи. Возможно, рыбы улавливают биотоки мозга своего вожака, так сказать, обмениваются «мыслями» на расстоянии. Как бы там ни было, изучение электрорецепции поможет узнать немало рыбьих тайн.
Химик-аналитик
Морские организмы относятся избирательно к химическим компонентам окружающей среды и пользуются для их обнаружения особыми рецепторами. Водные животные имеют дело преимущественно с веществами, находящимися в растворе. Их не разделишь на вкусовые и обонятельные. Однако рецепторы по своему строению легко различимы. У водных организмов они гораздо многочисленнее, чем у наземных существ, и нередко разбросаны по всему телу. Химические рецепторы могут быть универсальными или специализированными, предназначенными только для оценки общей солености воды, концентрации углекислоты или анализа других компонентов среды. Универсальные называются рецепторами «общего химического чувства».
Способность производить химический анализ веществ обнаружена уже у микроорганизмов. Для одноклеточных химическая информация является главным фактором, определяющим их поведение. У инфузорий химической чувствительностью обладает главным образом передний конец тела и так называемое «ротовое отверстие», что позволяет хорошо различать соли, кислоты, щелочи и многие другие вещества.
Инфузория туфелька способна проводить химический анализ компонентов среды обитания и в соответствии с его результатами осуществлять сложные и наиболее целесообразные в данной ситуации реакции. Туфелька – активный хищник. Пищей ей служат бактерии. Инфузории могут заглатывать и несъедобные частички различных веществ, взвешенные в воде, например, тушь, кармин и индиго.
Однако туфелька не будет глотать все подряд без разбора. Крохотные частички стекла, фарфора, серы, сернокислого бария инфузории решительно отвергают, безошибочно отбирая съедобные крупинки от несъедобных.
На передней половине тела инфузорий расположена продольная выемка – околоротовая впадина, в глубине которой находится овальное отверстие – клеточный рот, ведущий в изогнутую глотку. Биение околоротовых ресничек создает непрерывный ток воды, увлекающий взвешенные в воде частички внутрь ротового отверстия и глотки. В ее конце возле постоянно колеблющейся тоненькой мембраны из слипшихся ворсинок каждые 1,5 минуты образуется круглая пищеварительная вакуоль, которая увлекается внутрь клетки круговым движением эндоплазмы. Если туфельке предложить взвесь из красных частичек кармина и желтых частичек серы, то в окуляр микроскопа можно наблюдать, что кармин остается на дне глотки и время от времени в составе пищеварительных вакуолей переходит в эндоплазму инфузории, а частицы серы выбрасываются наружу. Аналогичным образом ведут себя морские инфузории.
Химические рецепторы кишечнополостных животных располагаются вблизи ротового отверстия, на щупальцах и в гастральной полости, то есть в «желудке». Актинию трудно обмануть, подсунув ей несъедобную приманку. Скорее всего она сразу ее отвергнет. Но если голодное животное все же ошибется и проглотит каучуковый шарик, обман будет скоро обнаружен и приманка извергнута наружу.
Возникновение ошибочных реакций, видимо, запрограммировано в генетических инструкциях, регулирующих пищевое поведение. Крупной актинии случается отобедать молоденькой мидией или устрицей. Моллюски, подвергшиеся нападению, накрепко захлопывают створки своей раковины, и «лизнуть» их, попробовать «на язык» хищник не может. Пищевую реакцию запускают механические воздействия известковой раковины. Возможность таких реакций должна быть предусмотрена, чтобы расширить круг пищевых объектов. Кишечнополостным, ведущим неподвижный образ жизни, нелегко обеспечить собственное пропитание. Благодаря менее щепетильному подходу к определению пригодности пойманных объектов в пищу актиния может приспособиться к совершенно новым видам дичи, а химический анализ, осуществляемый внутриполостными рецепторами, позволяет исключить неблагоприятные последствия возможных ошибок: все несъедобное немедленно удаляется из «желудка».
Актиния пытается «схватить» любой объект, коснувшийся ее щупалец, и если окажется сильнее добычи, удержит ее. Химический анализ подскажет животному, что делать дальше: выбросить этот предмет как ненужный или отправить его в желудок. Показатели химических рецепторов способны полностью затормозить оборонительно-пищевую реакцию. Привилегией «неприкасаемости» у актиний пользуются небольшие ярко окрашенные тропические рыбы – амфиприоны. Рыбешки вступают с актиниями в симбиотические отношения, с разбором выбирая себе покровителей. Одни виды амфиприонов становятся сожителями вполне определенных видов актиний, другие более универсальны и дружат с кем попало. Предпочтение отдается крупным актиниям. Рыбки парочками и даже небольшими стайками поселяются вблизи своего защитника, никогда далеко от него не отплывают и здесь же, у подошвы актинии, откладывают икру, а в случае малейшей опасности мгновенно скрываются среди щупалец. Часто амфиприоны специально трутся о щупальца, видимо, получая от этого удовольствие, а актиния даже не вздрагивает. Воздержаться от агрессии ее заставляет слизь, покрывающая тело рыбок. Если слизь тщательно удалить, актиния безжалостно расправится с амфиприоном. Зато стеклянная палочка, смазанная слизью этих рыбешек, не вызовет ни оборонительной, ни пищевой реакции животного.
Хорошо выраженной вкусовой чувствительностью обладают самые различные черви. Полихеты на расстоянии 25–30 сантиметров ощущают присутствие пищи, покидают свои норки и прямиком направляются к ней. Повышенной химической чувствительностью обладают личиночные стадии паразитических червей, она помогает им в поисках «хозяев». Это относится и к червям, живущим в симбиозе с другими организмами. Им тоже необходимо отыскать подходящего партнера, и тут самый надежный критерий – запах живого существа или его вкус, хотя будущего компаньона по совместному житью на зубок, конечно, не пробуют.
Если полихету – комменсала морских звезд (комменсализм – одна из форм симбиоза, когда один из партнеров получает выгоду из содружества с другим организмом) поместить в аквариум, где находится морская звезда, червь это почувствует и тотчас пустится на ее поиски. Другое дело, если звезде нанести травму. Полихета по запаху об этом непременно прознает. Раненая звезда не может стать надежным партнером, и полихета будет старательно избегать встречи с ней.
Химические рецепторы брюхоногих моллюсков разбросаны по всему телу, по голове, ноге и мантии. Есть они на губе и ротовых щупальцах. Кроме того, химическим анализом занят специальный орган – осфрадий. В переводе с латыни «осфрадиум» означает «нюхаю». Он позволяет охотнику находить подходящую дичь и избегать сидящих в засаде хищников. У морского зайца здесь находятся рецепторы, предназначенные для определения концентрации в воде кислорода.
Химические рецепторы позволяют моллюскам активно разыскивать пищу. Небольшие улитки верши, широко распространенные по океанам и морям, серьезно мешают рыболовству там, где их много, так как благодаря хорошему обонянию быстро обнаруживают наживку, мелкую рыбешку, насаженную на рыболовные крючки, и обгладывают легко доставшуюся добычу.
Аналогичным образом моллюски обнаруживают хищников. Морские гребешки смертельно боятся морских звезд. Учуя «запах» приближающегося врага, гребешок подпрыгивает, словно ужаленный, и, энергично хлопая створками раковины, уносится прочь. Улитки верши, обнаружившие приближение морской звезды, даже не пытаются уползти, явно проигрывая хищнику в скорости, а начинают бешено кувыркаться, и это позволяет им откатиться на безопасное расстояние. У осьминогов химическими рецепторами снабжены щупальца. Чувствительные клетки располагаются главным образом на присосках. Хинин осьминоги обнаруживают в концентрации, которая в 100 раз меньше той, что доступна для человеческого восприятия.
У ракообразных химические рецепторы находятся на передних усиках, покрытых крохотными щетинками. Благодаря своей подвижности, они обеспечивают активное, направленное изучение ближайшего пространства. На щетинках расположены обонятельные приемники дальнего действия для обнаружения пищи, врагов, половых партнеров, а чувствительные элементы, базирующиеся на ротовых частях, ведут контроль за тем, что направляется в желудок. Первичный пищевой контроль высшие раки производят клешнями, для чего на их внутренних поверхностях расположены «вкусовые» рецепторы. Не правда ли, удобно?
Химическая рецепция универсальна. Морские желуди, относящиеся к усоногим ракам, живут в собственных замках-башенках, выстроенных на прибрежных скалах и лежащих на дне камнях. Их колонии напоминают селения сванов. Хозяева башен никогда не покидают своих убежищ. Участок для возведения замка выбирают личинки, ведущие свободный образ жизни. Удобным местом считается такое, где раньше уже стояла крепость другого рачка: если кто-то сумел здесь благополучно скоротать свою жизнь, можно считать, что участок хороший. От фундамента старых домов, когда они наконец отваливаются от скал, на поверхности камня всегда остается след, остатки нерастворимого в воде белка, который входит в состав наружных покровов всех ракообразных. Личинка морского желудя антеннами тщательно обследует место, где раньше стоял чей-то замок, и начинает строиться. Каким образом она улавливает «запах» нерастворимого белка, не известно. Возможно, рецепторы снабжены специальным растворителем.
Морские организмы пользуются для общения специально вырабатываемыми пахучими веществами – феромонами. Без них ритуалы брачного поведения раков неосуществимы. Дело в том, что самки способны спариваться лишь в течение очень короткого периода, от нескольких минут до часа, лишь непосредственно после линьки, пока новый панцирь еще не затвердел. Если самка хочет стать матерью, она должна заблаговременно оповестить самцов, что готовится сменить одежду. Крабы и омары выделяют с мочой чрезвычайно стойкие феромоны, сохраняющие свои свойства после кипячения, высушивания и замораживания воды. Высшие ракообразные в качестве феромона пользуются гормоном линьки, выделяемым крохотными железками, находящимися на глазных стебельках.
Органы обоняния рыб внешне напоминают аналогичный анализатор высших позвоночных. На голове рыбы впереди глаз можно найти отверстия. У костистых они находятся в верхнебоковой поверхности рыла, а у акул – на его брюшной стороне. Это не ноздри, а всего лишь обонятельные ямки или мешки. Только у двоякодышащих рыб и у некоторых донных обитателей обонятельный мешок сообщается с ротовой полостью внутренним каналом. Это позволяет вести обонятельный контроль за тем, что направляется в желудок.
Вкусовые рецепторы находятся у рыб во рту, на губах и усиках, если они, конечно, есть, и… на коже. Они встречаются в любой части тела, не покрытой чешуей: на плавниках, в первую очередь на грудных и брюшных, что особенно удобно для обитателей дна, постоянно роющихся в иле в поисках пищи, а также на спинном, анальном и даже на хвостовом. Правда, на хвосте их меньше, чем на голове. То, что оказалось позади рыбы, ее интересует меньше, чем то, что находится под носом. Чувствительность их очень высока. Наиболее талантливые рыбы способны «заметить» попадание на рецептор всего нескольких молекул пахучего вещества. Химическая рецепция имеет для рыб существенное значение.