![](/files/books/160/oblozhka-knigi-zhizn-okeanskih-glubin-157047.jpg)
Текст книги "Жизнь океанских глубин"
Автор книги: Борис Сергеев
Жанр:
Зоология
сообщить о нарушении
Текущая страница: 2 (всего у книги 20 страниц)
Очень важной характеристикой воды является ее плотность. Она зависит от температуры, солености и давления, иными словами, от того, на какой глубине находится. Вот какова плотность воды при разных значениях этих показателей:
у пресной воды при температуре +20° – 1,0 г/см 3;
у обычной морской воды при температуре +20° – 1,025 г/см 3;
при снижении температуры морской воды до +2° – 1,028 г/см 3;
у морской воды на глубине 5 километров при той же температуре +2°– 1,050 г/см 3.
Самая плотная вода в Южном океане вокруг Антарктиды, так как здесь она имеет самую низкую температуру, а из-за постоянного образования льда еще и обладает высокой соленостью.
В числе чрезвычайно важных свойств воды следует упомянуть, что она практически несжимаема. Коэффициент сжимаемости воды составляет всего 0,000046 на 1 бар. (Бар соответствует давлению, равному 0,98692 атмосферы.) Это значит, что при повышении давления до 500 атмосфер ее объем уменьшится всего на 2 процента. В сравнении с воздействием на биологические объекты это ничтожно мало. Если сухую трехдюймовую доску опустить на глубину 1 километр, она под воздействием существующего там давления уменьшится наполовину, а на глубине 5 километров станет не толще фанеры. Представьте себе, что стало бы с кашалотом, рискнувшим совершить полуторакилометровое погружение, если бы вода, составляющая около 70 процентов его тела, не препятствовала значительному уменьшению его объема.
Коэффициент сжатия воды представляется величиной ничтожной. Морским организмам небольшое уменьшение объема воды, входящей в состав их тел, не сулит особых неприятностей. Однако в масштабах океана эта величина достаточно значима. Если бы вода оказалась абсолютно несжимаемой и ее объем не уменьшался бы под действием собственной тяжести, уровень Мирового океана поднялся бы на 27 метров! А это значит, что перестали бы существовать такие приморские города, как Ленинград, Рига, Таллинн, Севастополь, Сухуми, Батуми и многие другие на всех континентах планеты.
Горько-соленый вкус океанской воде придают растворенные в ней химические соединения. В среднем в килограмме морской воды их содержится 34,69 грамма. Это значит, что на 98 молекул воды приходится 2 иона, образовавшихся при диссоциации растворенных в ней веществ. Океанологи выражают эту величину количеством частей растворенных в воде веществ, которое приходится на 1000 (по весу) частей воды, и обозначают символом «‰», что означает «промилле». Вблизи устьев крупных рек, в зоне ливневых дождей и интенсивного таяния льда соленость может падать до 10,0 промилле и ниже. В закрытых морях – Азовском, Балтийском и Черном, – куда несут свои воды многие европейские реки, она очень низка. Соленость Балтийского моря колеблется от 2 до 15 промилле. Особенно сильно опреснена вода в Финском заливе, куда сливает свои воды Нева. Еще недавно город Кронштадт, расположенный на острове Котлин, снабжался питьевой водой прямо из залива.
![](i_005.png)
В Черном море соленость не превышает 18 промилле. Зато в придонных водах южной части Тихого океана она может достигать 34,7, а в северной части Атлантического океана 37,9. Еще выше она в Саргассовом море, так как здесь происходит сильное испарение воды. В ряде районов Средиземного и Красного морей, где испарение воды происходит весьма интенсивно, соленость нередко достигает 40,0, а в некоторых придонных участках 270,0 промилле. Это приближается к пределу растворимости поваренной соли.
Вода способна растворять чуть ли не все известные вещества. Видимо, в океане можно обнаружить все элементы, встречающиеся на Земле в естественных условиях. В настоящее время их обнаружено чуть более 70. Больше всего здесь хлора. За ним идут натрий, магний, сера, кальций, калий, бром, углерод, стронций, бор… Некоторые элементы находятся в ничтожно малых концентрациях. Все атмосферные газы тоже растворены в морской воде. Как и в воздухе, здесь больше всего азота. Второе и третье места занимают кислород и углекислый газ. Инертные газы присутствуют в ничтожных количествах. Есть районы, где кислород полностью отсутствует. Лишены кислорода глубины Черного моря, некоторые районы в Атлантике, у берегов Северной Каролины и Венесуэлы, и в Тихом океане в прибрежных районах Калифорнии, а также в некоторых фиордах Скандинавии. При отсутствии универсального окислителя в воде образуется сероводород. В Черном море глубже 200-метровой отметки вода насыщена сероводородом. Наконец, существуют морские растения и животные, которые выделяют угарный газ, так что и его можно обнаружить в воде океанов.
Газы хотя и находятся в воде в тех же пропорциях, что и в воздухе, однако в абсолютных цифрах их количество в равных объемах воды и атмосферного воздуха далеко не одинаково. Если в 1 литре воздуха при нормальном атмосферном давлении содержится 210 кубических сантиметров кислорода, то в 1 литре воды его может быть растворено не более 10. Одно из неприятных свойств воды состоит в том, что при повышении температуры растворимость кислорода в ней уменьшается. Максимальное количество этого газа, способное раствориться в воде при 0 градусов и нормальном атмосферном давлении, составляет всего 14,16 миллиграмма на литр. При 10 градусах оно уменьшается до 10,92, а при 30 падает до 7,35. Напомню, что в 1 литре воздуха содержится 300 миллиграммов кислорода. Падение растворимости кислорода по мере повышения температуры воды весьма неудобно для водных животных, так как в теплой воде у них резко возрастает уровень обмена веществ и, соответственно, серьезно увеличивается потребность в кислороде. Установлено, что у рыб при повышении температуры воды на 10 градусов потребление кислорода увеличивается вдвое!
Мы – земляне, можно сказать, живем под Солнцем. Однако огромное количество организмов от первых до последних дней своей жизни существуют в условиях полной темноты. В отличие от воздушной оболочки Земли, хорошо пропускающей подавляющую часть солнечных лучей, точнее испускаемых Солнцем электромагнитных волн, вода является для них труднопреодолимым препятствием.
Не только морская, но и самая чистая пресная вода непроницаема для солнечных лучей. Более 60 процентов энергии электромагнитных волн задерживает, поглощает самый верхний, метровый слой воды. До десятиметровой глубины в лучшем случае доходит 20 процентов энергии солнечных лучей. Под стометровой толщей воды человек, в полном соответствии с известной русской поговоркой, чувствует себя как у арапа в желудке, так как сюда проникает менее 1 процента солнечных лучей.
На «пропускание» электромагнитных волн (таков не слишком литературно звучащий термин) сильнейшим образом влияет муть – взвешенные в воде твердые частички, в том числе микроорганизмы, а также пузырьки воздуха в самом верхнем слое воды. Растворенные в воде соли не ухудшают ее прозрачности. Косые солнечные лучи частично отражаются от водной поверхности, а та их часть, которая все же внедряется в толщу воды, не достигает больших глубин. Когда солнце стоит прямо над головой, его лучи проникают значительно глубже 100 метров. В районах с особенно чистой водой человек с нормальным зрением способен увидеть слабый сине-зеленый свет даже на глубине 800 метров, а чувствительные фотоэлементы свидетельствуют, что какие-то крохи энергии электромагнитных волн доходят на глубины до 1 километра.
Солнечные лучи обладают различной способностью проникать в толщу воды. Столкнувшись с водной гладью, первыми пасуют самые короткие ультрафиолетовые, а также самые длинные – инфракрасные лучи и гиганты радиоволны. Лучше всех проходят в глубь волны светового диапазона, особенно сине-зеленой части солнечного спектра длиной 465 нанометров. Именно они придают пейзажу и подводным обитателям зеленовато-голубой оттенок. Эту особенность окраски подводного мира добросовестно фиксирует фотоаппарат. На фотоснимках, сделанных при естественном освещении, даже песчаное дно приобретает зеленоватый или голубоватый оттенок. Наши глаза, точнее, наш мозг не столь объективны. Зная истинную окраску подводных объектов, он вносит коррективы в наше восприятие картины подводного царства.
Глаза наземных животных не годятся для подводного царства. Необходимо сфокусировать коррективы изображения окружающих предметов на воспринимающих элементах. Человеческий глаз делает это за счет преломляющей силы роговицы и хрусталика, иными словами, благодаря тому, что эти образования глаза способны изменять направление световых лучей.
Обычно световые лучи меняют направление при переходе из одной среды в другую. Величина отклонения зависит от преломляющей силы материала, в который они внедряются, и от того, под каким углом они падают на его поверхность. Однако показатели преломления роговицы почти такие же, как у обыкновенной воды. Поэтому световые лучи, попадая на роговицу ныряльщика, дерзнувшего под водой открыть глаза, не преломляются, а хрусталик без ее помощи не в состоянии сфокусировать световой поток на светочувствительных элементах сетчатки. Вот почему под водой окружающий мир расплывается, теряя свои очертания. В воде человек становится настолько дальнозорким, что практически любой предмет, как бы далеко он ни находился, оказывается для нас достаточно близким, и мы способны увидеть лишь крупные предметы, да и те выглядят расплывчатыми.
Совсем иное дело водолазы и аквалангисты, пользующиеся маской с плоским стеклом. Они в подводном мире не испытывают особых неудобств, так как их глаза непосредственно не соприкасаются с водой. От нее их отделяет стекло и тонкий слой воздуха, находящийся в маске или в шлеме водолазного скафандра. Поэтому в фокусировке изображения принимают участие и роговица и хрусталик, а изображение получается вполне отчетливым. Однако, переходя из воды в воздух, находящийся перед глазами водолаза, световые лучи преломляются, слегка отклоняясь от первоначального направления. Вот почему водолазу, работающему на грунте, все предметы кажутся на треть крупнее, чем в действительности. По тем же причинам на фотографиях, сделанных под водою с помощью фотобокса с простыми плоскими стеклами, изображение будет увеличено примерно на 30 процентов по сравнению с тем, каким бы оно выглядело при фотографировании в воздушной среде.
Если вода для электромагнитных волн – непреодолимое препятствие или, во всяком случае, плохо проницаема, то звуковые волны способны распространяться в океане на огромные расстояния. Правда, пресная вода примерно в 100 раз прозрачнее морской, но и у соленой прозрачность достаточно высока, так что дальность распространения звуков в океане значительно выше, чем в атмосфере. Нарушает прозрачность морской воды главным образом ион сульфата магния, то есть магниевой соли серной кислоты – MgSO 4·7H 2O, больше известной как английская соль, используемая в медицине в качестве слабительного. В морской воде сульфата немного, около 3 граммов на литр, но его влияние на звукопроницаемость велико. Кроме того, звуки рассеивает любая муть, любые взвешенные в воде частички, в том числе пузырьки воздуха и живые организмы. Рассеивание звуков в конечном итоге приводит к их ослаблению.
Не все звуковые волны способны в подводном мире покрывать большие расстояния. Коротковолновые высокочастотные колебания затухают значительно быстрее, чем длинные волны, следующие друг за другом с небольшой частотой. Таким образом, дальность распространения звука зависит не только от его силы, но и от его частоты. При ее увеличении в четыре раза скорость затухания звука возрастет в два раза. Тысячекилометровые расстояния способны пробегать, пересекая океаны из края в край, лишь волны в диапазоне от 100 до 1000 герц. (Герц соответствует одному периоду колебаний в секунду.)
Скорость звуковых волн никоим образом не зависит от их частоты. В морской воде звуки распространяются быстрее, чем в пресной, и в 4–5 раз быстрее, чем в атмосфере; в среднем со скоростью 1500 метров в секунду. Но с повышением температуры, давления и солености скорость звука в воде растет.
В однородной среде, какой бы она ни была, звуковые волны распространяются строго прямолинейно. Однако температура, давление и соленость воды в океане подвержены колебаниям. Непостоянством физических свойств объясняется изменение скорости звука при прохождении им различных горизонтов воды, что автоматически приводит к отклонению направления звуковых волн от их первоначального прямолинейного пути. Акустики называют подобное явление рефракцией. Не входя в его сущность, хочу обратить внимание на то, что звуковые волны всегда отклоняются в ту сторону, где скорость их распространения ниже. Неоднородность акустических свойств воды, вызывая рефракцию звука, приводит к возникновению двух интересных явлений, которые имеют существенное значение для обитателей океана.
Определенный характер рефракции привел к возникновению в океане постоянно существующего акустического канала, который, не прерываясь, простирается на многие тысячи километров, связывая самые отдаленные его точки. Как мы знаем, температура воды в океане с глубиной постепенно падает. В соответствии со снижением температуры происходит постепенное уменьшение скорости распространения звука, что, в свою очередь, приводит к отклонению звука в более глубинные зоны океана. Однако на определенной глубине всевозрастающее давление, наконец, компенсирует уменьшение скорости звука, связанное с понижением температуры, и дальше в более глубоких слоях воды она будет постепенно расти. Таким образом, в любых районах океана, пожалуй, кроме полярных областей, где отсутствует существенная разница температур, на определенных глубинах океана всегда оказывается слой, в котором скорость распространения звука минимальна. Он может располагаться на разных глубинах до 2000, но чаще всего находится на расстоянии 700 метров от поверхности. Этот слой воды и является звуковым каналом. В нем звук не рассеивается так широко, как обычно, а поэтому не так быстро ослабевает, как это произошло бы в полностью однородной среде.
Попав в звуковой канал, звук лишен возможности его покинуть, так как выше и ниже находятся зоны, где скорость распространения звуковых волн больше, и следовательно, при любой «попытке» выйти за пределы звуковода звуки будут отклоняться, отбрасываться назад окружающими слоями воды.
Звуковой канал обеспечивает связь между самыми отдаленными точками океана, и это имеет для его обитателей огромное значение. Одни из них благодаря наличию звуковода поддерживают связь между собою, другие с его помощью получают информацию о существенных для всего живого глобальных событиях, происходящих в океане. Звуковод создает большие удобства. У него один недостаток: малая скорость распространения звука. Взрыв глубинного заряда, произведенного у берегов Австралии, гидрофоны «услышали» даже в районе Бермудского треугольника, но, чтобы пересечь океан, звуку потребовалось почти 2,5 часа!
Второе явление, которое возникает в связи с рефракцией звука, – возникновение акустического экрана, роль которого выполняет все тот же акустический канал. Во время войны опытные командиры подводных лодок прятали свои субмарины под этим слоем воды, если он находился близко к поверхности, сквозь который был не в состоянии пройти поток локационных посылок. В настоящее время мощность гидролокаторов возросла настолько, что позволяет производить гидролокацию дна океана и всех крупных объектов, находящихся в толще воды, где бы они ни располагались. Таким образом, звуковой канал, обеспечивая морским организмам великолепные условия связи по горизонтали, создает серьезные препятствия для обмена информацией по вертикали.
Пейзажи подводного царства
![](i_006.png)
Сады Семирамиды
Одно из семи чудес света – висячие сады, которые были сооружены в Вавилоне по повелению Навуходоносора на четырех этажах высокой башни. Это был подарок царя его любимой жене, мидийской царевне, тосковавшей в жаркой, голой, безлесной Вавилонии по горным прохладным лесам своей родины. Хозяйку удивительных садов звали вовсе не Семирамидой. Просто людская молва приписала их легендарной ассирийской царице, посмертно причисленной к богам.
Подводное царство богато висячими садами. Правда, растущие в них «деревья» не столь живописны, как посаженные по повелению царя Навуходоносора, но смею утверждать, по-своему не менее красивы. Подводные висячие сады возникли не по чьей-то прихоти и выполняют функцию единственной житницы океана, без которой жизнь здесь была бы невозможна. В отличие от «архитектурных излишеств» Вавилона висячие сады Посейдона – это огромные поля-плантации, урожай с которых тщательно убирается, я бы сказал, утилизируется, и им в конечном итоге кормятся все обитатели подводного царства.
Как и на поверхности Земли, где основой производства продуктов питания являются зерновые, в океане есть свои «массовые культуры», на 95–99 процентов покрывающие потребности подданных Посейдона. Это, несомненно, водоросли. Они здесь основа основ органической жизни, а океан их родовая вотчина. Из 1000 взятых в океане наугад растительных организмов 999 будут наверняка водорослями. О них и пойдет речь.
Водоросли – сборная группа низших растений, объединяющая растительные организмы самых различных размеров от микроскопических одноклеточных величиной в доли микрона до многоклеточных гигантов, достигающих 30–60 метров. В водорослях сосредоточена четверть всего живого вещества Земли. Соответственно велико их значение в современной жизни океана и всей планеты в целом и трудно переоценима историческая роль как древних фотосинтезирующих организмов, насытивших земную атмосферу кислородом. От водорослей произошли высшие растения, сумевшие расстаться с водой и переселившиеся жить на сушу. Наконец, именно водоросли являются главным звеном круговорота в природе таких важнейших элементов, как кальций и кремний.
Представители большинства видов современных водорослей, кроме паразитов и организмов, научившихся пользоваться готовым органическим веществом, обладают способностью к фотосинтезу. Тела многоклеточных водорослей не расчленены, как у высших растений, на корни, стебли и листья, а устроены более однородно и состоят главным образом из так называемого слоевища, в котором отсутствует специализация на фотосинтезирующие и поглощающие питательные вещества части. Ведь водоросли живут в питательном «растворе» и могут всасывать его всей поверхностью. Поэтому у них нет таких органов, как древесные стволы, стебли и ветви, и отсутствует сосудистая система, выполняющая у наземных растений транспортную функцию, ведь им нет нужды перемещать по своему телу воду и питательные вещества. Все необходимое водорослям поступает к ним извне прямо туда, где эти вещества будут использованы.
Крупные водоросли – оседлые существа. Они живут на одном месте, прикрепившись к грунту специальной присоской. Это отнюдь не корень с его многообразными функциями, а всего лишь якорный канат. У крупных водорослей вроде ламинарий можно увидеть нечто, напоминающее сильно укороченный стебель, но это опять-таки всего лишь фундамент, место крепления остальных частей растения. Никаких иных функций за этим органом, носящим название ножки, не водится. Нет у водорослей и цветков. Большинство размножается довольно сложным половым или бесполым способами. Очень часто даже самые крупные водоросли размножаются с помощью крохотных, активно передвигающихся зооспор. Могут водоросли плодиться и вегетативным путем, то есть частями, отторгнутыми от материнского организма.
![](i_007.png)
Из того, что здесь было сказано о водорослях, больше половины относится к растениям, о которых речь пойдет в следующей главе. Органическое вещество в висячих садах Посейдона создают микроскопические одноклеточные водоросли динофлягелляты и диатомеи, объединяющие огромное число видов.
Диатомеи, или кремнеземки, – крохотные организмы размером от 5 микрон до 1 миллиметра. Сказать что-нибудь определенное об их внешнем виде трудно, так они разнообразны. Диатомеи бывают треугольными, овальными, нитевидными или палочковидными, могут иметь форму блюдечка, розетки, чаши или еще более причудливый вид. Среди кремнеземок есть индивидуалисты, предпочитающие держаться особняком, и компанейские существа, образующие колонии в виде нитей, цепочек, лент, звездочек, снежинок. Колонии, конечно, крупнее одиночных водорослей, а потому заметнее.
Клеточное тело диатомоновых водорослей имеет две оболочки: внутреннюю пектиновую, какой пользуются клетки большинства растений, и наружный кремневый панцирь, устроенный как двустворчатая раковина, похожая на коробку с надетой на нее крышкой. Структура материала, из которого образована раковина, и ее конструкция различны у разных видов кремнеземок. Общая особенность – огромное количество пор, пронизывающих стенки коробки. Они предназначены для снабжения водоросли питательными веществами, кислородом и другими газами, необходимыми для жизнедеятельности одноклеточного организма.
Важная деталь панциря – кремниевые выступы в виде игл, рогов, щетинок. Они помогают растению не тонуть, выполняя роль парашюта, о чем речь ниже, и служат «стыковочными блоками», с помощью которых можно объединиться, создавая колонию. Прочность соединения усиливается с помощью клейкой слизи, выделяющейся через специальные поры. Клей обеспечивает надежное соединение, и некоторые диатомеи, отказавшись от стыковочных блоков, «строят» колонии на клею.
В клеточной протоплазме диатомей находится одно или несколько крупных тел шаровидной или овально-уплощенной формы, окрашенных в зеленый, желтый или коричневый цвет. Это хромопласты, особые «органы» растительной клетки, где находится аппарат для улавливания солнечной энергии. Обычно они располагаются непосредственно под внутренней оболочкой, но когда интенсивность света становится велика, уходят внутрь клетки, «в тень».
Погибая, диатомеи медленно тонут. Их маленькое тело по дороге разрушается бактериями, и на дно падают главным образом раковины. Четырехкилометровой глубины достигают только раковины крупных диатомей. Мелкие за это время успевают разрушиться и раствориться в морской воде. На больших глубинах залегают мощные диатомовые илы.
Вторым важнейшим «деревом» висячих садов являются динофлягелляты. В их число входят перидинеи, или панцирные жгутиконосцы, о которых ботаники с зоологами еще окончательно не договорились, считать их растениями или животными, а исследования биохимиков дают основание предполагать, что динофлягелляты не являются ни тем, ни другим, занимая между растениями и животными промежуточное положение.
У этих организмов два жгутика, начинающихся рядом на «брюшной» стороне тела и расположенных перпендикулярно друг к другу. Начальная часть более толстого жгутика лежит в продольном желобке тела, а конец направлен назад и торчит наружу. Второй жгутик занимает поперечное положение, опоясывая тело «по экватору», и тоже уложен в специальной борозде. Некоторые динофлягелляты, хотя и называются панцирными жгутиконосцами, лишены оболочки. Большинство же имеет надежный панцирь, который построен из строго определенного числа пластин, изготовленных из клетчатки. На теле жгутиконосца они уложены в определенном порядке. Благодаря этому под микроскопом водоросль выглядит как сшитый из отдельных кусочков кожи футбольный мяч.
В теле большинства видов перидиней под наружной оболочкой находятся желто-зеленые хромопласты. Они содержат хлорофилл, ксантофилл, перидинин, диноксантин и другие каротиноиды. Те динофлягелляты, которые владеют перечисленными пигментами, довольствуются фотосинтезом и использованием растворенных в морской воде нитратов и фосфатов. Остальные получают энергию, питаясь другими организмами, например, ресничными инфузориями и частичками детрита. Если фотосинтезирующие перидинеи попадают в мутную воду, куда свет не проникает, они способны стать «хищниками». В отличие от диатомей перидинеи – жители тропических и субтропических морей и служат здесь отличной пищей не только для рыбьих мальков, но и для взрослых рыб – сардин и анчоусов.
Некоторые перидинеи способны к свечению. Ночесветки испускают голубовато-зеленый свет с максимальной длиной волны в 470 нанометров, а у гониаулаксов излучение чуть сдвинуто в более длинноволновую часть спектра.
В тропических морях широко распространены представители золотистых водорослей – кокколитофориды. Это очень мелкие жгутиконосцы диаметром не более 30 микрон, имеющие шарообразную или веретенообразную форму и снабженные двумя жгутиками. Одеты они в обычную оболочку, покрытую слоем слизи, а сверху дополнительно оснащенную мелкими известковыми пластинками – кокколитами, форма которых специфична для каждого из 200 видов водорослей. От того, как кокколиты расположены по отношению друг к другу, зависит жесткость и эластичность наружного скелета.
В некоторых районах Мирового океана, в частности в Средиземном море, кокколитофориды способны к массовому размножению, создавая огромную плотность до 30 миллионов в литре воды, и таким образом превосходят по продуктивности диатомей и динофлягеллят, составляя от 30 до 98 процентов мелкой части планктона. Значительна роль кокколитофорид и как накопителей углекислого кальция. Они активно участвуют в образовании мощных, в несколько сот метров толщиной, пластов океанических отложений и материковых пород. В мелах именно им принадлежит ведущая роль. Известковые илы покрывают 2/ 3поверхности дна Атлантического океана. В них скелеты кокколитофорид по численности занимают первое место, правда, по массе преобладают раковины фораминифер.
В северных морях заметную часть планктона составляют кремнежгутиковые – одноклеточные водоросли с кремневым наружным скелетом и одним жгутиком. Под оболочкой водорослей лежат золотисто-желтые или бурые хлоропласты, в которых содержатся хлорофилл, фукоксантин и другие каротины. Кремнежгутиковыми питаются личинки иглокожих и других беспозвоночных.
Интересную группу представляют собой широко распространенные разножгутиковые водоросли. Особенно заметна их роль в антарктических морях. При массовом размножении они придают воде зеленоватый оттенок. Водоросли интересны тем, что про запас накапливают в своем теле не крахмал, а жиры. Постоянно встречаются в планктоне и сине-зеленые водоросли. Впрочем, многие их виды предпочитают жить на дне и являются типичными представителями бентоса. По существу, водорослями их считать нельзя. По характеру клеточных ядер их относят к бактериям и называют цианобактериями, хотя среди них встречаются как одноклеточные, так и многоклеточные нитчатые виды, а многие способны образовывать большие скопления в виде корок и кустиков длиной до 20 сантиметров.
Сине-зеленые водоросли содержат хлорофилл, каротиноиды, а также особый фотосинтезирующий пигмент фикобилипротеид, находящийся в специальных тельцах. Они окрашивают водоросли в сине-зеленый или розовый цвет и часто являются причиной цветения воды. Окраска воды Красного моря связана с присутствием там сине-зеленых водорослей. В южных морях, особенно в Индийском океане, при их бурном размножении вода на огромных пространствах приобретает красновато-коричневый цвет. Некоторые виды сине-зеленых водорослей съедобны, а порой обладают способностью фиксации азота воздуха. Видимо, в связи с этим их клетки богаты белком. Вот почему сине-зеленые водоросли считаются перспективным объектом для культивирования с целью получения кормового и пищевого белка.
Плавучие сады занимают верхний стометровый слой воды. Одноклеточные водоросли благодаря незначительной величине легко удерживаются здесь и не тонут. У них велико соотношение размера поверхности и веса, благодаря чему трение о воду значительно и надежно удерживает их в поверхностном слое. Наиболее крупные водоросли, чтобы замедлить падение, пользуются парашютами.
Фабрики фотосинтеза – хромопласты отделены от протоплазмы клетки двумя оболочками. Внутренняя мембрана уложена в хитроумные складки, в результате внутри хромопласта образуется 10–20 плоских мембранных мешочков, уложенных стопкой, как блины. Мембрана каждого отдельного мешочка, или тилактоида, вымощена, как мостовая, микроскопическими «булыжниками» – квантосомами размером около 17,5 нанометра и массой 2 000 000 дальтона. (Дальтон равен 1/ 12массы изотопа углерода C 12.) Эти кусочки мембраны содержат несколько видов пигментов. У диатомей это хлорофилл и ксантофилл, участвующие в фотосинтезе, и маскирующий пигмент диатомин.
Главный пигмент, обеспечивающий фотосинтез, – хлорофилл. Известно несколько его типов. У зеленых водорослей основным является хлорофилл a. Только он обладает фотохимической активностью. Остальные выполняют вспомогательные функции, собирая энергию солнечного света и передавая ее хлорофиллу. В качестве дополнительных пигментов зеленые водоросли используют хлорофилл b, диатомовые и бурые – хлорофилл c, красные – хлорофилл d. Обычные вещества растительных клеток – каротиноиды – используются как дополнительные пигменты. Они настроены на улавливание энергии световых волн иной длины, чем хлорофилл a. Дополнительные пигменты позволяют использовать в фотохимических реакциях до 95 процентов энергии солнечных лучей.
Фотосинтез – это процесс, с помощью которого зеленые растения и некоторые бактерии переводят энергию солнечных лучей в химическую форму, используя ее для синтеза углеводов из углекислого газа и воды. При этом из молекул воды высвобождается кислород, являющийся побочным продуктом фотосинтеза. Для восстановления одной молекулы углекислого газа и выделения одной молекулы кислорода нужно разрушить две молекулы воды, для чего необходима энергия 8 фотонов.
Висячие сады могут существовать лишь там, куда проникает достаточно света. Поверхность воды всегда отражает часть солнечных лучей. Даже в полдень, когда солнце находится в зените, а поверхность океана не тревожит и самая легкая зыбь, в воду проникает лишь 95 процентов света. В другое время дня или при волнении теряется до 30 процентов энергии солнечных лучей. Морские водоросли способны пользоваться ничтожными количествами света. Прозрачность воды оценивается в соответствии с глубиной, на которой еще виден белый диск диаметром в 30 сантиметров. Зона, где еще возможен фотосинтез, в 2,5 раза превышает эту величину. Светоулавливающие пигменты работают эффективно!
В открытом океане глубже всего в воду проникают лучи голубой части спектра, а в прибрежных районах – желтые и зеленые. Планктонные водоросли поглощают преимущественно лучи голубой части спектра. Свет, богатый красными лучами, тормозит фотосинтез. Вот почему наиболее комфортабельные условия для фотохимических реакций создаются на глубине 25–30 метров, куда лучи красной части спектра почти не проникают. В прозрачной воде до глубины 120 метров интенсивность фотосинтеза такова, что выделение водорослями кислорода способно еще компенсировать потребности дыхания. Опускаясь в бездну, одноклеточные водоросли могут осуществлять фотохимические реакции до глубины 300–600 и даже 900 метров, но уже не способны обеспечить свое существование за счет фотосинтеза и, чтобы жить, должны расходовать ранее запасенные вещества. Истратив все резервы, водоросли гибнут, если случайным током воды их не вынесет к свету.