Текст книги "Вид с высоты"
Автор книги: Айзек Азимов
сообщить о нарушении
Текущая страница: 13 (всего у книги 17 страниц)
Часть IV
Астрономия
13. Ну и температура!
Любой уважающий себя ученый или просто человек, близкий к науке (я говорю о близких к науке, чтобы не оставить за бортом самого себя), мечтает оставить в ней заметный след. Разумеется, в самом хорошем смысле этого слова.
Увы, большинству из нас приходится расставаться со своей мечтой. Я давно понял, что мечтаю напрасно. Сердце подсказывает мне, что никогда «закон Азимова» не попадет на страницы учебников физики, никогда «реакция Азимова» не будет запечатлена в учебниках химии. Возможность создать «теорию Азимова» и даже просто высказать «гипотезу Азимова» ускользнула от меня, и я остался ни с чем.
Ни с чем – это значит с электрической пишущей машинкой, зычным голосом и тайной надеждой, что какая-нибудь моя мысль, пусть даже случайно высказанная, заронит искорку в более светлую голову и поможет ей придумать что-то стоящее.
Так оно и случилось.
Через несколько недель после того, как был впервые опубликован материал предыдущей главы, я получил письмо от доктора Чу, работавшего после защиты докторской диссертации в Институте высших исследований в Принстоне.
Он изложил свои соображения о максимальной возможной температуре, указав при этом, что выводы предыдущей главы возникли из предположения о бесконечности Вселенной. Если бы Вселенная была конечна, то она имела бы и конечную массу. Если бы вся конечная масса, кроме одной частицы, была полностью превращена в энергию и эта энергия сконцентрировалась бы на единственной оставшейся частице (а мы предположили бы, что можно измерить температуру в системе, состоящей всего из одной частицы), тогда мы наконец добрались бы до максимальной возможной температуры материи. Он вычислил, какова была бы эта температура. Она оказалась чудовищно высокой, но, разумеется, не бесконечной.
Однако проблема максимальной возможной температуры при условиях, существующих ныне во Вселенной, продолжала занимать доктора Чу даже после того, как он покинул Принстон и стал работать в Институте космических исследований в Нью-Йорке. В письме, которое он мне послал 14 ноября 1961 года, говорилось (цитирую его с любезного согласия доктора Чу):
«Я переключился с физики элементарных частиц на астрофизику тотчас после того, как получил докторскую степень. Ваша статья возбудила во мне интерес к сверхновым звездам. Как известно, горячéе недр этих звезд не бывает ничего. Может быть, именно там верхний предел температуры?»
Вскоре он опубликовал статьи в «Физикал ревьюз» и «Анналз оф физикс», в которых в общих чертах излагалась его теория образования сверхновых звезд.
С сугубо корыстной целью мне хотелось бы дать вам некоторое представление об этой новой теории, но прошу вас помнить, что доктор Чу ответственности за то, как я ее изложу, не несет. В своих статьях он пользуется двойными интегралами, гиперболическими функциями и математическими приемами всех видов, которые, разумеется, не укладываются в элементарную алгебру и даже меня иногда ставят в тупик. Поэтому, возможно, я могу неверно истолковать некоторые высказывания.
Однако я сделал все, что было в моих силах, и, как всегда, начну с самых истоков вопроса, то есть с субатомной частицы – нейтрино. Начало ее волнующей истории связано с именем Эйнштейна. В 1905 году в своей специальной теории относительности Эйнштейн показал, что масса неразрывно связана с энергией и что величина этой энергии может быть подсчитана по простой формуле. (Да-да, я говорю о формуле Е = МС2.)
Эта формула была применена к процессу излучения альфа-частиц. Атом урана теряет альфа-частицу и становится атомом тория. Альфа-частица и атом тория вместе имеют массу, которая хоть и ненамного, но все же меньше массы атома урана. Но недостающая масса не исчезает, а превращается в кинетическую энергию стремительной альфа-частицы. Следовательно, все альфа-частицы, испускаемые данным типом атомов, имеют одинаковую энергию. (Вернее, одну из небольшого числа различных энергий, потому что данный тип атома может существовать в нескольких различных энергетических состояниях, и, когда он находится в состоянии, которому отвечает большая энергия, он испускает альфа-частицу с несколько более высокой энергией.)
Такое объяснение вполне удовлетворяло ученых. Масса не пропадала, а переходила в энергию, концы с концами сходились, и физики, сияя, потирали руки. Но теперь надо было показать, что и в случае испускания бета-частиц дебет с кредитом сходятся в энергетическом балансе. Хотя масса бета-частицы (электрон) составляет всего 1/7350 массы альфа-частицы (ядра гелия), в принципе это не должно было иметь никакого значения.
Однако радиоактивные изотопы не испускали бета-частицы с одинаковой энергией. Оказалось, что бета-частицы испускаются с любой энергией вплоть до определенного максимума. Это максимальное значение определялось «дефектом массы», однако таких значений энергии достигает лишь ничтожно малое число электронов. Практически все частицы испускались с меньшими энергиями, а некоторые имели даже очень малую энергию.
В общем получалось так, что некоторое количество энергии куда-то пропадало.
Можете себе представить состояние физиков, которые теперь чем-то напоминали бухгалтеров, обнаруживших недостачу. И в самом деле, если энергия исчезала, то нарушался закон сохранения энергии, а ни один здравомыслящий физик не позволит себе предположить это до тех пор, пока не будут изучены все другие возможные варианты.
В 1931 году швейцарский физик Вольфганг Паули высказал любопытное предположение. Раз электрон не уносит всю энергию, которая получается в результате потери массы, то, следовательно, должна существовать еще одна частица, которая уносит с собой часть энергии. Однако эту частицу найти не могли, так как у нее, по-видимому, не было каких-либо поддающихся обнаружению отличительных свойств. Из всех этих необнаруженных свойств электрический заряд был самым известным, и, так как потери заряда не обнаруживалось, Паули постулировал, что частица нейтральна.
Кроме того, в случае обратного превращения энергии в массу той кинетической энергии, которая оставалась после образования бета-частицы, не хватало бы для создания очень крупной частицы главным образом потому, что большая часть энергии должна была бы превратиться в энергию движения. По-видимому, масса частицы должна быть намного меньше даже массы электрона, а возможно, эта частица совсем не имеет массы покоя.
По предположению Паули, частица была так мала, как это только можно себе представить.
Ни заряда, ни массы… лишь стремительный призрак, уносящий энергию. Другого объяснения исчезновения энергии не было.
В 1932 году обнаружили и назвали нейтроном тяжелую нейтральную частицу (столь же тяжелую, как протон). Затем итальянский физик Энрико Ферми предложил назвать частицу Паули, которая тоже нейтральна, но много меньше нейтрона, нейтрино (что по-итальянски значит нейтрончик).
Нейтрино спасло не только закон сохранения энергии, но и закон сохранения спина[8]8
Спин (от английского слова spin – вращаться) – собственный момент количества движения элементарной частицы. – Прим. ред.
[Закрыть] частицы и образования пары частица – античастица.
Но, может быть, эта частица была просто чем-то вроде «постоянной Файнейгла»[9]9
Файнейгл – известный английский гипнотизер, прославившийся в начале XIX века как непревзойденный карточный шулер. – Прим. ред.
[Закрыть], изобретенной для того, чтобы превращать неправильные ответы в правильные? Действительно ли это нейтрино существовало или оно было придумано остроумными физиками ad hoc (для данного случая), чтобы не дать развалиться шаткому сооружению, которое якобы служило моделью реального мира?
Все стало бы на свои места, если бы только нейтрино действительно удалось обнаружить. Для того чтобы заявить о себе, им следовало бы вступить во взаимодействие с другими частицами. Но, к сожалению, нейтрино не делали этого, а если делали, то так редко, что этого никто не замечал.
Было подсчитано, что нейтрино может пройти сквозь слой воды толщиной 100 световых лет и при этом у него будут равные шансы и вступить и не вступить во взаимодействие с другими частицами; а вы только представьте себе, как трудно соорудить трубу длиной 100 световых лет!
При прохождении сквозь слой воды всего в 50 световых лет шансы нейтрино вступить во взаимодействие понизятся до 25 %, при толще воды в каких-то 25 световых лет шансы уменьшаются до 12,5 % и так далее. В самом деле, существует конечная, хотя и весьма малая, вероятность того, что нейтрино вступит во взаимодействие, проходя через слой воды, скажем, в 2 метра.
Известно, что в ядерных реакторах постоянно выделяется большое число нейтрино. Если поместить баки с водой поблизости от ядерного реактора и установить приборы, обнаруживающие гамма-излучение как раз с той длиной волны, которой следует ожидать от взаимодействия нейтрино с протоном, то вероятность того, что одно из великого множества нейтрино вступит во взаимодействие при толще воды всего 1 метр, значительно повысится.
Именно так в 1953 году в Лос-Аламосе и доказали существование нейтрино. Это действительно самая настоящая «живая» частица, у нее нет ни массы[10]10
Имеется в виду масса покоя. – Прим. ред.
[Закрыть], ни заряда, и она так мала, как это только можно себе представить, но она существует, а физикам только этого и надо.
Когда же образуется нейтрино? Самые известные реакции, при которых получается нейтрино, – это реакции превращения нейтрона в протон и наоборот. Нейтрон превращается в протон и электрон – образуется нейтрино. Протон превращается в нейтрон и позитрон – образуется антинейтрино. (Нейтрино и антинейтрино – это разные частицы, отличающиеся друг от друга по спину но обе они не имеют ни массы, ни заряда. В этом разделе обе частицы я буду называть просто нейтрино.)
До сих пор самыми значительными источниками нейтрино были звезды.
Возьмем для примера Солнце. Его энергия получается в результате превращения водорода в гелий. Ядро водорода состоит из одного-единственного протона, а ядро гелия – из двух протонов и двух нейтронов. Следовательно, при превращении четырех атомных ядер водорода в одно ядро гелия два из четырех протонов атомных ядер водорода должны превратиться в нейтроны, в результате чего образуется два нейтрино (а также позитроны и фотоны). Значит, при превращении каждых двух атомов водорода создается одно нейтрино.
Для того чтобы поддерживать выработку энергии, Солнце должно ежесекундно превращать 4,2 миллиона тонн вещества в излучение. При превращении водорода в гелий теряется 0,75 % массы, а для того, чтобы потерять 4,2 миллиона тонн, надо переработать 560 миллионов тонн водорода.
Исчезновение более полумиллиарда тонн водорода каждую секунду может показаться нам чудовищной потерей, но в общем-то беспокоиться нечего. Около 3/5 массы Солнца – это водород, так что в Солнце имеется добрый октильон тонн водорода. Если водород будет и дальше расходоваться теми же темпами и никаких других ядерных процессов не последует, то запаса водорода в Солнце хватит примерно на 60 миллиардов лет. Нас с вами к тому времени, по-видимому, уже не будет в живых.
Во всяком случае, превращение 560 миллионов тонн водорода в секунду означает, что каждую секунду в ненасытную утробу ядерной машины Солнца должно поступать 2,8 · 1038 атомов водорода. Следовательно, каждую секунду излучается 1,4 · 1038 нейтрино.
Нейтрино, которые образуются в недрах Солнца, излучаются во всех направлениях. Конечно, почти все они пролетают мимо такой крошечной цели, как Земля, находящейся примерно в 150 миллионах километров от Солнца. Однако было подсчитано, что через каждый квадратный сантиметр поперечного сечения Земли за секунду пролетает около 10 миллиардов нейтрино с Солнца.
Это значит, что они проходят сквозь атмосферу, сквозь океаны, сквозь кору земного шара и его ядро, сквозь нас. Они пролетают сквозь нас постоянно, будь то в ясный или пасмурный день, будь то ночью или днем. Ночью нейтрино сперва проходят сквозь Землю, а затем уже и сквозь нас. И так как они движутся со скоростью света, то достигают вас ночью с задержкой всего лишь 1/23 секунды – из-за того, что им дополнительно нужно пройти расстояние, равное земному диаметру.
И пусть это вас не пугает. Максимальная поверхность вашего тела, постоянно подвергающаяся нейтринной бомбардировке, равна 10 000 квадратных сантиметров (а это не так уж мало); в таком случае каждую секунду сквозь вас проходит 100 триллионов (1012) нейтрино.
Человек в основном состоит из воды, а одно нейтрино, проходя сквозь слой воды толщиной в 100 световых лет, имеет равную возможность и вступить и не вступить в реакцию. Однако, когда мы подставляем под поток нейтрино поверхность своего тела, которое имеет толщину всего 30 сантиметров, все 100 триллионов нейтрино проходят в целом сквозь 100 триллионов слоев воды толщиной 30 сантиметров, и затратят они на это в общей сложности примерно 1/300 светового года. Это означает, что в среднем одно нейтрино будет вступать в реакцию с частицей в вашем теле каждые 30 000 секунд (и при этом оно еще имеет равную возможность и вступить и не вступить в нее), или примерно каждые 8 часов, а несколько квинтильонов нейтрино проследуют сквозь вас с высокомерным безразличием.
А что значит одна нейтринная реакция каждые 8 часов? Пустяк – ведь каждую минуту в теле человека распадаются всего лишь 1 200 000 атомов калия (К40) и 180 000 атомов углерода (С14) (оба элемента всегда есть в человеческом организме и обладают естественной радиоактивностью), пронзая его тело мириадами бета-частиц и гамма-лучей.
Так что не стоит обращать внимания на эти нейтрино.
* * *
Высокая температура недр Солнца, равная, по-видимому, 20 миллионам градусов[11]11
Сейчас ученые дают несколько меньшую цифру – 15 миллионов градусов. Но на выводах автора это никак не отражается. – Прим. ред.
[Закрыть], должна обеспечить достаточно большую силу, обусловленную давлением излучения и газовым давлением, для противодействия неимоверной силе сжатия, порождаемой тяготением.
И такая игра в «кто кого» происходит во всех звездах. Масса (а следовательно, и сила тяготения) стремится сжать звезду; температура (а следовательно, и световое давление) стремится расширить ее. Пока эти две силы уравновешивают друг друга, все идет хорошо.
Однако, когда водород преобразуется в гелий, 4 протона водорода, расположенные сначала на сравнительно большом расстоянии, превращаются в двухпротонное-двухнейтронное гелиевое ядро. Плотность в центре звезды повышается, и, по мере того как образуется все больше и больше гелия, увеличивается также концентрация массы, а следовательно, и сила поля тяготения. Чтобы противодействовать этому и восстановить равновесие, температура в центре звезды должна повыситься.
В конце концов температура поднимается так высоко, что «воспламеняются» ядра атомов гелия; они вступают в реакции синтеза и образуют еще более сложные ядра. Пока продолжается этот процесс, температура все растет, и постепенно образуются все более сложные атомы. В конце концов получаются атомы железа.
Самыми сложными атомами, которые могут образоваться в результате обыкновенных звездных реакций, являются именно атомы железа. Никакое дальнейшее усложнение ядер не станет источником энергии. Атомы более сложные, чем атомы железа, сами становятся «потребителями» энергии. Поэтому для обычных процессов в звездах появление железа – это уже тупик.
Такая звезда напоминает луковицу, так как ее слои имеют различный химический состав. В самом центре звезды находится железное ядро, окруженное слоем кремния, затем следуют слои магния, углерода, гелия и, наконец, слой водорода, который образует поверхность звезды.
В каждом слое непрерывно идут реакции слияния ядер, в результате которых образуются более тяжелые ядра, опускающиеся в очередной нижний слой; в конечном счете больше всех от этого выигрывает железное ядро, а проигрывает наружная водородная оболочка. Поле тяготения продолжает увеличиваться, но теперь в центре нет дополнительного источника энергии, который бы поддерживал равновесие.
Поскольку центр продолжает разогреваться, то после какого-то критического предела звезда вдруг сжимается. При этом внезапно увеличивается давление в верхних слоях, где еще имеется ядерное горючее, необходимое для реакций синтеза; эти реакции ускоряются, и выделяется колоссальное количество энергии, что кончается взрывом, «вдребезги» разносящим звезду.
В результате взрыва возникает гигантская сверхновая звезда, энергия которой создает условия для синтеза (слияния) даже атомов железа и образования еще более сложных атомов… вплоть до урана и, весьма возможно, калифорния. Взрыв рассеивает эти тяжелые элементы в космосе, и образуются новые звезды и звездные системы (вроде нашей), которые сначала включают небольшие количества материи.
Означает ли это, что каждая звезда на какой-то поздней стадии своего существования обречена на то, чтобы стать сверхновой? По-видимому, нет.
Чем массивнее звезда, тем сильнее ее поле тяготения и, следовательно, выше внутренняя температура и больше светимость на данной стадии цикла ядерных реакций. (Это и есть «зависимость масса – светимость», открытая в 1924 году английским астрономом Артуром С. Эддингтоном. Он первым подсчитал чудовищную температуру звездных недр.) По-видимому, для того чтобы наступила стадия, когда происходит взрыв и образование сверхновой звезды, ее масса с самого начала должна по крайней мере в 1,5 раза превышать массу нашего Солнца. Это «предел Чандрасекара», названный так в честь астронома, который первым его вычислил. Итак, что бы ни случилось с нашим Солнцем, сверхновой звездой оно никогда не станет. Оно даже не сможет разогреться как следует.
* * *
Но какой именно ядерный процесс ведет к этому катастрофическому сжатию и взрыву? И, в частности, какова температура в центре звезды, которая вот-вот должна стать сверхновой? По-видимому, это и будет самая высокая температура во Вселенной, а ее-то доктор Чу и хотел узнать.
Оказывается, звезды теряют энергию двумя способами. Они испускают и электромагнитное излучение, и нейтрино, которые ведут себя по-разному. Электромагнитное излучение так сильно взаимодействует с материей, что гамма-лучи, образовавшиеся в центре Солнца, то и дело сталкиваются с протонами, нейтронами и альфа-частицами, поглощаются, снова испускаются и так далее. Это длительный и сложный процесс, поскольку излучение должно пробиться из самых недр Солнца к его поверхности.
Лучшее подтверждение – тот факт, что поверхность Солнца, оказывается, нагрета до каких-то 6000 градусов. По земным представлениям она горячая. Однако не следует забывать, что поверхность Солнца находится всего в 700 тысячах километров от скопления вещества, температура которого равна 20 миллионам градусов. Если бы между солнечным ядром и точкой, удаленной от него на 700 тысяч километров, не было ничего, то любое вещество в этой точке приобрело бы температуру порядка миллионов градусов. Сам факт, что вещество в этой точке имеет температуру всего 6000 градусов, показывает, каким великолепным теплоизолятором является вещество Солнца и как трудно излучению пробиться сквозь это вещество и уйти в пространство.
Однако энергия, которую уносят нейтрино, ведет себя по-другому. Нейтрино просто уносятся из центра Солнца, где они образуются, со скоростью света. Они совершенно игнорируют обычное вещество Солнца и проходят сквозь него менее чем за 3 секунды.
Но доля энергии Солнца, которая улетучивается в виде нейтрино, довольно мала. Потеря энергии, связанная с «побегом» нейтрино, вызывает, конечно, некоторое небольшое охлаждение недр Солнца, но это способствует только незначительному сокращению размеров светила (настолько незначительному, что его нельзя обнаружить).
А на тех стадиях, когда образуются атомы более сложные, чем атомы гелия, случаи рождения нейтрино становятся еще более редкими, если принимать во внимание только превращение протонов в нейтроны и наоборот.
Предположим, что для начала у нас имеется 56 ядер водорода. Они превращаются в 14 ядер гелия, которые в свою очередь на более поздних стадиях существования звезд превращаются в 1 ядро атома железа.
56 ядер водорода состоят из 56 протонов.
14 ядер гелия состоят из 28 протонов и 28 нейтронов, разделившихся на группы по 2 протона и по 2 нейтрона в каждой.
Один атом железа состоит из 26 протонов и 30 нейтронов, скучившихся в одном ядре.
Значит, при превращении водорода в гелий 28 протонов должны превратиться в 28 нейтронов и, кроме того, дать 28 нейтрино.
При превращении гелия в железо только 2 протонам нужно превратиться в нейтроны и дать всего лишь 2 нейтрино.
Казалось бы, возникновение нейтрино существенно только в стадии превращения водорода в гелий, и поскольку оно играет незначительную роль в «функционировании» Солнца, где превращение водорода в гелий происходит в грандиозных масштабах, то тем более ничтожна его роль в «функционировании» звезд, где «сгорают» гелий и еще более сложные ядра.
Вот здесь пора сказать о новых предположениях доктора Чу, который считает, что нейтрино образуются двумя новыми способами: во-первых, в результате взаимодействия квантов электромагнитного излучения и, во-вторых, в результате взаимодействия электрона и позитрона.
При таких низких температурах, как какие-то жалкие 20 миллионов градусов, эти реакции происходят в недрах Солнца столь редко, что случаи образования нейтрино вследствие таких процессов можно не принимать во внимание. Однако с повышением температуры число образующихся нейтрино становится все более значительным.
Если температура достигает 1–2 миллиардов градусов (эта температура требуется для образования ядер атомов железа), то появление нейтрино в результате реакций доктора Чу происходит гораздо быстрее, чем при превращении протонов в нейтроны и наоборот.
Это означает, что значительная часть излучения звезды, а именно ее электромагнитное излучение, которое очень медленно покидало недра звезды, превращается в нейтрино, которые мгновенно улетучиваются. Тем не менее звезда может постепенно, хотя и с трудом, восполнить потерянную энергию за счет сжатия, не ведущего к катастрофе.
Но если температура в недрах звезды достигнет 6 миллиардов градусов, то нейтрино образуются так быстро, что теплота звездных недр уносится всего за 15–20 минут, и звезда катастрофически сжимается!
Одно мгновение – и вот вам сверхновая звезда!
Другими словами, температуры выше 6 миллиардов градусов в нашей Вселенной не бывает. Самое горячее вещество во Вселенной находится в центре звезд, и оно не может достичь температуры 6 миллиардов градусов, не вызвав взрыва, после которого сейчас же произойдет охлаждение. Итак, получен ответ на вопрос, который я поставил в предыдущей главе.
Доктор Чу предполагает, что если его теория правильна, то окажется возможным определять по количеству нейтрино, испускаемых звездами, какая из них собирается стать сверхновой. Он утверждает, что перед взрывом скорость испускания достигает 1053 нейтрино в секунду. Это в квадрильон (1015) раз больше, чем их испускает Солнце.
Даже если сверхновая звезда находится на расстоянии 100 световых лет, число нейтрино, достигших наблюдателя, потенциально по крайней мере в 1000 раз превышает число нейтрино, летящих от Солнца.
«Следовательно, – говорит доктор Чу, – установка приборов, обнаруживающих нейтрино, в земных и космических лабораториях может помочь нам предсказывать появление сверхновых звезд».
* * *
Может быть, я слишком пристрастен в своих суждениях, но, мне кажется, эта теория настолько убедительна, что ее примут и будут разделять все астрономы. И, когда доктор Чу добьется мировой славы, которой, как я полагаю, он вполне заслуживает, я смогу поздравить и себя, так как мне будет приятно сознавать, что все началось с моей статьи.
Разумеется, об этом никто не узнает, кроме доктора Чу и меня… и читателей этой книги… и случайных прохожих, которых я собираюсь, удерживая за пуговицу, посвятить в свои дела… и людей, слушающих телевизионные передачи… и…