Текст книги "Вид с высоты"
Автор книги: Айзек Азимов
сообщить о нарушении
Текущая страница: 3 (всего у книги 17 страниц)
3. Вот она, жизнь!
Мой сын страстно увлекается космосом. Это не имеет совершенно никакого отношения к занятиям отца, к которым он питает полнейшее равнодушие. Так или иначе ради этого увлечения мы купили ему однажды пластинку с записью юмористической сценки под названием «Астронавт» (которую он вскоре заиграл до такой степени, что иголка стала извлекать звук с обеих сторон одновременно).
В одном месте этой пластинки ведущий спрашивает астронавта, рассчитывает ли он найти жизнь на Марсе, и астронавт задумчиво отвечает: «Возможно… если я сяду на планету в выходной, упившись до зеленого змия».
Так что же все-таки мы подразумеваем под жизнью? Нам вовсе нет нужды лететь на Марс, чтобы найти нерешенные проблемы. Горячих споров хватит и на Земле.
Интуитивно все мы представляем себе (или думаем, что представляем), что такое жизнь. Мы знаем, что мы живы, что устрица живая, а камень нет. И мы совершенно уверены, что столь различные организмы, как морские анемоны, гориллы, пальмы, губки, мхи, солитеры и бурундуки, – все живые… если только они не мертвы.
Трудности возникают, как только мы делаем попытку выразить наши интуитивные представления словами; именно этим я и хочу сейчас заняться.
Существует много способов, при помощи которых можно сформулировать определение. Можно, например, дать определение функциональное и можно – структурное.
Так, ребенок мог бы сказать: «Дом – это то, в чем живут» (функциональное определение). Он мог бы сказать и по-другому: «Дом – это то, что сделано из кирпича» (структурное определение).
Оба определения неудовлетворительны, так как жить можно и в палатке, которая все же обычно не считается домом, а забор, хоть и сделанный из кирпича, домом тоже считать нельзя.
Объединив оба определения, мы получим новое, хотя и не очень совершенное, но все же лучше прежних. Таким образом, сказав, что «дом – это то, что построено из кирпича и в чем живут люди», мы сразу исключим палатки и заборы. (Но одновременно это определение исключает также каркасные дома, не говоря уже об обычных кирпичных домах, которые пустуют, когда хозяева уезжают в отпуск.)
Попытаемся применить те же рассуждения, для того чтобы дать определение понятию жизни. Например, когда я учился в школе, то чаще всего встречался с функциональным определением, которое звучало приблизительно так: «Живой организм характеризуется способностью ощущать окружающую среду и соответственно реагировать на нее, поглощать пищу, переваривать, впитывать, усваивать, расщеплять ее и использовать полученную при этом энергию, освобождаться от отходов, расти и воспроизводиться». (Когда в ходе повествования мне придется возвращаться к этому определению, я буду ограничиваться словами «ощущать среду», добавляя «и т. д.», дабы не портить ленту моей пишущей машинки и сетчатку ваших глаз.)
Но всегда возникало сомнение: а действительно ли это определение является полным. Ведь и неодушевленные предметы могут имитировать эти функции. Кристаллы, например, растут, и если рассматривать насыщенный раствор как своего рода пищу, то, безусловно, мы сможем доказать, что она поглощается и усваивается. Можно сказать, что огонь переваривает топливо и освобождается от отходов, – и, уж конечно, растет и воспроизводится. Вдобавок уже сконструированы очень простые роботы, которые могут имитировать многие из этих функций жизни (кроме роста и воспроизведения) с помощью фотоэлементов и механических частей.
Я пробовал по-иному сформулировать функциональное определение жизни в книге «Жизнь и энергия» (1962). Там я дал общее представление о термодинамике и написал: «Живой организм характеризуется способностью временно и локально понижать энтропию».
Однако в таком виде это определение звучит просто ужасно, так как солнечное тепло тоже может вызывать временное и локальное понижение энтропии – например, всякий раз, когда под его воздействием испаряется лужа воды.
В данной главе я намерен объяснить, почему я не собираюсь оставлять это определение неизменным. (Если вы не знаете, что такое энтропия, то загляните в десятую главу.)
Очевидно, нам нужно внести в такое определение структурный элемент. Но можем ли мы это сделать? Все формы жизни, какими бы они ни были по внешнему виду, выполняют ряд общих функций. Все они ощущают среду… и т. д., и поэтому-то функциональное определение дать очень легко. Но одинаковы ли они по своей структуре? Уже сам факт, что я употребил выражение «какими бы они ни были по внешнему виду», говорит о том, что они неодинаковы.
Это, однако, верно только потому, что мы полагаемся на внешнее разнообразие, в котором можно убедиться невооруженным глазом. А что будет, если мы вооружимся соответствующими линзами?
* * *
Еще в 1665 году английский ученый Роберт Гук опубликовал книгу, в которой описал наблюдения, сделанные им с помощью микроскопа. В частности, он изучил тонкий срез пробки и нашел, что она вся изрешечена крохотными прямоугольными дырочками. Он довольно удачно назвал эти дырочки «клетками».
Но пробка – это мертвая ткань даже тогда, когда она образуется на живом дереве. На протяжении последующих полутора столетий ученые изучали под микроскопом живые ткани или ткани, которые были живыми, до того как их подготовили для изучения. Они обнаружили, что такие ткани тоже разделены на крошечные ячейки. Название «клетка» сохранилось и для них, хотя в живой ткани такие ячейки уже не пустые дырочки, а заполнены веществом.
И только в 1830 году, основываясь на всех накопленных к тому времени данных, два немецких биолога, Маттиас Якоб Шлейден и Теодор Шванн, смогли подарить миру обобщение, которое гласило, что все живые организмы состоят из клеток.
Вот вам и структурное определение: «Живой организм состоит из клеток».
Хотя такое определение и звучит хорошо, но оно не допускает обратного толкования. Нельзя сказать, что предмет, состоящий из клеток, жив, так как мертвый организм точно так же состоит из клеток, только клетки его мертвы.
И нельзя исправить определение, сказав, что живой организм состоит из живых клеток, потому что это будет переливанием из пустого в порожнее. Кроме того, в организме, только что умершем, многие клетки, возможно даже большая их часть, живы, а организм все равно мертв.
Мы добьемся большего успеха, если, как в случае с определением того, что такое дом, подойдем к нашему определению одновременно со структурной и с функциональной точек зрения и скажем: «Живой организм состоит из клеток и характеризуется способностью ощущать среду и т. д.».
Это определение включает все столь различные между собой типы организмов, которые мы интуитивно называем живыми, и исключает все прочее, имитирующее функции, которые мы ассоциируем с жизнью, – вроде кристаллов, речных дельт, огня, роботов и абстракций: ведь все то, что мы перечислили, не имеет клеточного строения. В то же время определение исключает останки когда-то живших организмов (даже если они умерли только что): ведь мертвые предметы, хотя и состоят из клеток, не выполняют функций, связанных с жизнью.
* * *
Несколькими абзацами выше я упомянул «живые клетки». Что это значит?
В данном мною только что определении живого организма говорится, что он состоит из клеток. Но подразумевается ли при этом, что сами клетки тоже живые? Можно ли утверждать, что все части человеческого тела непременно живые и что все клетки, следовательно, должны быть живыми, поскольку они входят в живой человеческий организм?
Совершенно очевидно, что подобное утверждение было бы ошибочным. Волосы не являются живыми, хотя, они растут на нашем теле. Кожа наша покрыта слоем клеток, которые омертвели, хотя и не перестали быть частью живого организма.
Если мы хотим решить, живы ли клетки, мы не должны ставить выяснение этого вопроса в зависимость от определения живого организма. Мы должны применить соответствующий критерий жизни к самой клетке и задаться вопросом, может ли она ощущать среду и т. д., то есть отвечать по крайней мере функциональному определению живого.
Тут же напрашивается отрицательный ответ, так как многие клетки явно лишены некоторых существенных функций живого. Клетки нашей нервной системы, например, неспособны воспроизводиться. Мы рождаемся с тем же числом нервных клеток, которое имеем всю жизнь; любое изменение впоследствии ведет только к худшему, так как нервная клетка, переставшая выполнять свои функции, не заменяется.
В общем, ни одна из наших клеток, отделенная от своих соседок и предоставленная самой себе, не сможет жить и долго выполнять свои функции. В то же время различные клетки тела способны сами выполнять каждую из функций, связанных с жизнью. Некоторые клетки ощущают свою среду, другие соответственно реагируют на нее; некоторые управляют пищеварением, другие всасывают питательные вещества; все клетки ассимилируют, производят и используют энергию; некоторые клетки растут и воспроизводятся постоянно, всю жизнь, и даже в том случае, когда организм в целом перестает расти и воспроизводиться. Короче говоря, функции живого организма являются в некотором смысле суммой функций клеток, из которых он состоит.
Теперь мы можем сказать: «Живой является клетка, некоторым действенным образом способствующая функционированию организма, в который она входит». Сразу же возникает вопрос, что мы подразумеваем под «некоторым действенным образом», но это я выношу на ваш суд и скажу лишь, что определение призвано исключить вопрос о мертвых клетках кожи, которые служат нашему телу лишь в качестве защиты, но не выполняют каких-либо действенных функций. Поскольку клетка способна некоторое время продолжать привычную деятельность и после смерти организма, мы можем говорить о живых клетках в мертвом теле.
Но нам остается решить еще один немаловажный вопрос. Теперь у нас есть два разных определения: одно – для живой клетки, и другое – для живого организма. Это значит, что понятие о живой клетке человеческого организма отличается от понятия о человеке как существе. И в этом есть свой смысл, так как, несмотря на то что функции человеческого организма могут рассматриваться как сумма функций его клеток, жизнь человека – это все-таки нечто большее, чем сумма жизни его клеток.
Допустим на минуту, что можно взять живые клетки и произвольно соединить их, – все равно человека не получится. Человек не просто состоит из клеток. Не менее важна клеточная организация. Очень легко оборвать человеческую жизнь, разрушив клеточную организацию, но фактически не тронув ни одной из самих клеток.
Верно ли то, что сказано о человеческих клетках, также и для клеток других организмов? Да, по крайней мере для любого достаточно сложного организма.
Однако, по мере того как мы переходим к все более и более простым организмам, значение фактора клеточной организации постепенно уменьшается. Иными словами, чем проще многоклеточный организм, тем дальше может заходить разрушение организации без того, чтобы жизнь при этом прекратилась. Мы можем заново отрастить ноготь, а у рака отрастает оторванная клешня. Морскую звезду можно разрубить на куски, и каждый вырастет в морскую звезду, а если расчленить губку на клетки, то они заново сгруппируются и вновь образуют губку. В организме, состоящем более чем из одной клетки, клеточная организация всегда играет важную роль.
Но ведь существуют и организмы, состоящие всего из одной клетки. Их открыл голландский ученый Антон ван Левенгук. Такой одноклеточный организм, как амеба, отвечает всем функциональным требованиям, предъявляемым к живому организму, то есть способен ощущать среду и т. д. Но амеба не подходит под структурную часть определения, потому что не состоит из клеток. Она сама клетка.
Следовательно, наше определение нужно несколько видоизменить: «Живой организм состоит из одной и более клеток и характеризуется способностью ощущать среду и т. д.».
Из этого следует вывод, что клеточная организация не является непременным условием для всех без исключения типов живых организмов. По-видимому, для существования живого организма требуется только наличие самой клетки. Вот почему в XIX веке было принято говорить, что клетка – это «единица жизни», и с тех пор биологи прилагают все больше и больше усилий к ее дальнейшему изучению.
* * *
Теперь мы можем задаться вопросом, действительно ли клетка – это наименьшая единица жизни, или существует нечто еще более простое и все же живое.
Но прежде всего – что такое клетка? Грубо говоря, это организм, состоящий по крайней мере из трех частей. Во-первых, у него есть мембрана, которая отделяет клетку от внешнего мира, во-вторых, – маленькая внутренняя структура, называемая ядром, и, в-третьих, цитоплазма, заполняющая пространство между мембраной и ядром.
Правда, в теле человека есть клетки (например, клетки сердца), которые, собственно говоря, не отделены друг от друга мембранами, а есть и такие клетки, как эритроциты, которые не имеют ядер. Но это очень специализированные клетки многоклеточного организма, и, взятые отдельно, они не могут считаться живыми организмами.
А для тех клеток, которые действительно являются живыми организмами, мембрана, цитоплазма и ядро – это минимум необходимых составных частей. У некоторых особенно простых одноклеточных организмов, по-видимому, нет ядер, – примером тому служат бактерии и сине-зеленые морские водоросли. Однако и в этих клетках так или иначе содержится «ядерный материал», то есть вещество, которое химически реагирует точно так же, как ядра более сложных клеток. Значит, у бактерий и сине-зеленых водорослей все же есть ядра, но они распределены по всей клетке, а не собраны в одном месте.
Какая же из трех частей клетки важнее? Это все равно, что спросить, какая из ножек трехногого стула более важна; ведь ни одна клетка не может жить без всех своих трех составных частей. Тем не менее оказывается, что значение каждой из них неодинаково. Если, например, амебу разделить тонкой иглой на две части, то часть с целым ядром может выжить, вырасти и нормально размножаться. Половинка же, лишенная ядра, непродолжительное время сохранит способность выполнять основные жизненные функции, но уже не сможет расти и размножаться.
Когда клетка делится, она обязательно претерпевает сложную цепь изменений, которые затрагивают очень мелкие структуры, находящиеся внутри ядра и называемые хромосомами. Это верно как для клетки-организма, так и для клетки, являющейся всего лишь частью сложного организма.
Одно из важнейших изменений, в котором принимают участие хромосомы, – «копирование», когда каждая хромосома вызывает образование новой, себе подобной хромосомы, создает копию самой себя. Ни одна клетка не делится, прежде чем не произойдет такое копирование. К концу XIX столетия биологи начали догадываться, что главное в организме – это клетка, а в клетке – хромосома.
* * *
Но давайте вернемся к структурному определению. Ведь, в конце концов, наше определение живого многоклеточного организма является как функциональным, так и структурным. Что же касается определения живого одноклеточного организма, то оно чисто функциональное, так как в нем не сказано, из чего состоит одна клетка.
Чтобы внести ясность, следует спуститься до молекулярного уровня. Клетка содержит многочисленные типы молекул; некоторые из них встречаются и в неживой природе (например, вода). Следовательно, их нельзя считать характерными только для живых организмов.
Но есть молекулы, которые имеются только в живых клетках и в веществе, которое когда-то было частью живой клетки или по крайней мере образовано живой клеткой. Самыми характерными из этих молекул являются различные белковые молекулы. Не существует ни одной формы жизни, ни одной клетки, какой бы простой или сложной она ни была, которая не содержала бы белка.
Белки выполняют разнообразные функции. Некоторые белки просто-напросто служат основной составной частью тела, кожи, волос, хрящей, сухожилий, связок и так далее. Другие белки очень тесно связаны с самой химической деятельностью клеток; они катализируют тысячи реакций в клетках. Интуитивно мы чувствуем, что эти белки (так называемые ферменты) близки к химической сущности жизни.
Вот когда я снова могу вернуться к своей книге «Жизнь и энергия», из которой в начале главы цитировал малоудачное определение живого организма; теперь, со всеми поправками, это определение будет звучать так: «Живой организм характеризуется способностью временно и локально понижать энтропию с помощью реакций, катализируемых ферментами». Вот это определение является как функциональным («понижать энтропию»), так и структурным («при помощи ферментов»).
В таком определении ничего не говорится о клетках. Правда, оно применимо как к многоклеточному, так и к одноклеточному организму, ибо точно разграничивает те системы, которые мы интуитивно признаем живыми, оставляя в стороне те, которые мы таковыми не признаем.
Судя по новому определению, можно подумать, что единицей жизни является не клетка, а ферменты, находящиеся в клетках. Но коль скоро ферменты могут быть созданы только внутри клетки и только клеткой, то это различие носит чисто академический характер. Если, конечно, нам не удастся связать образование ферментов с чем-то отличным от клетки как таковой.
В течение последних десятилетий было убедительно доказано, что тысячи различных ферментов (по одному на каждую из тысяч различных химических реакций, постоянно протекающих в клетке) создаются в клетке под контролем хромосом.
Перейдя к хромосомам и оставаясь на молекулярном уровне, я должен объяснить, что хромосомы состоят из ряда гигантских молекул, называемых нуклеопротеидами; каждая из них состоит частично из белка и частично из нуклеиновой кислоты. По своей структуре нуклеиновая кислота совершенно отлична от белка.
Нуклеиновая кислота получила свое название потому, что впервые была обнаружена в ядре (ядро по-латыни nucleus). Вскоре она была обнаружена и в цитоплазме, но ее первоначальное название сохранилось. Есть два вида нуклеиновой кислоты – дезоксирибонуклеиновая кислота и рибонуклеиновая кислота. Сокращенно они именуются ДНК и РНК. ДНК присутствует только в ядре, и хромосомы по большей части состоят из нее. РНК находится главным образом в цитоплазме, хотя небольшое количество ее есть и в ядре.
Исследования, проведенные в 50-х годах, показали, что не просто хромосомы, а именно ДНК (с помощью РНК) контролирует синтез специфических ферментов. Можно сказать, что через ферменты нуклеиновые кислоты руководят химической деятельностью клетки и, следовательно, контролируют все функции, которые ассоциируются у нас с функциями живого организма.
Но могут ли нуклеиновые кислоты считаться «живыми» на том основании, что они контролируют функции живых организмов? Когда речь шла о клетке, мы назвали ее живой только после того, как выяснилось, что одна-единственная клетка способна выполнять функции целого организма. Точно так же мы не можем считать нуклеиновые кислоты живыми, до тех пор пока не выясним, способна ли молекула нуклеиновой кислоты выполнять функции целого организма.
Давайте снова вернемся в прошлое столетие.
* * *
Еще в 1880 году французский биохимик Луи Пастер, изучая бешенство, пытался выделить возбудителя этой болезни. Дело в том, что примерно за двадцать лет до этого он выдвинул микробную теорию заразных болезней; согласно этой теории, все инфекционные заболевания вызываются микроорганизмами. Бешенство было явно инфекционной болезнью, но ее возбудителя никак не могли найти.
У Пастера было два выхода. Он мог либо отказаться от своей теории, либо сделать поправку ad hoc, то есть только для данного случая. Обычно такие поправки ad hoc производят жалкое впечатление, но гений всегда с честью выходит из положения. Пастер предположил, что микроб бешенства существует, но он слишком мал, чтобы его можно было увидеть в микроскоп.
И Пастер оказался прав.
В то время начали – на этот раз ботаники – изучать еще одну болезнь, табачную мозаику, названную так потому, что при этой болезни листья табака как бы испещряются мозаикой. Сок из больного листа заражал здоровый лист, и, по теории Пастера, здесь тоже должен был существовать заразный микроб. Однако и его не могли найти.
В 1892 году русский бактериолог Дмитрий Иосифович Ивановский пропустил некоторое количество сока зараженного листа через фарфоровый фильтр, отверстия которого были настолько малы, что через них не проходила ни одна, даже самая маленькая бактерия. Пропущенный через фильтр сок все же остался заразным. Поэтому возбудитель болезни был назван «фильтрующимся вирусом». (Вирус в переводе с латинского означает яд, а «фильтрующийся вирус» значит просто-напросто «яд, проходящий через фильтр».)
Было показано, что и другие болезни, включая бешенство, вызываются фильтрующимися вирусами. Однако природа этих вирусов стала известна лишь в 1931 году, когда английский бактериолог Уильям Дж. Элфорд создал фильтр с настолько малыми отверстиями, что они задерживали вирусы. Таким образом, оказалось, что вирус, который гораздо меньше даже самых маленьких клеток, намного крупнее большинства молекул.
Но можно ли назвать вирусную частицу (какова бы ни была ее природа) живым организмом? Она заражает клетки и поэтому должна как-то ощущать их присутствие и соответственно реагировать на них. Она должна питаться их содержимым, впитывать, усваивать, использовать энергию, расти и размножаться. И при всем том вирусная частица, безусловно, не состоит из клеток в том виде, в каком они были известны. Вот так в 1930 году проблема сущности жизни повисла в воздухе, хотя в 1830 году клеточная теория, казалось бы, внесла в нее полнейшую ясность.
В 1935 году американскому биохимику Уэнделлу Мередиту Стэнли удалось получить вирус табачной мозаики в кристаллическом состоянии, и это казалось сильным аргументом против того, что вирус – живое существо. Даже кристаллический вирус оставался заразным; но как же живое может пережить переход в кристаллическое состояние? Кристаллы в нашем сознании всегда ассоциируются только с неживой природой.
В действительности же этот аргумент не выдерживает критики. Ничто живое не кристаллизуется; но ведь, в сущности, до открытия вирусов нам были известны только сложные организмы. А вирусы оказались проще любой клеточной формы жизни, и не было никакой причины предполагать, что правило, согласно которому живое не может переходить в кристаллическое состояние, применимо также и к ним. С помощью кристаллизации вирус табачной мозаики был очищен и сконцентрирован. Теперь его можно было подвергнуть химическому анализу, и два английских биохимика, Фредерик С. Боден и Норман У. Пири, открыли, что вирус – это нуклеопротеид, на 94 процента состоящий из белка и на 6 процентов – из РНК.
С тех пор был проведен анализ всех без исключения вирусов. Все они оказались нуклеопротеидами. Одни содержат ДНК, другие – РНК, некоторые – и то и другое, но без нуклеиновой кислоты вирусов нет.
Оказалось, кроме того, что при вирусном заражении в клетку проникает именно вирусная нуклеиновая кислота, белок же остается снаружи. Это дает основания полагать, что белок всего лишь неживая оболочка для нуклеиновой кислоты и что как раз нуклеиновая кислота является главной в вирусе. Выделенная в чистом виде вирусная нуклеиновая кислота частично сохраняет инфекционность.
Итак, это пример молекулы нуклеиновой кислоты, которая ведет себя, как живой организм.
Предположим, что теперь мы скажем: «Организм может быть назван живым, если в нем имеется по крайней мере одна молекула нуклеиновой кислоты, способная к копированию». Это определение является как структурным (наличие нуклеиновой кислоты), так и функциональным (копирование). Оно охватывает не только все клеточные формы жизни, но и все вирусы, и исключает все прочее.
Разумеется, могут быть и возражения. Некоторые считают, что вирус не является примером подлинно живого организма, так как не может выполнять своих жизненных функций, пока не попадет в клетку. Внутри клетки, и только внутри нее, он управляет действием ферментов и осуществляет синтез специфических ферментов и других белков. Он делает это, используя химический аппарат клетки, в том числе ее ферменты. Вне клетки вирус не выполняет ни одной из функций, которые мы связываем с жизнью. Из всего этого и следует вывод, что на самом деле именно клетка является единицей жизни.
Мне этот довод не кажется таким уж неопровержимым. Разумеется, вирусу для отправления некоторых его функций требуется клетка, но и вне клетки жизнь его не совсем статична. Вирус активно проникает в клетку – самостоятельно, без помощи самой клетки. Это пример по крайней мере одного действия, характерного для жизни (что-то вроде приема пищи, только в данном случае он делает это шиворот-навыворот, то есть не отправляет ее внутрь себя, а сам забирается в пищу), которое вирус выполняет совершенно самостоятельно.
А кроме того, даже если предположить, что вирус использует аппарат клетки для выполнения некоторых своих функций, то ведь и солитер пользуется нашим клеточным аппаратом для тех же целей. Вирус, как и солитер, паразит, но более законченный. Справедливо ли ставить какую-то искусственную границу и утверждать, что солитер – живой организм, а вирус – нет?
Более того, все организмы (паразиты они или не паразиты) зависят от некоторых факторов внешнего мира. Мы с вами, например, прожили бы всего несколько минут, если бы нас лишили кислорода. Можно ли на этом основании считать, что мы не живые организмы, а истинно живым организмом является кислород? Почему бы тогда не отнести необходимую вирусу клетку, находящуюся вне его, к той же категории, к которой мы относим необходимый нам кислород, находящийся вне нас?
Нельзя считать решающим и тот довод, что вирус использует ферменты, которые ему не принадлежат. Я объясню это, прибегнув к аналогии.
Предположим, дровосек рубит дерево топором. Он не может делать это без топора, и все же мы никогда не думаем о дровосеке, как о комбинации человек – топор. Дровосек – это человек, а топор – это просто его орудие. Точно так же нуклеиновая кислота может оказаться неспособной выполнять свои функции без ферментов, но ферменты – это всего лишь ее орудие, а вот главное – все-таки она сама.
Кстати, топор, которым дровосек рубит дерево, может оказаться как его собственным, так и ворованным. Это характеризует его или как честного человека, или как вора, но в любом случае он дровосек, занимающийся своим делом. Так и вирус, выполняющий свои функции, является живым организмом независимо от того, принадлежат ему ферменты или нет.
Что касается моего определения живых организмов, говорящего, что они должны состоять из нуклеиновых кислот, то оно с этой точки зрения правомерно.
Необходимо, конечно, помнить, что живой организм – это нечто большее, чем составляющая его нуклеиновая кислота и составляющие его клетки. Как я уже говорил в этой главе, живой организм построен из отдельных частей, которые еще и соответствующим образом организованы в единое целое.
Есть некоторые биологи, которые порицают усиленный интерес к ДНК в нынешних биологических и биохимических исследованиях. Они считают, что проблемой организации пренебрегают ради изучения отдельных частей, и я должен признать, что их опасения до некоторой степени оправданны.
Тем не менее я также считаю, что мы никогда не поймем организацию, пока тщательно не разберемся в тех составных частях, которые подлежат организации, и надеюсь, что, когда молекула ДНК будет разобрана по косточкам и выставлена для всеобщего обозрения, многие явления, которые сегодня загадочны (и организация в том числе), точно станут на свое место.