355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Айзек Азимов » Вид с высоты » Текст книги (страница 5)
Вид с высоты
  • Текст добавлен: 26 сентября 2016, 20:24

Текст книги "Вид с высоты"


Автор книги: Айзек Азимов



сообщить о нарушении

Текущая страница: 5 (всего у книги 17 страниц)

Часть II
Химия



5. Совершенный элемент

На заре научной фантастики, когда писатели относились к науке с ребяческой наивностью, они разрешали себе гораздо большую свободу действий – включали в повествование «новый элемент», который обеспечивал успех произведения или по крайней мере спасал его от провала. При помощи «новых элементов» преодолевалось тяготение, атомы увеличивались до видимых размеров, осуществлялись любые превращения материи.

«Новые элементы» стали фетишизировать главным образом после того, как в 1898 году супруги Кюри открыли в урановой руде необычный элемент – радий. Но в том же десятилетии при более драматических обстоятельствах в той же урановой руде был найден еще один элемент. Хотя этот элемент и не произвел такого фурора, как радий, он оказался, как впоследствии выяснилось, самым необычным и обладал такими удивительными свойствами, о которых ни один научный фантаст не смел и мечтать.

В последние годы значение этого элемента для человека стало огромным. Размышляя об этом, я пришел к весьма занятным выводам, о которых вы узнаете в конце главы.


* * *

В 1868 году в Индии наблюдалось полное солнечное затмение, и жаждавшие открытий астрономы собрались, чтобы опробовать новый прибор.

Это был спектроскоп, созданный в конце 50-х годов прошлого века немецкими учеными Густавом Робертом Кирхгофом и Робертом Вильгельмом Бунзеном. Принцип действия спектроскопа заключался в том, что при пропускании сквозь стеклянную призму света, который излучают раскаленные пары элементов, образуется спектр, по частям которого можно было определить длину световой волны. Каждый элемент излучает свет с характерным для него набором длин волн, и таким образом у всех элементов удалось «взять отпечатки пальцев».

Значение нового, аналитического метода исследования было наглядно продемонстрировано в 1860 году, когда Кирхгоф и Бунзен, раскалив образцы некоторых руд, получили спектральные линии, не совпадавшие с уже известными, и в результате открыли редкий элемент – цезий. На следующий год они доказали, что их успех не был случайным, открыв еще один элемент – рубидий.

Убедившись в огромных возможностях нового прибора, астрономы с нетерпением ждали случая опробовать его для исследования атмосферы Солнца (тайну происхождения которой можно было раскрыть только во время затмений), чтобы определить ее химический состав сквозь всю космическую бездну.

Почти сразу же французский астроном Пьер Жюль Жансен обнаружил в спектре желтую линию, которую он не мог отождествить с известными ему спектральными линиями. Английский астроном Норман Локьер, особенно интересовавшийся спектроскопией, сделал вывод, что желтая линия принадлежит новому элементу. По имени греческого бога солнца Гелиоса Локьер назвал этот элемент гелием.

Итак, события развертывались весьма благоприятно, если не считать того, что очень немногие из земных химиков решились поверить в неземной элемент, открытый при помощи какой-то обыкновенной полоски света. К предположению Локьера одни отнеслись безразлично, другие насмешливо.

Конечно, сейчас такой консерватизм кажется позорным, хотя, в сущности, именно в наши дни мы можем найти оправдание этому скептицизму: ведь не обязательно каждая новая линия спектра принадлежит новому элементу.

В конце концов существование гелия было доказано, и, подстегнутые этим успехом, астрономы стали находить в космосе все «новые элементы». Появление таинственных линий излучения в спектрах некоторых туманностей было приписано элементу, названному небулием (от латинского nebula – туман). Неизвестные спектральные линии в солнечной короне приписывались «коронию», а подобные же линии в северном сиянии – «геокоронию».

Однако все эти «открытия» оказались заблуждением. «Новые» линии были обусловлены излучением старых, хорошо известных элементов, находившихся в необычных условиях, которые спустя много лет удалось воспроизвести в лабораториях. «Небулий» и «геокороний» оказались просто высокоионизированными смесями кислорода и азота. Линии «корония» свойственны высокоионизированным металлам (например, кальцию). Как видите, одно лишь существование линии «гелия» ни в коей мере не доказывало существования нового элемента.

Теперь, для того чтобы не нарушать логики в ходе наших рассуждений, придется углубиться в историю еще на один век и встретиться с человеком, который опередил свое время даже больше, чем Локьер.


* * *

В 1785 году английский физик Генри Кавендиш исследовал воздух, так как именно в то время было сделано открытие, что воздух состоит из двух газов – кислорода и азота. Азот – инертный газ, то есть он не соединяется с другими веществами так активно, как кислород.

В действительности азот «особо отличался» тем, что в нем обнаружили ряд отрицательных свойств. Оказалось, что он без цвета, запаха и вкуса, не растворяется и не горит. Установили также, что хотя сам по себе он не ядовит, но жизни не поддерживает.

Кавендиш открыл, что, пропуская через воздух электрические разряды, можно заставить азот соединяться с кислородом. Полученное соединение – окись азота – ему удалось отделить при помощи соответствующих химикалий. Добавляя к воздуху кислород, ученый удалял из него все большее и большее количество азота, пока наконец у него не остался крохотный пузырек газа, который составлял всего сотую часть объема воздуха, первоначально взятого для опыта. С этим пузырьком он ничего не мог поделать и заявил, что, по его мнению, в атмосфере присутствует небольшое количество неизвестного газа, еще более инертного, чем азот.

Это был четкий эксперимент, проделанный выдающимся ученым, который сделал, как мы теперь знаем, совершенно правильный логический вывод. Тем не менее работу Кавендиша игнорировали целое столетие.

В 1882 году английский физик Джон Уильям Стретт (более известный под именем Рэлея) измерял плотность газообразных водорода и кислорода, с тем чтобы уточнить их атомные веса; заодно он решил исследовать и азот. Каждый из этих элементов был получен различными способами, и всякий раз плотности водорода и кислорода оставались одними и теми же. Совсем иначе обстояло дело с азотом.

Рэлей получил азот из аммиака и обнаружил, что удельный вес его равен 1,251 грамма на литр. Затем он выделил азот из воздуха, удалив из него кислород, двуокись углерода и водяные пары; этот азот имел удельный вес 1,257 грамма на литр. Несмотря на все попытки, Рэлею не удавалось устранить выявившееся расхождение.

Отчаявшись найти решение, он опубликовал результаты своих опытов в научном журнале и попросил читателей высказаться по этому поводу, однако никто не откликнулся. Сам Рэлей выдвинул несколько возможных объяснений: атмосферный азот мог содержать примеси более тяжелого кислорода или трехатомные молекулы N3, то есть что-то вроде азотного аналога озона; азот из аммиака мог быть загрязнен более легким водородом или атомарным азотом. Он проверил свои предположения, но все они не подтвердились.

Лет десять спустя шотландский химик Рамзай начал работать в лаборатории Рэлея и, взявшись за раскрытие тайны азота, вернулся к опытам Кавендиша. Он предположил, что в атмосфере имеется небольшое количество газа, который остается с азотом, после того как все прочие компоненты удалены, и, поскольку этот газ, очевидно, тяжелее атмосферного азота, он-то и вызывает «незаконное» повышение удельного веса.

В 1894 году Рамзай повторил опыт Кавендиша, применив более совершенную методику. Он пропускал атмосферный азот над раскаленным магнием. Азот оказался не настолько инертным, чтобы не вступить при таких условиях в реакцию с металлом. В результате образовался нитрид магния. Однако в реакцию вступал не весь азот. Как и у Кавендиша, у Рамзая тоже оставался загадочный газ, который оказался до такой степени инертным, что даже пышущий жаром магний не смог на него воздействовать. Рамзай измерил удельный вес этого газа, и он оказался заметно выше, чем у азота. Какой же следовало сделать вывод: открыт ли новый элемент, или это просто более «тяжелая» разновидность азота – N3?

Но, к счастью, в это время появился спектроскоп. Неизвестный газ подвергли исследованию и, обнаружив в его спектре совершенно новые линии, сразу сделали вывод, что это новый элемент. Его назвали аргоном, что в переводе с греческого значит ленивый, ибо он не вступал ни в какие химические соединения.

В конце концов объяснение чрезвычайной инертности аргона было найдено. Каждый элемент состоит из атомов, имеющих определенное число электронов, находящихся на различных орбитах (подобно отдельным слоям в луковице). Чтобы максимально упростить объяснение, скажу только одно: атом наиболее стоек, когда на самой удаленной от ядра орбите-оболочке находится восемь электронов. Сущность химических реакций заключается в том, что атом либо освобождается от нескольких электронов, либо набирает их, добиваясь, таким образом, желанного числа восемь.

А что произойдет, если у элемента в наружной «оболочке» с самого начала имеется восемь электронов? Что ж, ему повезло, так как тогда вообще нет надобности вступать в реакцию, и элемент остается инертным. Примером тому служит аргон. У него три электронные оболочки, и в третьей, самой удаленной от центра, – восемь электронов.

После открытия аргона были найдены и другие инертные газы: неон – с двумя электронными оболочками; криптон – с четырьмя оболочками; ксенон – с пятью; радон – с шестью. И в каждом случае на самой удаленной оболочке находилось по восемь электронов. (Криптон, ксенон и радон, как обнаружилось в 1962 году, вступают в некоторые химические реакции, но об этом я расскажу в следующей своей книге.)

Однако я упомянул только пять инертных газов; в настоящее время нам известно шесть. А где же шестой? Ах, да шестой – это гелий. Так давайте же вернемся к рассказу о гелии.


* * *

Как раз перед открытием инертных газов, а точнее, в 1890 году, американский химик Уильям Фрэнсис Гиллебранд, исследуя минерал, содержавший уран, заметил, что из него выделяется небольшое количество инертного газа. Газ был без цвета, вкуса и запаха, не растворялся и не горел, так что, по мнению Гиллебранда, он не мог быть ничем иным, кроме азота.

Когда Рамзаю – несколько лет спустя – попала в руки эта работа, он не удовлетворился таким объяснением. Оно основывалось только на том, что газ не имел цвета и запаха, не растворялся и не горел. Слабые доводы. Рамзай достал другой урановый минерал, собрал инертный газ и изучил его спектр.

Спектральные линии этого газа были совершенно непохожи на линии азота. Они оказались точно такими же, как и те, о которых давным-давно сообщали Жансен и Локьер, обнаружившие их в атмосфере Солнца. Итак, в 1895 году, через 27 лет после того, как Локьер впервые высказал свое предположение, солнечный элемент был найден на Земле. Гелий действительно существовал и был элементом. К счастью, и Жансен и Локьер дожили до признания их открытия (Жансен умер в 1907 году, Локьер – в 1920-м).

Гелий сразу же привлек к себе внимание. Он был самым легким из инертных газов, легче всех известных веществ, кроме водорода. Атом гелия имеет всего одну электронную оболочку; как известно, в этой внутренней оболочке может быть всего два электрона. Эти два электрона у гелия есть, и потому он оказался не просто инертным, а самым инертным из всех инертных газов, а следовательно, из всех известных веществ.

Крайняя инертность гелия была обнаружена в точке его сжижения, то есть температуре, при которой он может быть превращен в жидкость.


* * *

Когда близлежащие атомы (или молекулы) вещества сильно притягиваются друг к другу, образуется цельный кусок и мы имеем твердое тело. При нагревании оно может превратиться в жидкость или даже в газ. Переход в эти состояния совершается при таких температурах, когда тепловая энергия преодолевает силы притяжения между атомами или молекулами. Чем слабее силы притяжения, тем ниже температура, при которой происходит испарение вещества.

Если взаимодействие между атомами или молекулами достаточно слабое, то для испарения вещества требуется так мало тепла, что оно остается газообразным и при обычных условиях, а иногда даже при очень низких температурах.

Силы притяжения особенно слабы в тех случаях, когда электроны на внешней оболочке образуют устойчивую восьмиэлектронную конфигурацию. Молекула азота состоит из двух атомов азота, которые располагаются так, что каждый обладает частью из восьми электронов внешней оболочки. Сказанное верно и для других простых молекул, например хлора, кислорода, окиси углерода, водорода и прочих. Поэтому все эти газы сжижаются только при очень низких температурах.

Мало-помалу химики усовершенствовали способы достижения низких температур и научились сжижать один газ за другим. Нижеприведенная таблица иллюстрирует, как постепенно удавалось добиться все более низких температур. Точки сжижения даны в градусах по Кельвину, иначе говоря, они выражены числом градусов по Цельсию с началом отсчета от абсолютного нуля.


И вот в течение 70–80-х годов прошлого столетия, когда велась напряженная работа по получению низких температур, стало совершенно очевидно, что водород окажется самым твердым орешком. Вообще, температура сжижения падает вместе с плотностью, а водород в то время считался наименее плотным из всех известных газов и должен был иметь самую низкую температуру сжижения. Поэтому, когда впоследствии все же удалось получить жидкий водород, казалось бы, пала последняя крепость.

Однако всего за несколько лет до «покорения» водорода это достижение потеряло свое значение, потому что уже были открыты инертные газы. Атомы инертных газов, электронные оболочки которых укомплектованы, испытывают столь слабое притяжение друг к другу, что их температура сжижения значительно ниже, чем у других газов такой же плотности. Это видно из следующей таблицы, в которой даны все инертные газы, кроме гелия:


Итак, радон, ксенон и криптон, которые плотнее хлора, сжижаются при более низкой температуре. По сравнению с этиленом аргон более плотный газ, а сжижается он при значительно более низкой температуре, но неон, который в десять раз плотнее водорода, сжижается почти при такой же низкой температуре, как и этот самый легкий из газов.

Последний инертный газ, гелий, который только в два раза плотнее водорода, должен по логике вещей сжижаться гораздо труднее. Так оказалось и на самом деле. При температуре жидкого водорода гелий упорно остается в газообразном состоянии. Даже когда температура падает до точки затвердевания водорода (13° по Кельвину), гелий остается газом.

Гелий был сжижен лишь в 1908 году. Это удалось сделать голландскому физику Хейке Каммерлинг-Оннесу. Гелий переходит в жидкое состояние при 4,2° по Кельвину. Каммерлинг-Оннесу удалось охладить гелий до 1° по Кельвину путем испарения жидкого гелия в условиях полной тепловой изоляции.

Но даже при этой температуре не было никаких признаков, что гелий переходит в твердое состояние. И действительно, теперь установлено, что при обычных давлениях гелий не переходит в твердое состояние даже при абсолютном нуле, когда затвердевают все известные вещества. Гелий (странный элемент!) остается жидким. И это вполне объяснимо. Хотя обычно утверждают, что при абсолютном нуле прекращается всякое движение атомов и молекул, квантовая механика показывает, что очень небольшое остаточное движение все-таки есть. Этой малой энергии достаточно, чтобы гелий оставался в жидком состоянии. Но при температуре 1° по Кельвину и давлении около 25 атмосфер гелий становится твердым.


* * *

Жидкий гелий может проявлять и более любопытные свойства, чем просто устойчивость к низкой температуре; при охлаждении до температуры ниже 2,2° по Кельвину свойства его неожиданно меняются. Во-первых, гелий внезапно становится почти отличным проводником тепла. В любой обычной жидкости в пределах нескольких градусов от температуры кипения всегда существуют более горячие участки, где тепло аккумулируется быстрее, чем отводится. Появляются пузырьки пара, и начинается знакомое нам «волнение», которое мы связываем с кипением.

Гелий, имеющий температуру выше 2,2° по Кельвину (гелий-I), ведет себя точно так же. Однако гелий, охлажденный до температуры ниже 2,2° по Кельвину (гелий-II), испаряется без каких-либо волнений; слои атомов срываются прямо с поверхности. Теплопроводность этой жидкости (гелий-II) настолько высока, что ни одна ее часть не может быть значительно теплее другой и пузырьки не появляются вовсе.

Еще одна особенность: гелий-II практически не вязок. Он течет лучше, чем газ, и проходит сквозь такие отверстия, через которые газ не может проникнуть. Если его заключить в открытый сосуд, то он сперва покроет тонким слоем его внутренние стенки, как бы поползет по ним вверх, затем перельется через край и стечет по внешней стенке с такой скоростью, как будто он льется через отверстие в дне этого сосуда. Это явление называется сверхтекучестью.

При охлаждении до температуры жидкого гелия необычные свойства проявляются и у других элементов. В 1911 году Каммерлинг-Оннес определял электрическое сопротивление ртути при температуре жидкого гелия. Сопротивление падало вместе с температурой, и Каммерлинг-Оннес, хотя и предполагал, что оно упадет до невиданно низкого уровня, все же не ожидал его полного исчезновения. Однако это произошло. При температуре 4,12° по Кельвину электрическое сопротивление у ртути полностью исчезло. Это явление называется сверхпроводимостью.

Не только ртуть, но и другие металлы можно сделать сверхпроводниками. Есть несколько веществ, которые могут стать сверхпроводниками при температуре жидкого водорода. Некоторые сплавы ниобия становятся сверхпроводимыми уже при температуре 18° по Кельвину.

Сверхпроводимость влечет за собой появление нового качества, связанного с магнитным полем. Некоторые вещества диамагнитны, то есть они, по-видимому, отталкивают магнитные силовые линии. Через такие вещества проходит меньше силовых линий, чем через вакуум равного объема. А вещества, обладающие сверхпроводимостью, к тому же и совершенно диамагнитны; силовые линии через них вообще не проходят.

Однако, если создать достаточно сильное магнитное поле, некоторые силовые линии в конце концов смогут проникнуть в диамагнитное вещество, и тогда стоит нарушить одно необычное свойство, как все прочие идеальные свойства, включая сверхпроводимость, также меняются. (Странно говорить о совершенстве в природе. Обычно совершенство – это мечта теоретика: идеальный газ, идеальный вакуум и так далее. И только при температуре жидкого гелия в реальном мире, по-видимому, появляется подлинное совершенство.)


* * *

На явлении сверхпроводимости основано изобретение маленького устройства, которое действует как выключатель. В простейшем виде оно состоит из тонкой танталовой проволочки, намотанной на проволоку из ниобия. Если опустить это устройство в жидкий гелий, то ниобиевая проволока приобретает свойство сверхпроводимости, что позволяет пропускать по ней очень слабый электрический ток. Однако это свойство сохраняется только до тех пор, пока тока нет в танталовой обмотке. В противном случае создается магнитное поле, которое нарушает сверхпроводимость, и ток перестает течь по ниобиевой проволоке.

Если такой «криотрон» соответствующим образом отрегулировать, то его можно применять вместо электронных ламп или транзисторов. Крошечные приборы, состоящие из хитро сплетенных проволочек, смогут заменить большое число транзисторов и громоздких электронных ламп. Сложнейшая вычислительная машина будущего, вполне вероятно, будет величиной с письменный стол или даже меньше, если только ее полностью «криотронизируют».

Единственный недостаток такой машины заключается в том, что она может работать, только если ее целиком погрузить в жидкий гелий. Жидкий гелий будет при этом непрерывно испаряться, и каждая вычислительная машина станет в этих условиях причиной постоянного уменьшения запасов земного гелия.

Естественно, сразу возникает вопрос: а хватит ли на Земле гелия, чтобы поддерживать работу таких вычислительных машин, если они будут широко использоваться человечеством?

Главным и, в сущности, единственным источником не только гелия, но всех инертных газов является земная атмосфера, которая содержит на каждый миллион граммов:

аргона … 12 800 граммов

неона … 12,5 грамма

криптона … 2,9 грамма

гелия … 0,72 грамма

ксенона … 0,36 грамма

радона … следы

Это означает, что всего в атмосфере имеется 4 500 000 000 тонн гелия. На первый взгляд эта цифра может показаться весьма внушительной, пока мы не вспомним, как сильно разбавлен этот гелий другими компонентами воздуха – кислородом и азотом. Гелий можно получать из жидкого воздуха, но ценой страшно больших затрат.

(Позвольте мне здесь перебить ход своих рассуждений и сообщить вам, что атмосферный гелий почти полностью состоит из единственного изотопа – гелия-4; правда, обнаруживают и следы стабильного изотопа, гелия-3, который образуется за счет расщепления радиоактивного водорода-3, в свою очередь возникающего в результате бомбардировки атмосферы космическими частицами. При тщательном изучении чистого гелия-3 установлено, что он превращается в жидкость только при 3,2° по Кельвину, то есть на целый градус ниже, чем обычный гелий. Однако гелий-3 не является эквивалентом сверхтекучего гелия-II. На миллион атомов атмосферного гелия приходится только один атом гелия-3, и, следовательно, его запас в атмосфере исчисляется всего в 45 000 тонн. Гелий-3, по-видимому, самый редкий из всех стабильных изотопов, имеющихся на Земле.)

Гелий находят не только в атмосфере, но и в почве. Уран и торий испускают альфа-частицы, которые являются ядрами атомов гелия. Следовательно, в течение миллиардов лет происходил процесс постепенного накапливания гелия в земной коре (вспомните, что впервые он был найден на Земле в урановой руде, а не в атмосфере). Считается, что по весу в земной коре гелия содержится примерно 0,003 миллиграмма на килограмм. Это означает, что запас гелия в земной коре примерно в 20 миллионов раз превышает запас гелия в атмосфере, но тем не менее «разбавлен» он в земной коре еще больше, чем в атмосфере.

Однако гелий – это газ. Он собирается в трещинах и пустотах, и при благоприятных условиях его можно извлекать из земли. В частности, в США скважины, из которых добывают природный газ, часто дают до одного процента гелия, а иногда и до 8 и даже до 10 процентов.

Но запасы природного газа довольно ограниченны, к тому же мы очень быстро исчерпываем их. Когда все запасы газа иссякнут, естественно, исчезнет и этот источник гелия, и нам останется только гелий, находящийся в атмосфере, и гелий, сильно рассеянный в земной коре.

Теперь представим себе общество будущего, оснащенное вычислительными машинами и расходующее последние несколько миллионов кубических метров гелия, который еще можно легко добыть. А что дальше? Наскрести ничтожнейшие его количества из воздуха и из земли? Иметь дело с жидким водородом? Отказаться от «криотронизированных» вычислительных машин и попытаться вернуться к малоэффективным гигантским электронным машинам прошлого? Допустить гибель культуры, которая будет полностью зависеть от кибернетических машин?


* * *

Я много думал об этом и вот к каким выводам пришел.

Общество, оказавшееся в таком угрожающем положении, должно развивать межпланетные путешествия (а почему бы и нет?), с тем чтобы людям не пришлось искать гелий только на Земле.

Конечно, самый значительный источник гелия в солнечной системе – это само Солнце, но в предвидимом будущем я не нахожу никакого способа, который дал бы нам возможность добыть солнечный гелий.

Другой богатейший источник гелия – Юпитер, с атмосферой глубиной, по-видимому, в тысячи километров. Она обладает исключительно высокой плотностью и, очевидно, на 1/3 состоит из гелия. Недавно были высказаны предположения, что атмосфера Юпитера почти целиком состоит из гелия. Как «выдоить» из Юпитера гелий, представить себе трудно, но можно.

Предположим, человечество сможет создать базу на Юпитере V, самом близком к Юпитеру спутнике. База будет расположена в каких-то 110 000 километров от видимой поверхности Юпитера (то есть от верхних слоев атмосферы). Значительное количество гелия в смеси с другими газами должно находиться даже в еще более высоких слоях атмосферы Юпитера (а следовательно, и ближе к Юпитеру V).

Теперь представьте себе армады управляемых с базы космических кораблей, которые устремляются к поверхности Юпитера и возвращаются с запасом сжатого газа. Такой газ легко разделить на составные части; гелий гораздо легче сжижать на Юпитере V, чем на Земле, так как температура там значительно ниже.

Возможно, удастся собрать, сжижить и запасти несчетное число тонн гелия. По логике вещей мы должны были бы воздержаться от отправки этого бесценного запаса куда бы то ни было, даже на Землю. Зачем тратить энергию и нести колоссальные потери, которые неизбежны при такой транспортировке?

Почему бы вместо этого не построить вычислительные машины прямо на Юпитере V?

Вот об этом-то я и обмолвился в начале главы. Думаю, что именно Юпитер V будет нервным центром солнечной системы. Я вижу, как этот маленький мир, диаметром 100 километров, обращается вокруг переполненного гелием Юпитера, извлекает из него столь необходимый для человечества газ и как постепенно на этом мире создается единый комплекс кибернетических машин, погруженных в самую необычную жидкость, которая когда-либо существовала.

Однако, по-видимому, мне повезет меньше, чем Жансену и Локьеру. Можете назвать меня пессимистом, но мне почему-то кажется, что я не увижу всего этого собственными глазами.


    Ваша оценка произведения:

Популярные книги за неделю