355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Всемирная история: в 6 томах. Том 3: Мир в раннее Новое время » Текст книги (страница 10)
Всемирная история: в 6 томах. Том 3: Мир в раннее Новое время
  • Текст добавлен: 20 сентября 2016, 17:46

Текст книги "Всемирная история: в 6 томах. Том 3: Мир в раннее Новое время"


Автор книги: авторов Коллектив


Жанр:

   

История


сообщить о нарушении

Текущая страница: 10 (всего у книги 87 страниц) [доступный отрывок для чтения: 31 страниц]

НАУЧНАЯ РЕВОЛЮЦИЯ

В раннее Новое время европейская наука претерпевает кардинальные изменения. Накопление новых знаний, изобретения и открытия, попытки использовать исследования для нужд повседневной жизни – всё это происходило и ранее. Однако общее восприятие окружающего мира как сотворенного Богом и не мыслимого вне Бога на протяжении веков оставалось неизменным. Соответственно и познавать этот мир можно было только весьма фрагментарно и лишь в рамках религиозной концепции – в той мере, в какой человек способен осмыслить непостижимый в основе своей замысел творца.

Тем не менее постепенно складывается принципиально иное представление: вне зависимости от того, сотворен мир Богом или нет, он существует и развивается в соответствии с рядом изначально лежащих в его основе физических законов. Повлиять на них человек не в состоянии, однако познать эти законы и ориентироваться на них – вполне в его силах. Основным инструментом новой науки становится разум, а ее неотъемлемыми частями – опыт и эксперимент. При этом наука приближается к практике, появляется мысль о том, что главная ее цель – улучшение человеческого существования. Именно такая совокупность изменений и сопутствовавшие ей открытия получили в истории название Научной революции.

Это явление возникло исключительно на европейской почве и имело всеобщий характер, хотя одни страны были затронуты им в большей степени, а другие скорее шли в фарватере общей тенденции. Прежде всего в научные центры превратились Италия и Нидерланды, позднее к ним присоединяются Франция и Англия, германские и австрийские земли. Апогей Научной революции, безусловно, XVII век, однако ее периодизация достаточно условна. С одной стороны, ряд открытий, логически завершающих исследования XVII в., был сделан в XVIII в. (особенно в области химии и биологии). С другой, и это гораздо более принципиально, фундамент будущей Научной революции во многом был заложен уже в конце XV–XVI в.

Распространение идеи о том, что в основе познания мира лежит разум, было связано с Ренессансом и Реформацией. Многие ученые этого времени выступают с резкой критикой античных авторитетов, на которые опиралась наука позднего Средневековья и Возрождения. Показателен пример перешедшего в протестантизм французского философа Пьера де ля Раме (Рамуса) (1515–1572), отстаивавшего идею ориентированного на практику метода и рассматривавшего разум как высшую инстанцию в решении научных проблем. Оспаривая непогрешимость Аристотеля, в основу магистерской диссертации философ положил весьма характерный тезис: «Все, что сказано Аристотелем, ложно» (1536).

Другая идея, во многом стимулировавшая развитие Научной революции, – это мысль о том, что в основе познания лежат наблюдения и опыт. Обычно ее связывают с именем Фрэнсиса Бэкона (1561–1626). В своем самом знаменитом сочинении «Новый органон» (1620) Бэкон подчеркивал важность индуктивного метода познания (от фактов – к теории, от частного – к общему), основанного на наблюдениях и эксперименте. Правда, для Бэкона в этой системе не было места гипотезе: он полагал, что основная задача ученого – это сбор первичной информации и классификация полученных данных, а дальше уже в дело должна вступать индукция.

Впрочем, Бэкон лишь сформулировал теорию, тогда как на практике идею эксперимента продвигали в жизнь совсем другие люди. К их числу относится придворный врач Елизаветы Английской Уильям Гильберт (Джилберт) (1544–1603), еще до Бэкона провозгласивший опыт критерием истины, поставивший несколько сотен экспериментов с магнитными телами и пришедший к выводу, что между планетами действует сила тяготения магнитного происхождения. Он же первым предположил, что действие магнита распространяется подобно свету, и ввел в научный оборот термин «электрический».

СОЕДИНЕНИЕ НАУКИ С ПРАКТИКОЙ

Ориентация ученых на практическую пользу привела в годы Научной революции к появлению множества изобретений. Так, например, в конце XVI–XVII в. ученые различных стран активно работали над построением прибора, способного измерять температуру. В Италии появился ртутный термометр, который врачи начали использовать для измерения температуры тела у больных. Многочисленные опыты с вакуумом и атмосферным давлением привели в 40-х годах XVII в. к изобретению итальянским математиком и физиком Эванджелистой Торричелли (1608–1647) ртутного барометра. Принципиальные изменения произошли в это время в изготовлении часов: вследствие усовершенствования механизма и изобретения в 1657 г. маятниковых часов, точность измерения времени настолько увеличилась, что, как полагают, именно тогда у часов возникли минутная, а затем и секундная стрелки. Это дало историкам повод заметить, что вслед за пространством человек XVII в. овладел и временем.

Паровой двигатель – одна из основ, на которую веком позже станет опираться промышленный переворот в Англии, – также был придуман в годы Научной революции. В конце 80-х годов XVII в. французский математик, физик и механик Дени Папен (1647–1712) предложил первые проекты двигателя, представлявшего собой полый цилиндр с движущимся поршнем и работавшего за счет нагревания воды и превращения ее в пар. Двигатель Папена был сложен в эксплуатации, однако его принцип использовался для создания в Англии паровых помп, откачивавших воду из шахт.

Еще более важными стали те изобретения, которые дали новой европейской науке необходимый инструментарий. Прежде всего надо упомянуть о создании новых оптических приборов – телескопа и микроскопа. Путь к ним оказался довольно долгим: ряд оптических свойств изогнутых поверхностей был известен еще в античности, с конца XIII в. в Европе появляются очки, а с XVI в. ученые постепенно начинают рассматривать малые объекты при помощи лупы. Принято считать, что первый микроскоп был создан в 90-е годы XVI в. голландскими оптиками, установившими две выпуклые линзы внутри одной трубки. На протяжении XVII в. усовершенствованием этого прибора занимались многие исследователи, и одним из первых, кому удалось добиться приемлемого для научных наблюдений увеличения, стал голландец Антони ван Левенгук (1632–1723). Созданные им микроскопы со 150-300-кратным увеличением позволили впервые увидеть бактерии и эритроциты.

Честь изобретения телескопа приписывают себе четыре страны: Англия, Нидерланды, Италия и Германия. Так или иначе, это устройство стало широко известно в результате деятельности нидерландского мастера по изготовлению очков Ханса Липперсхея (1570–1619) – в 1608 г. он предложил использовать сконструированный им телескоп в военных целях. Однако голландцы решили, что для военных нужд удобнее бинокли, а телескоп был оставлен в основном для развлечения.

В следующем году о существовании телескопа узнал итальянский механик и астроном Галилео Галилей (1564–1642) и сразу же начал работать над аналогичным прибором. При этом детали изобретения Липперсхея ему не были известны, Галилей лишь знал, что оно принципиально возможно. В итоге после ряда опытов он добился того, что сконструированный им телескоп обеспечивал тридцатикратное приближение, чего оказалось достаточно для сенсационных открытий в области астрономии.

ПЕРЕСМОТР АНТИЧНОЙ МОДЕЛИ МИРА

Той сферой, открытия в которой, пожалуй, наиболее радикально повлияли на мировоззрение современников, стала именно астрономия. Согласно сохранявшему тогда свою актуальность учению Аристотеля, «надлунный мир» считался вечным и неизменным. Обосновав идею о том, что центр Земли является одновременно и центром Вселенной, Аристотель полагал, что земля и вода притягиваются именно к этому центру – поэтому наша планета и обладает формой шара. В его системе Земля не имела собственного осевого вращения, однако вокруг нее был расположен ряд полых, прозрачных и вращающихся сфер, благодаря которым и осуществлялось движение планет и звезд. Эту часть учения Аристотеля еще во II в. н. э. пытался скорректировать Птолемей, однако, хотя его система и оказалась более сложной и одновременно принимающей во внимание большее количество реалий, она не отвечала потребностям Нового времени. Эпоха Великих географических открытий породила острую необходимость в новых астрономических приборах, которые позволяли бы устанавливать точные координаты кораблей в открытом море. Использование же таких приборов, в свою очередь, было невозможно без составления как можно более подробных таблиц движения планет.

Одним из первых, кто попытался пересмотреть систему Птолемея, стал польский ученый Николай Коперник (1473–1543). Выпускник университета Кракова, он много путешествовал, учился и работал в Италии, где приобрел определенную известность как астроном и медик. Вернувшись на родину, он создал обсерваторию и продолжил астрономические наблюдения. Со временем он пришел к выводу, что ряд закономерностей в движении планет необъясним в рамках теории Птолемея и изложил свое видение космоса в трактате «Об обращении небесных сфер», опубликованном в 1543 г.

Вместо геоцентрической модели мира Коперник предложил гелиоцентрическую: все планеты вращаются не вокруг Земли, а вокруг Солнца. В остальном же он оставил систему Птолемея неизменной: для него Вселенная по-прежнему была ограничена сферой неподвижных звезд, орбиты планет имели форму круга, а их вращение объяснялось вращением сфер, к которым крепились планеты. Тем не менее труд Коперника в немалой степени повлиял на общефилософское восприятие окружающей действительности: Земля перестала мыслиться как центр Вселенной и превратилась в представлении людей в такую же планету, как и остальные. Соответственно, постепенно стала стираться граница между «надлунным» и «подлунным» миром, а затем возникло представление о том, что и космос, и Земля подчиняются одним и тем же законам. Со временем опасность работы Коперника для прежней, признанной Церковью картины мира осознало и духовенство: через семь с лишним десятилетий после первой публикации трактат польского ученого был внесен Святым престолом в «Индекс запрещенных книг».

Труды Коперника во многом послужили базой для работ его последователей, таких, например, как итальянский философ, астроном и математик Джордано Бруно (1548–1600), настаивавший на бесконечности Вселенной и множественности миров. Однако учение Коперника создавало для астрономов и определенные проблемы: несмотря на внешнюю радикальность его труда, характерный для него компромисс между собственными выводами и системой Птолемея привел к тому, что его модели с чисто прикладной точки зрения давали даже худшее, чем прежде, представление о реальном движении планет. Неудовлетворенность теоретической базой для расчетов со временем только нарастала. Одним из тех, чьи наблюдения вошли в противоречие с космологией и Птолемея, и Коперника, стал датский астролог, математик, астроном и алхимик Тихо Браге (1546–1601), долгие годы пытавшийся самостоятельно сделать выбор между гео– и гелиоцентрической системами. Стремясь их согласовать, Браге даже предложил считать, что вокруг Солнца вращаются все планеты, кроме Земли и Луны, а уже Солнце с Луной – вокруг Земли. Но главный его вклад в науку состоял, разумеется, не в этом, а в бесчисленных астрономических наблюдениях, признанным мастером которых его считали в Европе. В 1572 г. Браге неожиданно увидел новую звезду в созвездии Кассиопеи (современные астрономы идентифицировали ее как сверхновую), что стало настоящей сенсацией: ведь согласно античным теориям, в «надлунном» мире никакие изменения невозможны.

Многолетние наблюдения Браге заложили основу, которой воспользовался его ассистент, немецкий математик, астролог и астроном Иоганн Кеплер (1571–1630). Как считается, еще в годы его учебы один из профессоров, будучи вынужденным преподавать астрономию по Птолемею, устраивал во внеурочные часы занятия для небольшого кружка одаренных студентов, на которых рассказывал про открытия Коперника. Однако, присоединившись в 1600 г. к работе Браге над составлением новых астрономических таблиц, Кеплер вскоре пришел к выводу, что ни античные теории, ни система Коперника не позволяют сделать это с достаточной степенью точности.

Продолжив после смерти Браге его дело, Кеплер выдвинул предположение о том, что орбиты имеют форму не круга, а эллипса, и что планеты движутся тем быстрее, чем ближе находятся к Солнцу. В отличие от Галилея, писавшего: «Я предпочитаю найти истину, хотя бы и в незначительных вещах, нежели долго спорить о величайших вопросах, не достигая никакой истины», Кеплер пытался построить именно общую систему, выяснить фундаментальные законы и закономерности. Он подчеркивал: «Моя цель состоит в том, чтобы показать, что небесная машина должна быть похожа не на божественный организм, а скорее на часовой механизм». Его главная книга носила характерное название – «Гармония мира» (1619). В ней Кеплер раскрывал свою теорию гармонии в четырех областях: геометрии, музыке, астрологии и астрономии. Кеплера также считают одним из предшественников Ньютона в разработке закона всемирного тяготения; в одной из работ он, в частности, отмечал: «Тяжесть есть взаимная склонность между родственными телами, стремящими слиться, соединиться воедино».

Сторонником гелиоцентрической системы стал и Галилей. С помощью телескопа он совершил множество сенсационных открытий. Неожиданно оказалось, что поверхность Луны во многом похожа на земную и покрыта горами и кратерами, что Венера, подобно Луне, меняет свои фазы, что Млечный путь состоит из множества отдельных звезд, что на Солнце можно наблюдать пятна, а вокруг Юпитера вращаются его собственные луны. Свои открытия Галилей обобщил в сочинении «Звездный вестник» (1610).

Для Галилея было достаточно очевидно, что научное объяснение увиденных им небесных явлений возможно лишь в рамках теории Коперника, – и именно это привело к его последующему конфликту с Католической церковью. В 1616 г. книга Коперника была запрещена духовенством. Ну а поскольку труд Галилея «Диалоги о двух главнейших системах мира – Птолемеевой и Коперниковой» (1632) – фактически доказывал истинность гелиоцентрической системы, автор предстал перед церковным судом, вынужден был отречься от учения Коперника и публично покаяться.

Телескоп Галилея. Музей истории науки, Флоренция

ВОЗНИКНОВЕНИЕ НОВОЙ КАРТИНЫ ВСЕЛЕННОЙ

Несмотря на стремление Кеплера построить новую всеобъемлющую модель мира, на деле его исследования, равно как и открытия Коперника, Браге, Галилея и многих других ученых, шаг за шагом опровергали античные представления о действительности, но так и не привели к выявлению фундаментальных законов, которые могли бы объяснить мироздание в целом.

Эту проблему попытался решить французский философ Рене Декарт (1596–1650). Осуждая Галилея за то, что тот, «не касаясь первопричин в природе, искал причины лишь некоторых ограниченных явлений и таким образом строил здание без фундамента», Декарт приступил к построению новой целостной картины мира. С его точки зрения, одна из основных проблем заключалась в том, чтобы получить достоверное знание. Здесь не всегда мог помочь чувственный опыт, поскольку он способен принять за реальность иллюзии, и не всегда возможно опираться на рассуждения, ибо их правильность зависит от истинности изначальных посылок. В основу своей философии Декарт положил сомнение, поскольку именно оно способно наиболее эффективно подвергнуть критике старые «истины» и выявить те аксиомы, на которых будет строиться новая система взглядов. Такой базовой аксиомой стала для Декарта известная максима: «Я мыслю, следовательно, я существую». В качестве одного из основных инструментов познания Декарт использовал математику и даже в описании природы стремился оперировать лишь математическими понятиями: движение, фигура, протяженность и т. д.

Декарт провозгласил, что в мире нет пустоты – мир наполнен материей, так как она фактически тождественна протяженности. Бог и его действие неизменны: творец создал материю и он же сохраняет ее в целостности. Меняются лишь части материи – и этим изменениям они обязаны природе. «Правила, по которым совершаются эти изменения, я называю законами природы», – писал Декарт. С самого начала творения частицы материи обладают движением, а к изменению состояния материи приводит столкновение одних частиц с другими. Таким образом, за богом оставался преимущественно первый толчок (или, как еще порой говорили, «первый щелчок»), а дальше уже вступали в действие законы природы.

Тем не менее ряд базовых принципов, лежавших в основе мироздания, по-прежнему оставался непознанным – так, например, было неясно, какая сила обеспечивает обращение планет, препятствует им оторваться от Солнца и отправиться в открытый космос. Свое объяснение этому предложил знаменитый английский физик, математик, механик, астроном, алхимик и философ Исаак Ньютон (1643–1727). Учась в Кембридже, Ньютон познакомился с сочинениями Кеплера, Галилея и Декарта. Тогда же он начал заниматься математикой, проблемами движения и света, сделал ряд открытий в разных сферах науки. В частности, Ньютон изобрел телескоп-рефлектор (более мощный, чем существовавшие до того), заложил основы математического анализа, много работал в области теории света и, в частности, доказал, что при помощи призмы белый цвет можно разложить на составляющие его семь цветов радуги. Кроме того, немало времени Ньютон посвятил изучению алхимии и взаимным превращениям металлов, активно интересовался теологией, увлекался астрономией и независимо от Кеплера пришел к выводу о том, что планеты вращаются вокруг Солнца по орбитам в форме эллипса.

Как и у других ученых эпохи Научной революции, открытия Ньютона в немалой степени базировались на достижениях предшественников. Так, например, закон падения тел и параболическая траектория снаряда были открыты еще Галилеем. А идея о том, что движение планет обусловлено в том числе и взаимным притяжением между телами, была высказана в 1674 г. английским естествоиспытателем Робертом Гуком (1635–1703), совершившим и ряд других важных физических открытий, но зачастую не доводившим свои исследования до конца, что впоследствии мешало установлению его приоритета: в частности, Ньютон отрицал, что следовал в своих рассуждениях за теориями Гука.

Так или иначе, в опубликованном в 1687 г. фундаментальном труде «Математические начала натуральной философии» (так называли тогда физику) Ньютон сформулировал «закон всемирного тяготения»: каждый материальный объект притягивается к любому другому вдоль соединяющей их прямой с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. Этот закон позволял объяснить не только взаимодействие Солнца и планет, Земли и Луны, но и практически любое движение тел.

Исследования Ньютона привели его к выдвижению и двух других базовых понятий классической физики: инерции и движущей силы. Его достижения воспринимались современниками как модель для познания всех закономерностей в природе и обществе. Казалось, что он совершил чудо: понял язык природы, более того, вступил с ней в диалог, и на свои вопросы о том, как устроен мир, получил четкие и однозначные ответы. Его труд окончательно разрушил средневековую картину мира, соединив воедино многое из того, что было сделано до него. Столетием позже Лагранж, известный математик и физик XVIII в., не без зависти скажет: «Ньютон был величайшим гением из всех, когда-либо существовавших, и самым удачливым, поскольку систему мира можно открыть лишь единожды».

РАЗВИТИЕ МАТЕМАТИКИ И ЕСТЕСТВЕННЫХ НАУК

Постепенное создание новой системы мира в годы Научной революции шло параллельно с множеством открытий в механике, химии, физике, биологии и других областях. Широкое внедрение в исследовательскую практику рационалистических установок и отказ от старых догм вели к подлинно революционным переменам в естествознании.

Бурное развитие в это время математики стимулировало прогресс в астрономии, навигации и других дисциплинах. Вводятся в оборот логарифмы, десятичная запятая, алгебраическая формула и алгебраическая символика: знаки умножения, деления, показателя степени, квадратного корня, «+» и «-». Блез Паскаль (1623–1662) сконструировал образцы арифметической машины для проведения сложения и вычитания (так называемое «Паскалево колесо»). Совместно с другим известным французским математиком Пьером Ферма (1601–1665) он разработал на примере игры в кости основы теории вероятности.

В конце XVI – первой половине XVII в. были изобретены логарифмы (Дж. Непер), правила действий с десятичными дробями (С. Стевин), разработана математическая символика (Ф. Виет, Р. Декарт), введено алгебраическое (вместо геометрического) понимание числа, открыт способ перевода (с помощью системы координат) геометрических предложений на алгебраический язык (Р. Декарт, П. Ферма, Дж. Валлис). Эти достижения существенно упростили сложные расчеты, расширили границы применения математических исследований и предопределили следующий важный шаг в развитии математики. Таким шагом стали работы Б. Кавальери и П. Ферма, выдвинувших идею анализа произвольных кривых с помощью разложения их на бесконечно малые отрезки прямых, и труды Дж. Валлиса, Дж. Грегори и И. Барроу, осуществивших «алгебраизацию» метода исчисления бесконечно малых величин. Публикации названных ученых сформировали основу для разработки во второй половине XVII в. Г. Лейбницем (1646–1716) и И. Ньютоном методов дифференциального и интегрального исчислений, в совокупности составивших исключительно мощный инструмент исследования – математический анализ.

Математический анализ обеспечил переход от аналогового моделирования к математическому, что открыло возможности проведения исследований невиданной ранее глубины и масштаба. В частности, математический анализ стал средством понимания и изучения всех проблем зависимости переменных величин (функция) и движения, что в свою очередь позволило его создателям описать новую научную картину мира. Математика, таким образом, оказалась одновременно и языком новой науки, и таким же инструментом формирования новой картины мира, как и телескоп.

Активно развивались физика и химия. Торричелли доказал, что воздух имеет вес и проводил опыты по измерению атмосферного давления. Исследования Паскаля в конце 40-х годов в области гидродинамики и гидростатики привели к изобретению шприца и гидравлического пресса; также был сформулирован «закон Паскаля»: жидкости и газы передают производимое на них давление одинаково по всем направлениям. Англичанин Роберт Бойль (1627–1691) настаивал на том, что химия должна стать самостоятельной наукой, преследующей иные цели, нежели до того алхимия и фармакология. В 1662 г., на десятилетие раньше пришедшего к аналогичным выводам француза Эдма Мариотта (1620–1684), Бойль сформулировал закон, известный ныне как «закон Бойля-Мариотта» и описывающий изменения объема газа с изменением давления. Совместно с Гуком Бойль заложил основы современной химии, систематизировав и подвергнув критике накопленные до них данные алхимиков, металлургов и медиков. Гук также установил клеточное строение тканей, ввел термин «клетка», уподобил дыхание сгоранию.


    Ваша оценка произведения:

Популярные книги за неделю