355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Разум побеждает: Рассказывают ученые » Текст книги (страница 18)
Разум побеждает: Рассказывают ученые
  • Текст добавлен: 13 июня 2017, 20:30

Текст книги "Разум побеждает: Рассказывают ученые"


Автор книги: авторов Коллектив


Соавторы: Еремей Парнов,Петр Кропоткин,Игорь Петрянов-Соколов,Виталий Гинзбург,Бонифатий Кедров,Леонид Ефремов,Владилен Барашенков,Владимир Брагинский,Борис Кузнецов,Яков Зельдович
сообщить о нарушении

Текущая страница: 18 (всего у книги 20 страниц)

Л. 3. Певзнер, доктор медицинских наук
Исследование вещества мозга

В коре нашего мозга от 14 до 16 миллиардов нервных клеток – нейронов. Долгое время внимание исследователей было приковано исключительно к ним, ведь именно нейроны – хозяева всех нервных процессов. При этом упускалось из виду, что большую часть объема мозга занимают «слуги» этих хозяев клетки-сателлиты, или, как их еще называют, глиальные клетки. Их впервые описал в середине XIX в. немецкий морфолог Р. Вирхов, считавший, что они склеивают, цементируют нервную ткань. (По-гречески «глия» означает клей). Объем всех тел глиальных клеток в 3 раза больше, чем объем всех тел нейронов. В ряду эволюции животных они появляются очень рано и отсутствуют лишь у совсем примитивных организмов. С совершенствованием организации видов начинает увеличиваться не столько число нейронов, сколько число глиальных клеток, приходящихся на один нейрон.

В ходе развития одного и того же организма с возрастом тоже увеличивается количество глиальных клеток на один нейрон. Их меньше у новорожденных. В юности их число и число нейронов сравнивается, дальше они начинают преобладать. Существует несколько типов глиальных клеток, но у всех тела и ядра гораздо меньше, чем у нейронов. От их поверхности отходят тонкие отростки, и каждый нейрон, за исключением синапсов (мест сближения между разными нейронами), оплетен сетью отростков соседних глиальных клеток. Некоторые из них взаимодействуют друг с другом. Таким образом, они пронизывают всю нервную систему.

Однажды в тканевой культуре совместно выращивали клетки глии и нейроны. Под микроскопом можно было наблюдать, как глиальные клетки делали пульсирующие движения и наползали на нейроны своими отростками, словно щупальцами. В культуре ткани глиальные клетки прекрасно развивались и росли, так как у них есть все необходимое для нормальной жизнедеятельности. Значит, и нейроны, и глиальные клетки вполне самостоятельны. Но при более тонком их анализе выявляются такие различия между ними, которые позволяют сделать вывод об их взаимной зависимости. В процессе эволюции природа создала глиальные клетки как очень удобный механизм, и в настоящее время удалось выявить три основные его функции. Но прежде чем о них рассказать, нужно сказать несколько слов о тех методах, с помощью которых биохимики исследуют глиальные клетки.

Как можно изучать отдельно химию нейронов и химию глии, если в мозгу эти клетки тесно переплетены?

Один из методов – микроманипуляция. Специальным микроскальпелем, микроиглами или микроманипуляторами различной конструкции под стереомикроскопом из срезов нервной ткани можно иссечь тела отдельных крупных нейронов и отделить от них глиальные клетки. Существуют очень сложные и очень тонкие микрохимические методы, позволяющие определять химический состав нейрона и глии даже в столь малых объемах, как одна клетка.

Другой метод – так называемый метод обогащенных фракций. Ткань мозга продавливают через нейлоновые сита, вначале с крупными, затем со все более мелкими отверстиями. Крупные отверстия пропускают нейроны, мелкие – клетки глии. Затем с помощью центрифуги клетки глии отделяют от тех нейронов, которые «проскочили» через первое сито. Различия в весе при центрифугировании позволяют глиальным клеткам двигаться вверх, а нейронам осаждаться на дно пробирок. Таким образом удается получить довольно большую массу фракций тех и других клеток, позволяющих производить любые биохимические определения. Правда, фракции получаются все же обогащенными, с некоторым процентом примесей, и на это приходится делать скидку.

Третий метод называют методом количественной цитохимии. В нем используют микроскопическое исследование препарата не только для визуального наблюдения, но и для спектрального анализа химического состава. Однако приготовление препарата неизбежно искажает исходный химический состав клеток.

Как видим, у каждого из методов есть свои плюсы и минусы. Но все они в комплексе позволили получить верное представление о клетках глии и установить, что по химическим свойствам глия не уступает нейронам, а по интенсивности протекания в ней некоторых процессов даже их превосходит.

Например, поглощение глией аминокислот – тех кирпичиков, из которых строятся молекулы белка, – идет гораздо активнее, чем в нейронах. Зато скорость синтеза белка в нейронах значительно выше, чем в клетках глии. Тогда зачем глии такое большое количество аминокислот? На этот вопрос уже получен ответ, позволивший понять первую ее функцию – трофическую. Глия выполняет роль слуги, подносящего к хозяину (нейрону) необходимые вещества. Нейронам передается часть находящихся в ней макромолекул РНК, белков, глюкозы, органических кислот, кислорода и пр.

Прямо из крови вещества не могут попадать в нейроны, так как они непосредственно не соприкасаются с капиллярами. Многие глиальные клетки оплетают тончайшие сосуды-капилляры, снабжающие мозг кровью. Все необходимое для нормальной жизнедеятельности нейронов вначале поступает в глиальные клетки. Их можно сравнить не только со слугами, но и со сторожами. Как вахтеры в проходной, они пропускают одни, но задерживают другие, вредные вещества, способные отравить или повредить нейроны. Благодаря глии нейроны чрезвычайно устойчивы к токсическим веществам, циркулирующим в крови. Любопытно, что гормоны главным образом влияют на глиальные клетки, заставляя их перестраивать обмен так, что они становятся посредниками между гормонами и нейронами, передавая информацию последним.

Когда нейрон в рабочем состоянии, он вырабатывает электрическую активность. Для этого ему необходимо много энергии. Энергия высвобождается при окислении биологических субстратов нейрона (глюкозы, органических кислот). Ничто так эффективно не дает энергию, как глюкоза. Глия использует для окисления кроме глюкозы и другие субстраты, например уксусную кислоту. При необходимости глия отдает нейронам и часть своей глюкозы. Она может пожертвовать в их пользу и кислород, перейдя сама на бескислородное дыхание. Нейроны мозга поглощают 20–25 процентов кислорода, потребляемого всем организмом в состоянии покоя, а вес мозга составляет лишь 2,5 процента веса тела. У детей до четырех лет нейроны поглощают даже до 50 процентов кислорода. Прекращение дыхания всего на 3–5 минут приводит к необратимому поражению центральной нервной системы. Поэтому понятно, насколько важна эта функция глии – выручать при необходимости нейроны кислородом и глюкозой.

За последнее время в биохимии появилась новая глава исследований изоферменты. Это разные формы одного и того же фермента, отличающиеся различными видами белковых молекул.

В настоящее время насчитывается более 50 ферментов, у которых доказано существование изоферментов. Благодаря различиям в чувствительности к регуляторным факторам они обеспечивают более тонкую регуляцию обмена в клетке. Так, фермент лактатдегидро-геназа (ЛДГ), с помощью которого нейроны и глиальные клетки окисляют молочную кислоту, может состоять из пяти разных видов белковых молекул. Соответственно все пять его изоферментов встречаются и в нейронах, и в клетках глии. Но в нейронах преобладают те из них, которые способны окислять молочную кислоту в присутствии кислорода, а в глии – те, которые окисляют ее в бескислородной среде.

О трофической функции глии многое было известно уже в начале 70-х годов нашего века, но о других ее функциях стало известно лишь в самое последнее время.

Еще в прошлом столетии выдающийся французский физиолог Клод Бернар сделал верное наблюдение: для того чтобы хорошо приспособиться к внешней среде, организм должен иметь постоянство внутренней среды – гомеостаз. («Гомеостазис» буквально – постоянный внутренний уровень однородного состояния). Изменения внешней среды меняют параметры внутренней среды организма, но только на время. Потом снова должно наступить исходное состояние. Чем выше организовано животное, тем более совершенны механизмы, обеспечивающие гомеостаз. У низших животных температура тела меняется в зависимости от окружающей среды, у высших есть механизмы терморегуляции, бдительно за ней следящие. Стоит температуре тела у человека повыситься всего на полградуса по сравнению с нормальной, и он нездоров.

В нервной системе механизмы гомеостаза особенно важны. Поэтому раньше думали, что при изменениях функциональных состояний нервной системы химический состав клеток остается неизменным. Но оказалось, что это не так. При возбуждении или торможении нейрона изменяются и химический состав, и активность ферментов, но они быстро возвращаются к норме. В этом очень важную роль играют глиальные клетки.

За последние годы стало точно известно, что при возбуждении нейрона в нем происходит перераспределение и заряженных частиц – ионов. Ионы калия (К+) выходят из нейрона во внеклеточное пространство, а ионы натрия (Na+) входят из внеклеточного пространства внутрь его.

Ионы калия являются как бы сигналом для глиальной клетки. Как только они вышли из нейрона, глиальные клетки, расположенные поблизости, жадно их захватывают, и ионы калия тут же «запускают» в них целый ряд биохимических реакций, позволяющих поддерживать гомеостаз в нейроне. Подобно санитарам психиатрической помощи, глиальные клетки готовят для нейрона «смирительную рубашку», не дают ему разбушеваться, выйти за рамки, приводят к исходному состоянию равновесия. Само поглощение глиальной клеткой ионов калия служит спасением от переполнения этими ионами внеклеточного пространства. При их избытке во внеклеточном пространстве наступает беспорядочное возбуждение соседних нейронов, а нейрон должен посылать только узконаправленный сигнал. Наступает неадекватная реакция – генерализованное возбуждение: страх или даже паника.

Когда нервная клетка возбуждена, в ней увеличивается содержание аммиака. При генерализованных возбуждениях аммиак накапливается сильнее. Аммиак токсичен – он отравляет нейроны. Чтобы этого не произошло, нужны ферментные системы, способные его устранять. Они есть в клетках глии.

От нейрона к нейрону возбуждение передается через нейромедиаторы ацетилхолин и ряд других веществ, в том числе, как было установлено в последние годы, через циклические нуклеотиды. Ферменты, способствующие их синтезу, в основном локализуются в нейронах. Те ферменты, что их расщепляют, преимущественно находятся в глиальных клетках.

Нейрон синтезирует медиаторы и держит их наготове. При возбуждении он выделяет их в синаптическую щель и передает возбуждение на соседние нейроны. Чем сильнее возбуждение, тем больше выделяется нейромедиатора. Для точной передачи информации необходима кратковременность действия. Поэтому, чтобы медиатор не действовал слишком долго, нужны ферменты, которые его расщепляют. В противном случае произойдет перевозбуждение или даже отравление нервной системы.

Чтобы этого не произошло, должны работать ферменты, синтезируемые в клетках глии. Известны два фермента, способные расщеплять ацетилхолин, ацетилхолинэстераза и бутирилхолинэстераза. Первый синтезируется в нейронах, второй – в глии. Первый активнее, но справляется с расщеплением ацетилхолина лишь тогда, когда последнего накопилось еще немного. Если же ацетилхолина много, происходит «торможение избытком субстрата», и фермент перестает действовать. Тогда ацетилхолин начинает грозить центральной нервной системе разлитым диффузным перевозбуждением. В этих условиях спасает глия, используя второй фермент – бутирилхолинэстеразу, причем, чем больше ацетилхолина накапливается, тем активнее действует глия. Ее фермент не боится избытка ацетилхолина и расщепляет его.

В последние годы было установлено, что некоторые аминокислоты могут претендовать на роль медиаторов. Как уже говорилось, глиальные клетки захватывают их много, и, возможно, не только для снабжения ими нейронов, но и для предотвращения перевозбуждения нейронов, если в этом наступит необходимость.

Чем активнее работает нейрон, тем интенсивнее идут в нем окислительные процессы – поглощение кислорода и поглощение углекислого газа. Углекислый газ может превращаться в угольную кислоту, и это создаст избыток кислот в нервной ткани. Усиленное окисление глюкозы приводит к накоплению молочной, уксусной, пировиноградной и других органических кислот. Таким образом, активация нейрона создает угрозу сдвига кислотно-щелочного равновесия среды (рН), а постоянство этого равновесия – еще более строгое условие для гомеостаза. Вся жизнедеятельность организма определяется активностью ферментов, а они очень чувствительны к температуре и кислотности среды. Поэтому изменение рН в кислую сторону – это угроза гомеостазу. Для ликвидации избытка угольной кислоты существует фермент – угольная ангидраза, с помощью которой угольная кислота превращается в нейтральные соединения. Они вначале выводятся из клеток мозга в кровь, затем – в легкие и в виде углекислого газа выдыхаются в атмосферу. Активность угольной ангидразы в клетках глии в несколько раз выше, чем в нейронах. Нейрон вынужден потреблять угольную кислоту, а глия заботится 6 том, чтобы его гомеостаз не нарушался.

В последнее время стала вырисовываться и третья, регуляторная (модулирующая) роль глии. Исследования обогащенных фракций глии показали, что ее клетки не только накапливают аминокислоты, но и выделяют их в окружающую среду. Этот процесс очень чувствителен к химическому составу окружающей среды, в частности к ионному составу и к наличию или количеству других аминокислот. Учитывая тесный контакт глиальных клеток и синапсов, можно думать, что прежде всего глия влияет на передачу возбуждения через синапсы.

На крысах проводились опыты по запоминанию новых условий эксперимента. Сначала их научили нажимать левой лапой на педаль, чтобы получить пищу; затем животных переучивали: заставляли вопреки привычке пользоваться правой лапой вместо левой. При этом активация синтеза белков шла одновременно и в нейронах, и в глии, причем в глии были обнаружены белки, которых нет в нейронах.

Так в нейрохимии появилась еще одна, новая глава под названием «мозгоспецифические белки» – о белках, характерных исключительно для клеток нервной системы.

Как известно, набор белков, присущий данному организму, во всех органах однотипен. Однако в нервной системе удалось найти наряду с белками обычными для других органов несколько таких, которых нет ни в одном другом органе, например белок, условно обозначенный S-100, который преимущественно содержится в глии. Именно он накапливался в глии при переучивании крыс. Общее количество белка в головном мозгу крыс – около 200 мг, а на долю белка S-100 приходится не более 0,4 мг. Однако если в боковые желудочки мозга крысы вводили антисыворотки против белка S-100, то это заметно уменьшало способность животных к переучиванию.

В синапсах обнаружили белок, напоминающий сократительный белок мышц. Такой белок имеется во всех тканях, где наблюдаются механические перемещения и пространственные изменения формы. Когда он сокращается или расслабляется, меняется форма и конфигурация синаптических мембран и, следовательно, меняется проведение импульса.

Состояние сократительного белка (сокращение или расслабление) зависит от ионов кальция. Белок S-100 способен активно их захватывать. Накапливаясь в ходе обучения, он начинает все больше и больше отнимать ионы кальция от. сократительного белка. Таким образом регулируется состояние тех каналов, по которым выходит калий и входит натрий. Следовательно, белок S-100, преимущественно содержащийся в глиальных клетках, может оказывать влияние на синапсы, – такова гипотеза. В ближайшие годы основные исследования глии будут посвящены именно этой, третьей ее функции.

Как видим, изучение первого из недавно открытых специфических для мозга белков стимулировало исследования механизма обучения и поведения животных, а третья функция глии поднимает эту «второстепенную субстанцию» до уровня нейронов.

Н. Н. Демин, доктор биологических наук, профессор
Химизм сна

Прошло уже более 20 лет со времени открытий, заставивших пересмотреть все прежние представления о нашем сне. Было установлено, что сон – это не торможение, а весьма активный процесс, связанный с возбуждением определенных структур мозга. В особенности «быстрый», или, как часто его называют, парадоксальный, сон с быстрыми движениями глаз и электрической активностью мозга, не отличающейся от активности в бодрствовании. После того как эти открытия были сделаны, началось бурное изучение развития механизмов сна. Сейчас исследование этой проблемы разделилось на два основных направления: изучение биохимических механизмов развития сна и выявление тех изменений в нервной системе, которые вынуждают нас спать. В первом направлении уже сделано много глубоких и очень интересных работ. Прежде всего – это результаты блестящих исследований французского ученого Мишеля Жувэ.

Смена различных фаз сна (а также переход от бодрствования ко сну) сопровождается сменой активности нервных клеток – нейронов – в стволе мозга. Передача нервных импульсов осуществляется через синапсы – места соединений между клетками и их отростками – с помощью химических передатчиков – медиаторов. В зависимости от того, какой медиатор выделяется в синаптическую щель, называют данные структуры холинергическими (медиатор – ацетилхолин), серотонинергическими (медиатор – серотонин) и т. д.

Тела нейронов, в которых есть серотонин, находятся в ядрах шва каудального («кауда» – хвост по-латыни) отдела мозгового ствола, и от них идут восходящие (к переднему отделу, коре) и нисходящие (в спинной мозг) длинные отростки нервных клеток – аксоны.

Если бодрствование поддерживается норадреналин– и дофаминергическими нейронами, то переход от бодрствования в фазу медленного сна[31]31
  «Медленным сном» эта фаза сна названа потому, что во время ее глубокой стадии на электроэнцефалограмме наблюдаются медленные дельта-волны (ритмы электрической активности мозга принято обозначать буквами греческого алфавита).


[Закрыть]
(с этой фазы всегда начинается сон) – серотонинергическими. Переход от медленного к быстрому сну еще до конца не расшифрован, однако и тут уже есть довольно обоснованная гипотеза. По образному сравнению М. Жувэ, как у хорошего кассира сейф открывается тремя ключами, так быстрый сон, очевидно, зависит от возбуждения трех структур, содержащих ацетилхолин, серотонин и норадреналин. Таким образом, картина нашего сна постепенно начинает проясняться. Становятся понятны механизмы возникновения трех состояний, в которых мы живем: бодрствования, медленного и быстрого сна.

Быстрые движения глаз в быстром (парадоксальном) сне, вероятно, связаны с возбуждением холинергических нейронов. Эта же система, возможно, вызывает и падение тонуса всех скелетных мышц при быстром сне единственном естественном периоде полного расслабления в нашей жизни.

Однако, если сон – активное рабочее состояние, неясно, для чего он нужен. Неясно также, почему эта удивительная работа приносит ощущение обновления и отдыха.

Еще в начале нашего столетия было предложено несколько теорий, объясняющих необходимость сна. Французские ученые Лежандр и Пьерон опубликовали работу, где говорилось о том, что при сне после длительной бессонницы в сыворотке крови, тканях мозга и спинномозговой жидкости собак накапливаются вещества, способные вызывать сон у бодрствующих животных.

Много лет спустя, уже в наше время, американский биохимик Паппенхаймер и швейцарский Моннье сумели доказать, что в мозгу у спящих животных накапливается вещество, способное вызывать медленный сон у бодрствующих. Моннье выделил это вещество в чистом виде из крови кроликов. Паппенхаймер обнаружил в спинномозговой жидкости коз, спавших после длительного лишения сна, фактор-S, вызывающий сон. Вещество, выделенное Моннье, оказалось пептидом, производным девяти аминокислот. Пептид (Моннье назвал его дельта-фактором) удалось синтезировать искусственно. Так было получено естественное снотворное, одинаковое для всех спящих млекопитающих, независимо от того, к какому виду они принадлежат, в том числе и для человека.

Дельта-фактор появляется при сне. Но почему появляется сон? Вызывает ли его это вещество, или появление дельта-фактора – следствие наступления сна? Какие биохимические изменения происходят во сне в клетках мозга? И если происходят, то во время каких фаз: в быстром или в медленном сне (или и в том и в другом)? Для того чтобы получить ответы на эти вопросы, необходимо было продолжать исследования.

Объектом исследований в нашей лаборатории были крысы. Сон у крыс короткий, от 15 до 30 минут, но в общей сложности они спят довольно много. После максимального по продолжительности сна мозг крысы исследовался биохимически.

В стволе мозга наряду с другими есть два скопления нейронов, два ядра – супраоптическое и красное. Исследовали нейроны и глиальные клетки этих ядер. При стрессовых состояниях из супраоптического ядра выделяются белки гормоны, поступающие в общий кровоток организма. Эти вещества оказывают влияние на активность гипофиза и всей эндокринной системы. Красное ядро тоже обладает высокой интенсивностью белкового обмена, но несет другие функции. Оно не имеет отношения ни к стрессовым состояниям, ни ко сну, а связано со спинным мозгом, мозжечком и корой головного мозга.

Было установлено, что у крыс в естественном сне идет накопление гистоноподобных белков и рибонуклеиновых кислот в клетках глии супраоптического ядра, причем за 10–20 минут сна их накапливается на 20 30 процентов больше по сравнению с бодрствованием. В нейронах этого ядра при сне накапливаются рибонуклеиновые кислоты. В то же время в нейронах красного ядра содержание белков несколько снижается.

При лишении крыс быстрого сна результаты получились неожиданные и очень интересные. В то время, когда наступает фаза быстрого сна, падает тонус скелетных мышц. Расслабление начинается с мышц шеи и затем охватывает все мышцы тела. Если крысу посадить на небольшую (5×5 см) площадку, выступающую над водой на 3–4 сантиметра, то животное окунет мордочку в воду или даже свалится в нее, как только перейдет в фазу быстрого сна. Очутившись на площадке снова, крыса через некоторое время опять уснет. Сон всегда начинается с медленного сна. Через некоторое время наступит быстрый сон, и все повторится сначала.

Лишение крыс быстрого сна привело к резкому падению уровня белков и в нейронах, и в глиальных клетках мозга. В нейронах оно вызывало количественно даже более резкие изменения, чем лишение обеих фаз сна. Если эксперимент с лишением быстрого сна продолжался более суток, содержание белка в клетках мозга несколько повышалось, затем стабилизировалось, но не достигало исходного уровня. Он восстанавливался лишь тогда, когда животному давали спать в быстром сне.

Аналогичные результаты были получены, когда исследовались другие отделы мозга.

Теменная область коры больших полушарий суммирует сигналы, поступающие в мозг, и образует часть регуляторной системы, определяющей целостное поведение животного. Деятельность этих областей коры отображает общий уровень активности всего головного мозга. В Институте нейрокибернетики Ростовского университета для исследования белкового обмена был использован электрофизиологоцитохимичеокий метод. По записи электрической активности мозга можно было точно установить, в какой фазе сна находится животное, и с помощью специального устройства, вживленного в мозг, быстро взять на анализ кусочек ткани. (Животное при этом не ощущало боли и не просыпалось.) Метод обеспечивал быструю фиксацию ткани, ее хорошую сохранность и проводился в условиях свободного поведения животного. Анализ подтвердил результаты предшествовавших опытов – при Лишении быстрого сна резко снижалось содержание белка в клетках мозга.

Значение белков в клетках мозга многообразно и определяется уникальными свойствами каждой из 20 аминокислот, входящих в состав белковой молекулы. Широкие функциональные возможности белковых молекул зависят от способности к изменению их конфигурации в ответ на воздействие. Эти изменения обратимы, то есть после того, как воздействия закончатся, молекула белка возвращается в первоначальное состояние. Белки и вся синтезирующая их система играют первостепенную роль в процессах возбуждения, торможения, запоминания и других сторонах многообразной функции нервной системы. Между функциональной сложностью отделов нервной системы и содержанием в них белков имеется определенная зависимость: выше содержание белков в больших полушариях головного мозга, меньше в его подкорковых областях и еще меньше – в спинном мозге. При лишении фаз быстрого сна больше страдали нейроны мозга. Для глиальных клеток оказался более необходимым медленный сон.

Получены и другие интересные результаты изучения биохимии медленного сна. Так, только при медленном сне у людей происходит значительное поступление из гипоталамуса в кровь гормона роста. Эта закономерность не изменяется ни при каких нарушениях смены циклов сна в течение суток. Выход гормона роста в общий кровоток организма говорит об усилении биосинтеза белков в периферических тканях организма. Таким образом, фаза медленного сна нужна для восстановления органов тела, а быстрый сон – для восстановления работоспособности мозга.

Чем выше организовано животное, чем лучше развита его нервная система, тем больше оно нуждается в быстром сне. Рыбы вообще не спят. У них – две формы отдыха: обездвижен-ность с потерей или сохранением мышечного тонуса. У амфибий также нет сна. Его заменяет обездвиженность с сохранением тонуса мышц. У рептилий (пресмыкающихся) можно наблюдать нечто похожее на медленный сон, у крокодилов – наиболее высокоразвитых среди них намечается что-то вроде небольших периодов фаз быстрого сна. У птиц уже хорошо выражен и медленный и быстрый сон (последний, правда, занимает лишь один процент сна) и наблюдается еще одно состояние во сне, которое есть у более примитивных животных – каталепсия (оцепенение). Если у крыс в быстром сне идет накопление белков и рибонуклеиновых кислот в нейронах и глии супра-оптического ядра, то у кур при каталепсии этого нет, содержание белка в клетках мозга у них даже падает. Обездвиженность животных – это отдых пассивный в биохимическом отношении. А быстрый сон – это активный процесс обмена веществ в клетках мозга.

В свое время известный советский биохимик А. В. Палладии указывал, что состояние сна не подразумевает бездеятельности головного мозга и что его активность при этом может и не ослабляться, а направляться на восстановление его функциональной работоспособности. При сне включается механизм повышения обмена глюкозы и других богатых энергией веществ. Причем уровень их использования не менее высокий, чем в бодрствовании.

При длительном полном лишении сна снижается активность окислительных процессов и падает синтез АТФ (аденозинтрифосфорной кислоты), необходимый для обеспечения энергией всех реакций, проходящих в клетках. При лишении быстрого сна содержание свободного гликогена снижается. Более чем на 50 процентов повышается содержание аммиака. Возможно, аммиак является одним из факторов, вызывающих утомление мозга. Нарушения сна могут приводить к заметным сдвигам обмена аминокислот – к торможению биосинтеза белков. При приеме снотворных (так называемых барбитуратов) естественный ритм сна нарушается. Эти снотворные снимают фазы быстрого сна со всеми вытекающими отсюда последствиями, всей суммой нарушений биохимических реакций в клетках мозга.

Попробуем подвести итог сказанному выше. Возможно, в нейрохимическом отношении сон нужен прежде всего для своеобразного ремонта именно белковых структур в клетках нервной ткани, для перестройки тех белковых молекул, которые повреждаются при функциональной активности в течение длительного бодрствования. Это прежде всего нерастворимые структурные белки синаптических мембран нейронов. Структурные белки изменяются, и затрудняется проводимость через синапсы, возникает утомление. При сне они восстанавливаются, и утомление исчезает. Это ответ на вопрос (правда, пока еще неполный и неокончательный): для чего нужен сон?


    Ваша оценка произведения:

Популярные книги за неделю