Текст книги "Человеческий мозг. От аксона до нейрона."
Автор книги: Айзек Азимов
сообщить о нарушении
Текущая страница: 20 (всего у книги 25 страниц)
Глава 12. ГЛАЗА
СВЕТ
Земля буквально купается в солнечном свете, и нельзя придумать более важного единичного факта, чем этот. Излучение Солнца (важной, ноне единственной составной частью которого является видимый свет) поддерживает на поверхности земли температуру, которая делает возможной жизнь в том виде, в каком мы ее знаем. Энергия солнечного света на заре истории Земли, вероятно, создала условия для протекания химических реакций, которые закончились появлением первых живых существ. Можно без преувеличения сказать, что свет продолжает созидать жизнь и в наши дни. Солнце – тот неиссякаемый источник энергии, благодаря которому зеленые растения могут превращать двуокись углерода воздуха в углеводы и другие составные части тканей. Так как все животные на земле, включая и пас, людей, прямо или косвенно питаются зелеными растениями, то можно сказать, что и нашу жизнь поддерживает все тот же солнечный свет. Кроме того, все представители животного царства, а в особенности люди, научились воспринимать солнечный свет. Это восприятие настолько важно для интерпретации окружающей нас среды, что утрата зрения считается тяжелейшим увечьем, и даже нечеткость зрения расценивается как серьезный недостаток.
Свет оказал также сильное влияние па развитие современной науки. В течение последних трех столетий не кончались споры относительно природы света и значения его свойств. Взгляды па природу света были выдвинуты физиками еще в XVII столетии. Англичанин Исаак Ньютон считал, что свет состоит из летящих с большой скоростью частиц, а голландец Христиан Гюйгенс полагал, что свет имеет волновую природу. Центральным в споре представлялся тот факт, что свет распространяется по прямой линии и отбрасывает от непрозрачных предметов четкие тени. Летящие с большой скоростью частицы, если на них не действует сила тяготения, действительно будут двигаться по прямой, тогда как опыт человечества учит пас, что волны (будь это волны на поверхности воды или звуковые волны) огибают встретившиеся па их пути препятствия. На полтора столетия в науке одержала верх корпускулярная теория света.
В 1801 году английский физик Томас Янг показал, что свет обладает свойством интерференции. В своем опыте он показал, что если два луча света направить па экран, то в том месте, где лучи встречаются, падая на его поверхность, образуются участки затемнения. Никакие частицы не могли бы вести себя подобным образом, а волны – могли. Дело в том, что если волны одного луча в какой-то фазе были направлены вверх, а волны второго луча в той же фазе – вниз, то при пересечении этих лучей в одной точке эти противоположно направленные волны должны были погасить друг друга.
Волновую теорию удалось весьма быстро согласовать с тем фактом, что свет распространяется по прямой линии, так как Лигу удалось также определить длину световой волны. Как я уже говорил в предыдущей главе, чем меньше длина волны, тем менее она способна огибать препятствия, и тем более склонна она распространяться по прямой линии и отбрасывать тени. Самые короткие волны звука имеют длину около половины дюйма, и уже они проявляют тенденцию к прямолинейному распространению. Вообразите себе, как должен вести себя в этом отношении свет, если длина его волны в среднем равна одной пятидесятитысячной доле дюйма. Для эхолокации свет пригоден больше, чем самый ультразвуковой из ультразвуков, который используется для этой цели в природе. Мы можем определить местоположение предмета по звуку, который он издает, но это определение всегда относительно. Но если мы видим что-то, то точно знаем, где находится видимый нами предмет. «Видеть – значит верить». Верхом скептицизма является фраза: «Не верить своим глазам».
Световые волны несут намного большую энергию, чем звук, с которым мы сталкиваемся в жизни. Этой световой энергии действительно хватает даже на то, чтобы вызывать в некоторых веществах определенные химические изменения. Живому организму вполне по силам ощутить присутствие света по присутствию или отсутствию каких-либо химических изменений, на которые организм может соответствующим образом реагировать. Для этой цели не обязательно получить в свое распоряжение сложно устроенный световоспринимающий орган. Например, растения тянутся к свету или изгибаются ему навстречу, не имея даже намека па такой орган. Реакция па свет полезна – в этом не может быть никакого сомнения. Все зеленые растения должны расти навстречу свету, поскольку они используют для роста его энергию. Водяные животные находят поверхностный слой воды, двигаясь навстречу свету. На суше свет означает тепло, и животные могут либо искать освещенные солнцем места, либо избегать их, в зависимости от времени года, времени суток и других факторов.
Восприятие света с помощью химического механизма может быть как полезным, так и весьма опасным. В живых тканях с их тонким балансом сложных и ломких соединений случайное воздействие света может стать разрушительным. В эволюционном плане оказалось полезным сосредоточить светочувствительные элементы, содержащие определенные химические вещества, в одном участке. Поскольку химические соединения, составляющие это пятно или участок, должны обладать повышенной чувствительностью к свету, то они будут реагировать на слабый свет, который не способен причинить разрушение тканей. Более того, расположение светочувствительного участка в определенной области организма позволило бы защитить от света остальные участки поверхности тела.
(Для того чтобы свет мог воздействовать на какое-либо вещество так, чтобы в нем произошли химические изменения, это вещество должно в первую очередь поглощать свет. Вообще любое вещество поглощает свет определенной длины волны в большей степени, чем световые волны иной длины. Но мы способны воспринимать различные длины волн, ощущая их как различные цвета, как я объясню ниже в этой же главе. Поэтому, когда мы видим светочувствительное вещество, воспринимая свет, который оно либо пропускает, либо отражает, мы видим это вещество окрашенным в какой-нибудь цвет. По этой причине светочувствительные соединения в организме обычно называют пигментами, то есть окрашенными веществами, в особенности прилагая этот термин к зрительным пигментам.)
Даже у одноклеточных организмов есть светочувствительные участки, но специальные светочу ветвительные структуры развиваются, конечно, только у многоклеточных животных, у которых развивается специальный орган – глаз, предназначенный для фоторецепции, что в переводе с греко-латинского означает «восприятие света».
Простейший фоторецептор способен лишь указать наличие или отсутствие света. Тем не менее, если даже организм имеет в своем распоряжении такую примитивную рецепцию, он уже обладает весьма полезным инструментом. Такое животное может двигаться к свету или удаляться от него. Более того, если яркость света вдруг уменьшилась, то это можно воспринять как определенный стимул: что-то произошло между фоторецептором и источником света. Естественным следствием такого поворота событий может стать бегство, так как это «что-то», вполне вероятно, может оказаться врагом.
Более чувствительный фоторецептор может иметь лучшую конструкцию, и одним из способов увеличения чувствительности является увеличение количества света, падающего на светочувствительный пигмент. Этого можно достичь несколькими путями, поскольку свет не всегда распространяется строго по прямой линии. Когда свет переходит из одной среды в другую, он, как правило, преломляется, то есть изменяет направление своего движения. Если поверхность раздела сред плоская, то весь свет, падающий на эту поверхность, преломляется как бы единым блоком. (Это так только в том случае, если все лучи имеют одинаковую длину волны. Если нет, проявляется другой важный эффект.) Если же поверхность раздела искривлена, то все происходит намного сложнее. Если, например, лучи света проходят из воздуха в воду через сферическую поверхность, то они собираются в точке, совпадающей приблизительно с центром сферы, не важно, откуда они падают. Лучи собираются вместе в точке, называемой фокусом («очаг», лат.).
Для того чтобы концентрировать лучи в фокусе, организмы используют не воду, как таковую, а прозрачное вещество, которое, правда, по большей части все же состоит из воды. У наземных животных эта структура похожа на чечевичное зерно, которое по-латыни называется lens, что значит «хрусталик». Хрусталик – это уплощенная сфера, которая, хорошо справляясь со своим делом, весьма экономна по форме, сберегая для глаза дефицитный объем. Хрусталик служит для фокусирования лучей света. Весь свет, который падает на его поверхность, концентрируется в одном узком пятне. Известно, что любой ребенок может с помощью линзы, собирающей лучи, зажечь газету, но не сфокусированный солнечный свет такого делать не в состоянии. Точно так же одиночный фоторецептор может отреагировать на слабый свет, который в отсутствие собирающей линзы – хрусталика – не может создать па светочувствительном пигменте никакого изображения.
Поскольку свет, предоставленный самому себе, распространяется преимущественно по прямой линии, то фоторецептор – не важно, снабжен он хрусталиком или нет, может воспринимать свет только с того направления, с какого он падает па рецептор. Для того чтобы воспринять свет с других направлений, животное должно повернуться, или развить такие фоторецепторы, чтобы они могли воспринимать свет с различных направлений. Последняя альтернатива предпочтительнее, так как позволяет экономить время на поворотах туловищем, а в вечной борьбе за существование и источники пищи дорога бывает каждая доля секунды.
Фоторецепторы достигают своего расцвета и вершины у насекомых. Глаза мухи – это отнюдь не единый орган. Каждый сложный глаз составлен из тысяч отдельных фоторецепторов, каждый из которых повернут на небольшой угол относительно соседних рецепторов.
Муха, не двигаясь с места, может видеть изменения освещенности практически под любым углом. Именно поэтому так трудно поймать муху врасплох и неожиданно прихлопнуть ее мухобойкой. Каждый фоторецептор может регистрировать только «свет» или «темноту», но все вместе они делают нечто большее. Если объект находится между сложным глазом и источником света, то насекомое может составить себе грубое представление о размерах и форме предмета по числу и расположению фоторецепторов, регистрирующих «темноту». Получается довольно грубое мозаичное изображение предмета. Более того, если объект движется, индивидуальные рецепторы по очереди регистрируют появление темноты в направлении движения предмета, а другие рецепторы регистрируют такое же движение светлых элементов упомянутой мозаики. Таким образом, насекомое может составить представление о скорости и направлении движения объекта.
У позвоночных развилась иная система зрения. У этих животных развились большие индивидуальные глаза, которые концентрируют свет, то есть фокусируют его лучи на область светочувствительных клеток. Каждая клетка способна регистрировать тьму или свет. Индивидуальные фоторецепторы имеют размеры клеток, то есть микроскопическую величину, а не такие, как у насекомых, у которых каждый фоторецептор можно увидеть невооруженным глазом. Мозаика позвоночных отличается гораздо большим изяществом и тонким устройством.
Предположим, что вы решили нарисовать портрет человека на листе бумаги, используя для этого черные точки, как в газетных фотографиях (возьмите увеличительное стекло, посмотрите па такую фотографию, и вы поймете, что я имею в виду). Если точки будут крупными, то изображение будет лишено деталей. Чем мельче точки при том же размере рисунка, тем более подробным и детальным будет нарисованное вами изображение.
Точки, которые используют насекомые, имеют размер фасеток их сложных глаз. Точки наших с вами глаз имеют размеры клеток. Таким образом, мы можем разглядеть гораздо больше деталей, чем насекомое. У нас, следовательно, более острое зрение. На том пространстве, которое медоносная пчела может покрыть одной фасеткой, которая будет либо темной, либо светлой, мы можем уместить десять тысяч точек и составить рисунок вместо одного пятна, которое на этом месте видит пчела, и собрать с этого участка намного больше информации.
Использование глаза с фоторецепторами размером с клетку предоставляет его носителю такие преимущества, что такой глаз развился у многих не родственных между собой групп животных. Независимо от позвоночных глаза такой же «конструкции» развились у многих моллюсков. Например, глаз кальмара, несмотря на то что это животное имеет совершенно иную историю развития, чем человек, почти в точности повторяет строение нашего глаза.
ГЛАЗНОЕ ЯБЛОКО
Человеческий глаз, имеющий в диаметре почти дюйм, по форме напоминает сферу, так что название «яблоко» очень подходит к данному предмету. Около пяти шестых поверхности глазного яблока покрыто жесткой волокнистой оболочкой, которая называется склерой («твердый», лат.). Склера окрашена в белый цвет, часть ее видна между веками. В обиходе эту часть называют белком глаза.
В передней части глаза, непосредственно смотрящей на мир, находится прозрачный участок круглой формы диаметром около полудюйма. Это роговица. (Происхождение названия, по-видимому, связано с тем обстоятельством, что тонкая пластинка рога полупрозрачна и, кроме того, рог, так же как роговица, является придатком кожи. Так что название не так уж бессмысленно, как может показаться с первого взгляда.) Роговица не заканчивает очертания глазного яблока. У роговицы несколько более крутая кривизна, и поэтому она выступает над поверхностью глазного яблока, как маленькая сфера, вставленная в большую. Если прикрыть глаз, приложить палец к веку и повернуть глаз в сторону, то палец тотчас же ощутит выпячивание роговицы.
Слой темной ткани, выстилающей внутреннюю поверхность склеры, повторяет гладкие очертания глазного яблока и выступает в полость, образованную выпячиванием роговицы, практически закрывая прозрачный участок. Это сосудистая оболочка, она действительно пронизана сосудами, некоторые из которых явственно просвечивают сквозь белизну склеры. Часть сосудистой оболочки, видная под роговицей, содержит темный пигмент меланин, который окрашивает волосы в темный цвет и придает смуглость коже. У большинства людей достаточно меланина, чтобы придать сосудистой оболочке коричневый цвет. У светлокожих индивидов со средней или сниженной способностью образовывать меланин цвет сосудистой оболочки более светлый. Если пятна меланина разбросаны по сосудистой оболочке достаточно редко, то они не столько поглощают свет, сколько рассеивают его. Свет с веками, которые моментально закрываются, если глазу угрожает хотя бы малейшая опасность. Это движение настолько стремительно, что от его названия в некоторых языках происходят наименования очень коротких промежутков времени. Миг – от времени, в течение которого человек успевает мигнуть. Того же корня немецкое слово ein Augenblick– «мгновение ока». Тем не менее, само движение века не служит причиной раздражения глазного яблока. Во-первых, внутреннюю поверхность века и прилегающую поверхность глазного яблока выстилает очень нежная ткань, которая называется конъюнктивой («соединение», лат.), так как она соединяет веко с глазным яблоком. Конъюнктива всегда бывает влажной, так как ее постоянно смачивают слезы, секрет слезных желез. Слезные железы расположены под костями, образующими верхнюю и наружную части глазницы.
Когда веко закрывается, конъюнктива века скользит по конъюнктиве глазного яблока, причем обе они смазаны тонким слоем жидкости. Для того чтобы поверхность глаза оставалась эластичной и влажной, веко периодически закрывается, то есть человек моргает, покрывая слоем жидкости открытую часть глаза. Мы так привыкаем к этому периодическому миганию, что перестаем его осознавать. Поэтому мы испытываем неудобство, когда нам приходится смотреть на какой-то предмет не мигая. То, что у змеи нет век и она смотрит на мир не мигая, придает ей, по нашему мнению, зловещий вид.
У некоторых животных есть третье веко. Это прозрачная перепонка, которая периодически закрывает глаз, перемещаясь в горизонтальном направлении от внутреннего угла глаза к наружному. Этим движением третье веко очищает глаз, не закрывая его и не создавая опасной слепоты даже на столь короткий промежуток времени. У человека нет мигательной перепонки, как еще называют третье веко, хотя у внутреннего угла глаза можно обнаружить его рудимент.
Слезы также служат для вымывания из глаза инородных тел, которые могут случайно попасть на поверхность глаза. От инородных тел глаза защищены не только веками, но и ресницами, которые обрамляют веки и образуют защитный (хотя и не сплошной) барьер перед глазной щелью. Именно благодаря ресницам мы автоматически прищуриваем глаза, когда нам в лицо дует пыльный ветер. Брови предохраняют глаза от попадания капель дождя и мелких насекомых.
Тем не менее, иногда инородные предметы все же попадают нам в глаза. Иногда ресница может загнуться внутрь и тоже попасть в глаз. Защитное приспособление само превращается в ранящий снаряд. В ответ на такое попадание, которое может быть очень неприятным, слезные железы начинают продуцировать большое количество секрета, глаза начинают слезиться. Глаза слезятся также в ответ на раздражение дымом, химическими веществами (например, широко известным слезоточивым газом), сильным ветром и даже ярким светом. Обычно слезы отводятся от глаза через слезные протоки, расположенные у внутренних углов глаз. Слезная жидкость по ним оттекает в полость носа. Если слезный проток закупоривается во время насморка, то мы сразу чувствуем это, так как одним из самых неприятных симптомов насморка является сильное слезотечение.
В ответ на сильные эмоции слезные железы начинают активно функционировать, в этих случаях продукция слезной жидкости превосходит способность слезноиосовых каналов отводить избыток слез. В таких случаях слезы накапливаются над нижними веками и начинают течь по щекам. Мы плачем. Мы плачем от радости, горя, ярости, от растерянности, да и вообще практически по любому поводу. При этом усиление оттока жидкости в полость носа становится особенно заметным. Поэтому, поплакав, многие люди сморкаются и вытирают носы. Слезы, как и все жидкости тела, содержат довольно много соли, и, кроме того, в них содержится фермент лизоцим, который способен убивать бактерии и тем самым придает слезам дезинфицирующую способность.
Несмотря на все меры, которые приняла природа для защиты глаза, он все же очень уязвим по отношению к инфекциям, раздражению и травмам. Воспаление соединительной оболочки глаза называется конъюнктивитом. Набухшие кровеносные сосуды начинают необычно просвечивать сквозь склеру, глаза «наливаются кровью». У новорожденных детей это случается довольно часто, так как им в глаза часто попадает инфекция при прохождении по родовым путям матери. Конъюнктивит новорожденных предупреждают, закапывая им в глаза раствор азотнокислого серебра или антибиотики.
Есть форма конъюнктивита, которая называется трахомой. Это очень тяжелое заболевание, которое называется так (по-гречески «трахома» означает «плотный») потому, что в исходе болезни развиваются рубцы, которые могут захватить роговицу и привести к слепоте.
Поскольку трахома очень распространена в странах Ближнего Востока, то слепые нищие являются частыми героями сказок «Тысячи и одной ночи».
То, что мы, как и подобает существам с зеркальной симметрией, обладаем двумя глазами, это такой же факт, что у нас два уха, две ноги и две руки. Существование двух глаз очень полезно хотя бы в том отношении, что потеря одного глаза не приводит к полной слепоте и позволяет человеку вести относительно нормальный образ жизни. Однако второй глаз – это не просто запасная часть.
У большинства животных глаза имеют разные поля зрения, и они ничего или почти ничего не видят одним глазом из того, что они видят другим. Это полезно в тех случаях, когда животному все время приходится быть настороже, чтобы не пропустить появления врагов, и оно должно постоянно смотреть во все стороны при максимальном охвате местности. У приматов, однако, глаза помещаются на передней поверхности головы и смотрят в одну сторону, поэтому поля зрения обоих глаз почти полностью перекрываются. Что мы видим одним глазом, то же мы видим и другим, или почти то же. Хотя поле зрения сузилось, зато мы очень ясно видим то, что видим. Более того, мы получили взамен широкого поля зрения способность воспринимать глубину пространства. Мы можем судить об относительном расстоянии до разных объектов, которые мы видим, разными способами, в зависимости от нашего опыта. Зная истинные размеры какого-либо предмета, мы можем судить о расстоянии до него по его кажущемуся размеру. Если мы не знаем его размеров, то можем сравнить его с расположенными рядом предметами известных размеров. Мы можем оценить расстояние до объекта по туманной дымке, которая скрывает его от наших глаз. Мы можем прикинуть расстояние по схождению параллельных линий, которые тянутся от нас к предмету, и так далее. Все это можно делать с помощью одного глаза не хуже, чем с помощью двух. (Если кто-то с умом поменяет задний план, чтобы воспользоваться допущениями, которые мы всегда делаем по этому поводу, то этот человек может обмануть наше восприятие, и мы придем к ложным заключениям относительно формы, размеров предмета и расстояния до него. На этом основаны многие фокусы с обманом зрения, которыми все мы время от времени развлекаемся.) Тем не менее, нам стоит лишь закрыть один глаз, как мы понимаем, что при взгляде на 'Мир одним глазом зрение становится двумерным и плоским. Глубина пространства, которую мы воспринимаем двумя глазами, исчезает. Как видите, при зрении двумя глазами возникает феномен параллакса. Левым глазом мы видим дерево на фоне определенной точки горизонта. То же дерево, в то же время, не сходя с места, правым глазом мы видим на фоне другой точки горизонта. (Попробуйте взять карандаш и посмотреть на него поочередно левым и правым глазом, держа перед собой на расстоянии фута перед глазами. Вы увидите, что карандаш меняет свое положение на фоне окружающих предметов.) Чем ближе к глазу находится предмет, тем больше он смещается при взгляде на него другим глазом. Таким образом, поле зрения левого глаза не совпадает с полем зрения правого глаза, что проявляется разным положением рассматриваемых предметов относительно друг друга при изолированном восприятии полей зрения каждого глаза. Слияние двух полей зрения при рассматривании предметов обоими глазами позволяет нам судить об относительных расстояниях, оценивая (подсознательно и совершенно автоматически) степень разницы в их положениях в двух полях зрения – правом и левом. Такая форма восприятия глубины пространства называется стереоскопическим зрением, которое позволяет оценивать высоту, ширину и глубину объемных предметов при взгляде на них обоими глазами, а не воспринимать их как плоские проекции [14]14
До изобретения кинематографа популярным вечерним времяпрепровождением было рассматривание стереоскопических диапозитивов. Игрушка состояла из пары снимков одной и той же сцены, сделанных с разных точек под разными углами зрения, представляя картины, видимые как бы по отдельности правым и левым глазом. При рассматривании этой пары снимков через специальное приспособление картина становилась трехмерной. В 1950-х годах кинематограф поразила стереоскопическая лихорадка. Кино снимали тоже с двух позиций и проецировали на экран два изображения, которые зрители смотрели через пару противоположно поляризованных стекол.
[Закрыть].
Умение фиксировать взгляд обоих глаз в одном поле зрения не избавляет от необходимости смотреть во всех направлениях. Одной из форм компенсации сужения полей зрения является способность активно и быстро поворачивать шею. Например, сова, которая тоже обладает превосходным стереоскопическим зрением и глаза которой находятся во фронтальной плоскости головы, может быстро поворачивать шею почти на 180 градусов во всех направлениях, так что птица может практически смотреть прямо назад.
Наша шея позволяет нам повернуть голову не более чем на 90 градусов, но, с другой стороны, мы можем поворачивать на значительный угол глазные яблоки. Глазное яблоко человека на этот случай снабжено тремя парами мышц. Одна пара вращает глаз слева направо, одна пара вверх и вниз, и еще одна пара просто вращает глазное яблоко в разных направлениях. В результате расширения полей зрения удается добиться практически молниеносным движением глаз, а не совершать более медленный и неудобный поворот всей головы.
Ограничение полей зрения позволяет неожиданно напугать человека сзади. «Что у меня, глаза на затылке?» – жалуется жертва розыгрыша. Однако для приматов, живущих на деревьях, стереоскопическое зрение, жизненно необходимо, ибо только оно позволяет точно оценить расстояние до ветки, за которую надо уцепиться после прыжка с дерева на дерево. Такое приобретение перевешивает риск, связанный с невозможностью видеть, что происходит сзади. Из-за отсутствия стереоскопического зрения отпадает необходимость синхронизации движений глазных яблок. Действительно, зачем в этом случае глаза должны смотреть в одну сторону? Так обстоит дело, например, у хамелеона, наблюдение за движениями глаз которого не вызывает у человека ничего, кроме удивления. При стереоскопическом зрении, таком, как у нас, глазные яблоки должны двигаться в унисон, чтобы у обоих глаз было одно поле зрения.
Иногда случается, что у человека плохо работают мышцы какого-то одного глаза, поэтому, когда другой глаз фиксируется на каком-то предмете, первый глаз смещается в сторону носа (сходящееся косоглазие) или кнаружи (расходящееся косоглазие). Косоглазие поражает стереоскопичность зрения. Человек (подсознательно) делает один глаз доминирующим и смотрит на мир исключительно им, пренебрегая косящим глазом. Этот последний перестает работать, и острота его зрения падает.
Глаза практически никогда не смотрят параллельно, во всяком случае в норме. Если зрачки обоих глаз направлены на один и тот же предмет, то глаза должны слегка сходиться. Обычно такое схождение, или конвергенция, практически незаметно, но его видно при рассматривании близких предметов. Если вы поднесете карандаш к носу испытуемого, то увидите, как его глаза сходятся к носу. Степень усилия, требуемого для такой конвергенции, дает человеку еще одно средство оценки расстояния до рассматриваемого предмета.
ВНУТРЕННЕЕ УСТРОЙСТВО ГЛАЗА
Непосредственно позади зрачка находится хрусталик. Это образование называется так не потому, что содержит хрусталь. Свое название хрусталик получил за кристальную прозрачность. Хрусталик имеет чечевицеобразную форму (по-латыни хрусталик называется lens,что в переводе означает «чечевица»). Диаметр хрусталика – около трети дюйма. По периметру хрусталик окружен поддерживающей связкой, которая прикрепляет его к сосудистой оболочке непосредственно позади радужной оболочки. Эта часть радужки называется цилиарным (реснитчатым) телом и содержит цилиарную мышцу. Хрусталик и поддерживающая связка делят глаз на два отдела, из которых первый по объему составляет лишь одну пятую часть второго. Меньшая передняя камера (так называется передний отдел) содержит водянистую влагу, которая по составу похожа па спинно-мозговую жидкость, и циркулирует также как эта последняя. Водянистая влага поступает в переднюю камеру глаза из сети капилляров цилиарного тела, а оттекает из нее через узкий проток (канал), расположенный поблизости от места соединения радужной оболочки с роговицей. Этот проток называется шлеммовым каналом, по имени немецкого анатома Фридриха Шлемма, который описал его в 1830 году.
Часть глаза, расположенная позади хрусталика, заполнена гелеобразной субстанцией, стекловидной жидкостью, или, поскольку она не очень похожа на жидкость, стекловидным телом. Стекловидное тело имеет постоянный состав и не участвует ни в какой циркуляции жидкости. Несмотря на желеобразную консистенцию, стекловидное тело сохраняет полную прозрачность. Однако иногда мелкие объекты попадают в стекловидное тело. В таких случаях в его геле появляются чужеродные тела, которые воспринимаются нами как точки или черточки, хорошо видные на нейтральном фоне. Медицинское наименование таких плавающих кусочков (они действительно выглядят так, потому что при попытке фиксировать на них взгляд эти точки и черточки уплывают в сторону или вверх) – летающие мушки. Эти мушки есть почти у всех, и мозг игнорирует их до тех пор, пока ситуация не становится угрожающей. Недавно было показано, что мушки – это красные кровяные тельца, вышедшие из капилляров сетчатки.
Изнутри глаз находится под давлением внутриглазной жидкости, которая помогает жестко сохранять сферическую форму глазного яблока. Это внутриглазное давление приблизительно на 177 мм ртутного столба выше, чем атмосферное давление окружающего воздуха. Давление поддерживается балансом притока и оттока водянистой влаги в полость глазного яблока. Если шлеммов канал по какой-либо причине суживается или закупоривается – вследствие фиброзных разрастаний, инфекционного поражения, воспалением или какими-либо органическими остатками, то водянистая влага теряет способность быстро оттекать из передней камеры глаза, и внутриглазное давление начинает повышаться. Это состояние, по причине, которую я укажу ниже, называется глаукомой. Если внутриглазное давление поднимается слишком высоко, что бывает при глаукоме достаточно часто, то может развиться повреждение зрительного нерва и наступить слепота.
Внутренняя поверхность глазного яблока выстлана сетчаткой (почему она так называется, неизвестно). В сетчатке расположены фоторецепторы. Свет, попадающий в глаз, проходит через роговицу, водянистую влагу, через отрытый зрачок, потом минует хрусталик, и стекловидное тело падает на сетчатку. Лучи света, попадая на роговицу, преломляются, потом фокусируются и падают на сетчатку в виде маленького пятнышка. Естественно, чем четче фокус, тем острее и чувствительнее зрение.
Хрусталик, вопреки общепринятому мнению, не является главной преломляющей и фокусирующей средой. Лучи света почти вдвое сильнее преломляются роговицей, нежели хрусталиком. Но есть один нюанс. Преломляющая сила роговицы фиксирована, а у хрусталика она может изменяться. В обычных условиях, при взгляде вдаль, хрусталик уплощен и мало преломляет свет. Лучи света, достигшие роговицы, приходят от удаленных предметов и расходятся, падая на поверхность глаза в виде практически параллельного пучка. Преломляющей силы роговицы и плоского хрусталика вполне достаточно для того, чтобы сфокусировать параллельный пучок на сетчатке. Однако по мере приближения рассматриваемого предмета к глазу лучи перестают быть параллельными и начинают расходиться. На расстояниях меньше двадцати футов лучи расходятся настолько, что без дополнительной настройки глаз теряет способность фокусировать лучи на сетчатке. Но когда такое происходит, начинает сокращаться цилиарная мышца, уменьшая тем самым напряжение и натяжение поддерживающей связки, вследствие чего эластичный хрусталик принимает более сферическую форму, преломляющая сила его увеличивается, и фокус изображения на сетчатке восстанавливается. Чем ближе рассматриваемый предмет, тем более сферическую форму приходится принимать хрусталику, чтобы сохранить фокус на сетчатке. Такое изменение кривизны хрусталика называется его аккомодацией.