355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Разум побеждает: Рассказывают ученые » Текст книги (страница 16)
Разум побеждает: Рассказывают ученые
  • Текст добавлен: 13 июня 2017, 20:30

Текст книги "Разум побеждает: Рассказывают ученые"


Автор книги: авторов Коллектив


Соавторы: Еремей Парнов,Петр Кропоткин,Игорь Петрянов-Соколов,Виталий Гинзбург,Бонифатий Кедров,Леонид Ефремов,Владилен Барашенков,Владимир Брагинский,Борис Кузнецов,Яков Зельдович
сообщить о нарушении

Текущая страница: 16 (всего у книги 20 страниц)

Ученые рассказываютА. А. Бутаков, кандидат философских наук
Что такое жизнь!

Как известно, в основе живых организмов лежит органическая клетка. Ее можно считать наиболее простым элементом живой материи. Вот почему многие ученые уже давно высказывали мысль, что именно клетка – это исходный, простейший элемент жизни, носитель биологических процессов, обладающий всеми атрибутами живого. Этот взгляд отстаивал, например, К. А. Тимирязев. С ним можно встретиться и в трудах многих других исследователей. Так, более 40 лет назад в одной из своих работ известный советский физиолог А. А. Кулябко (1866–1930) писал: «В настоящее время простейшим элементарным носителем жизни и основным элементом строения всех живых организмов мы признаем клетку». Однако в этой же работе А. А. Кулябко пришел к выводу, что органическая клетка слишком сложна, чтобы ее можно было принять за первоначальный носитель жизни. Поэтому он считал, что такими носителями должны быть «ультрамикроскопические тельца».

С положениями А. А. Кулябко об огромной сложности клетки перекликаются современные работы А. И. Опарина. «Может быть, говоря о синтезе жизни, пишет он, – и нам сейчас нужно думать не о построении современной, способной к дыханию или фотосинтезу клетки, которую мы обычно изучаем, а об искусственном воспроизведении только еще несравненно менее сложных систем, но все же уже обладающих самыми первоначальными признаками жизни способностью хотя бы к относительно очень примитивному обмену веществ, обеспечивающему им, однако, способность к постоянному самосохранению и самовоспроизведению в определенных условиях окружающей среды».

За последние десятилетия биологическая наука добилась очень многого в своем проникновении в глубины живого. Можно сказать, что сейчас ученые стоят на самом рубеже раскрытия тайны живого, порога, отделяющего живую материю от неживой. Однако эти проблемы пока еще только решаются наукой. Они очень сложны и требуют немалых усилий со стороны ученых. Тем не менее сейчас уже вполне ясно, что носитель всех биологических процессов должен обладать по крайней мере четырьмя качествами: 1) способностью к обмену веществ; 2) способностью к передаче наследственных признаков; 3) способностью к саморегулированию и 4) способностью к самовоспроизведению.

Какая же из известных нам первичных живых систем имеет все эти признаки? Белок? Нет, он, как теперь известно, не обладает всеми перечисленными способностями. Это подтверждает ряд современных важнейших научных открытий. Так, в последние годы было обнаружено, что в каждом новом поколении живых существ возникновение белков происходит заново. Оказалось, что наряду с белком ведущая роль в процессах жизнедеятельности принадлежит нуклеиновым кислотам – дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК). Выяснилось также, что преемственность жизни, ее воспроизведение связано не с белками, а с молекулярной структурой ДНК, локализованной в хромосомах клеточных ядер.

Однако если внимательно ознакомиться с достижениями современной биологии, то выяснится, что нуклеиновые кислоты, как и белок, нельзя безоговорочно назвать единственными специфическими носителями жизни. К тому же многие ученые теперь уже считают, что ДНК вовсе не единственный хранитель и передатчик биологической информации. По мнению И. Б. Збарского, например, «если ДНК и является наиболее совершенным хранителем и передатчиком биологической информации, то было бы ошибочно рассматривать ее или даже вообще нуклеиновые кислоты как единственные соединения, обладающие этими свойствами».

Обращает на себя внимание и тот факт, что сам состав ДНК неоднороден. Так, у высших растений и многоклеточных животных в составе ДНК найден 5-метилцитозин, которого нет в ДНК низших форм. В составе ДНК некоторых бактерий есть 6-метиладенин. К тому же ученые считают, что созда» ие белка в клетке зависит не только от генетического кода, но и от температуры. Интересно, что теперь появилось мнение о существовании кроме генов и других особых единиц наследственности – плазмогенов, как их назвали.

«Разумно предположить, – пишет, например, В. Фирсов, – что именно плазмогенами определяются изменения в синтезе белков, происходящие как за время индивидуального развития организма (онтогенеза), так и в процессе приспособления к внешним условиям (например, увеличение волосяного покрова под воздействием холода). Однако если это так, то приспособительные свойства, приобретенные за время индивидуального развития, могут становиться наследуемыми».

Вот очень и очень коротко то, что, в сущности говоря, знает сегодня об истоках жизни биологическая наука. Она сейчас находится в поиске, на пути к новым великим открытиям в этой области. Однако и то, что уже открыто здесь на сегодняшний день, самые последние успехи биологии выдвигают, конечно, вопрос о том, что же такое жизнь, а особенно о том, соответствует ли современному уровню знаний известное философское положение Ф. Энгельса: «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей, их внешней природой».

Думается, что знаменитая энгельсовская формулировка в своей общей форме вполне справедлива и на нашем уровне развития биологии. Ее надо лишь уточнить и конкретизировать в соответствии с данными современной науки. Кстати говоря, большинство последних определений жизни, по сути дела, и являются попытками такого уточнения.

Какое же это будет определение?

Вряд ли из него надо исключать упоминание о белке, как пытаются делать некоторые исследователи. Ведь все известные нам в настоящее время живые организмы представляют собой белковые тела. И данное обстоятельство нельзя считать случайным. Далее. Белок, например, катализирует (ускоряет) реакции обмена, активность белков находится в основе процессов жизнедеятельности, обеспечивает главные физиологические функции: питание, дыхание, раздражимость, размножение… Все это говорит о том, что без белков не было бы жизни.

И наконец, несмотря на то что в основе жизнедеятельности помимо белков лежат и нуклеиновые кислоты, последние сами по себе, по-видимому, не обладают свойствами живого объекта.

Однако, как мы уже говорили, теперь известно, что «только» белок, как и «только» нуклеиновые кислоты (взятые изолированно друг от друга), нельзя признать специфическим носителем жизни. Для общего философского определения жизни на современном уровне развития биологии таким носителем сейчас, очевидно, следует считать систему, комплекс белка и нуклеиновых кислот. При этом следует иметь в виду, что и это лишь весьма предположительно. Наука ведь развивается бесконечно, каждый новый шаг биологии обязательно что-нибудь добавляет к нашему знанию о жизни. И безусловно, вопрос о специфическом материальном носителе земных биологических процессов будет решен наукой на основе конкретных исследований.

Точно степень познания сущности биологической формы движения материи в ближайшем будущем трудно предсказать сегодня. Но диалектический подход к исследованию имеющихся фактов включает в себя бесконечный процесс углубления познания человеком вещей, явлений, процессов и т. д. от явлений к сущности и от менее глубокой к более глубокой сущности. В. И. Ленин писал, что «мысль человека бесконечно углубляется от явления к сущности, от сущности первого, так сказать, порядка, к сущности второго порядка и т. д. без конца».

Значит ли это, что философски определять сущность жизни бессмысленно? Вовсе нет. Если такое определение подтвердится научной практикой, то оно будет иметь значение истины. Вполне понятно, это будет истина относительная. Но ведь каждая относительная истина есть частичка истины абсолютной. «Для диалектического материализма, – замечал В. И. Ленин, – не существует непереходимой грани между относительной и абсолютной истиной».. И нет ничего страшного в том, что нынешнее определение субстанции жизни впоследствии окажется недостаточно точным и неполным.

Теперь часто выдвигают в виде возражения предположения некоторых ученых, что в Других частях Вселенной в принципе могут протекать отдельные, весьма необычные, непохожие на наши жизненные процессы. Но и это возражение против общей формулировки понятия «жизнь» нельзя признать действительным. «Отдельное, – писал В. И. Ленин, – не существует иначе как в той связи, которая ведет к общему… Всякое общее есть (частичка или сторона или сущность) отдельного». Факты науки говорят: любой «исключительный» биологический процесс всегда будет иметь какие-то общие признаки с процессом «обычным». Причем эта общность должна быть не только в функциях. Общие признаки обязательно должны быть и у материальных носителей жизни.

Ленинский диалектико-материалистический метод исследования требует объединения принципа единства с принципом развития. Он также обязывает при изучении каждой конкретной системы определять не только ее генезис (то есть изменчивость), но и ее структуру (то есть учитывать ее устойчивость). Вот почему, по нашему мнению, свойства поведения любого живого объекта (в том числе способность получать, перерабатывать и передавать информацию) не могут не зависеть от его структуры, а также от его происхождения и развития.

К жизни – биологической форме движения материи – следует относить лишь те объекты и процессы, у которых существенно совпадают указанные характеристики. Поэтому мы разделяем мнение А. И. Опарина, полагающего, что «эволюцию материи во Вселенной мы можем схематически представить себе как систему расходящихся путей, отдельные ответвления которых могут приводить к очень сложным и совершенным формам движения материи. Но совсем не обязательно любую из этих форм рассматривать как жизнь. Жизнь – это всего лишь одна из многочисленных ветвей развития материи. Ей свойственны свои специфические пути развития».

Итак, что же такое жизнь? Повторяем: по мере углубления познания биологических процессов определение этого понятия неизбежно будет уточняться и несколько видоизменяться. Но на современном уровне науки, как нам кажется, может быть наиболее приемлемым следующее определение: жизнь (биологическая форма движения) представляет собой способ существования открытых (то есть обменивающихся веществом и энергией) нуклеопротеидных систем, обладающих свойствами саморегулирования и самовоспроизведения.

Такая формулировка, данная М. В. Волькенштейном, по своему смыслу совпадает со взглядами многих современных авторов, исследующих обсуждаемую проблему. Вместе с тем развивается и конкретизируется формула Ф. Энгельса. Конкретизируется, например, понятие «белковое тело». Оно трансформируется в понятие «нуклеопротеидная система». Сохраняется, только с некоторой «модернизацией», понятие «обмен веществ»: добавляются, в соответствии с данными современной науки, понятия «саморегулирования» и «самовоспроизведения».

Представляется, что подобный переход от первого определения ко второму соответствует действительному движению мысли от сущности одного порядка к сущности другого, более глубокого порядка, то есть тому углублению мысли, на которое указывал В. И. Ленин.

Следует в заключение отметить, что мы вовсе не считаем данное нами определение жизни исчерпывающим даже для нынешнего состояния науки, однако полагаем, что оно сейчас наиболее приемлемо.

В. А. Энгельгардт, академик, Герой Социалистического Труда
На пути к раскрытию тайны жизни

Тех, кто задумывался над тайнами природы, с самых древних времен влекла, а порой и отпугивала своей недоступностью одна из глубочайших тайн в познании мира – вопрос о сущности жизни.

Тысячелетия загадка жизни оставалась прибежищем метафизики, областью верований, а не знания. Жизнь рассматривалась как сверхъестественное и потому непознаваемое явление. Многие авторы, расходясь в мелочах, сходились в утверждении, что живые существа и жизненные процессы не могут быть объяснены в логических понятиях.

Реальное развитие науки, как известно, опровергло все эти вековые заблуждения. Стоит ли напоминать, что раскрыт генетический код, выяснена трехмерная структура белковой молекулы? Это известно теперь и школьникам. В отношении химического состава живых объектов можно сказать, что практически достигнут предел: мы знаем этот состав с почти исчерпывающей полнотой, и вряд ли нас ожидают какие-либо крупные сюрпризы на этом пути.

Теперь задача переместилась в новую плоскость. Нам хочется знать, какую роль играют в живом организме, в осуществлении явления жизни молекулы, каждое из входящих в него бесчисленных соединений. Пожалуй, может быть, лучше это сформулировать в обратном порядке: нам хочется, отправляясь от того или иного характера проявления жизнедеятельности, знать, какие именно виды молекул ответственны за нее, в какой мере она зависит в каждом отдельном случае от химической структуры молекул, от их свойств и форм взаимодействия.

С этой точки зрения наиболее характерным примером специфического участия определенного типа молекул в осуществлении одной из важнейших биологических функций – воспроизведении себе подобных – является роль в организме дезоксирибонуклеиновой кислоты (ДНК). Как известно, особенности ее обеспечивают явления наследственности и тем самым все существование бесчисленного множества видов живых организмов, населяющих Землю.

Глубокое познание трехмерной пространственной структуры молекул гемоглобина и зрительного пурпура позволило отчетливо установить, в чем сущность процессов дыхания и зрения. Оказывается, мы можем дышать только благодаря особым свойствам молекул гемоглобина, видеть – благодаря особым свойствам молекул зрительного пурпура. На очереди разгадка чувства вкуса на молекулярном уровне. Уже выделен специфический белок, способный вне организма различать сладкий вкус химических веществ самой разной природы.

В основе механического движения мышц, как известно, лежат особенности молекул сократительных белков и молекул аденозинтрифосфорной кислоты (АТФ) как носителя химической энергии. Распространение нервного импульса основывается на особых свойствах молекулы ацетилхолина, входящего в состав нервных волокон.

Этого краткого перечисления достаточно для доказательства того, что многочисленные и разнообразные физиологические функции в своей первооснове оказываются обусловленными свойствами тех или иных молекул.

Сами молекулы, как таковые, однако, ни в коем случае не могут рассматриваться как живые. Неудачны поэтому и неправильны такие термины, порой еще встречающиеся в обиходе, как, скажем, «живой белок». Жизнь всегда, даже в самых примитивных своих формах, является результатом какой-то упорядоченной совокупности молекул различного рода, образующих определенную систему той или иной сложности.

Что же такое жизнь? Трудность дать четкий ответ на такой вопрос непосредственно связана с тем обстоятельством, что мы сегодня пока еще не имеем достаточно точного и неоспоримого ответа на вопрос, казалось бы, более простой, который естественным образом должен быть решен раньше, чем может пойти речь о природе жизни: где проходит граница между живым и неживым?

Приведу несколько примеров, чтобы показать возникшие здесь в настоящее время перед наукой трудности. Предположим, случилось так, что у человека отрезана голова. Всякому ясно: человек этот мертв. И тем не менее сердце его, если искусственно пропускать через него кровь, может еще долго биться совершенно так же, как билось при жизни человека. Больше того, как мы теперь знаем, это сердце можно пересадить другому человеку, и тот будет жить. Значит, организм может умереть, но части его оставаться живыми.

Спустимся значительно ниже по уровням биологической организации – к миру микробов – и возьмем одноклеточный микроорганизм. Он живет в условиях кислородного дыхания, но при отсутствии кислорода не погибает, а начинает черпать нужную ему энергию за счет процессов брожения. Клетка эта, по существу, ведь перестала дышать – жива она или нет? Ответ тут ясен: она жива, но функции живого осуществляются в ней по-иному. Более того, мы можем даже полностью разрушить такую клетку (например, под высоким давлением выжать из нее то, что экспериментатор называет клеточным соком), однако и этот сок будет продолжать расщеплять сахар и образовывать спирт и углекислоту, то есть бродить так же, как это делала живая клетка. Что же полученный сок живой? Ответ и тут как будто ясен: нет, не живой. Вот именно здесь ученые пока еще не уяснили точно: почему же нет, в какой именно момент наш живой объект перестал быть живым.

Всем известно о существовании вирусов. Проникнув в клетку, вирусная частица размножается, в результате чего в большинстве случаев наступает гибель клетки и вышедшие из нее вирусные частицы могут заразить новую клетку. Вне клетки вирусная частица не проявляет ни одного из тех свойств, которые мы считаем обязательными признаками живого: в ней не происходит никаких процессов обмена веществ. Она не дышит, не бродит, не может двигаться, не может размножаться, не реагирует ни на какие воздействия. С полным правом один из крупнейших биологов современности, В. Стенли, охотно охарактеризовал парадоксальные свойства вирусов: в клетке вирус ведет себя как живое существо, а вне клетки он мертв, как камень. Ту же примерно мысль высказал ныне покойный микробиолог Надсон: вирус – это то ли вещество, обладающее свойствами существа, то ли существо со свойствами вещества.

С точки зрения химической природы по своему составу многие простейшие вирусы действительно могут рассматриваться как вещество, ибо они состоят всего из двух компонентов: белка и нуклеиновой кислоты. Формально они могут быть отнесены к хорошо известной химикам категории химических соединений к нуклеопротеидам. Но если так обстоит дело с точки зрения химической, то совсем иначе получается в биологическом плане: вирусы – это не что иное, как внутриклеточные паразиты; а понятие «паразит» неразрывно связано с представлением о живом объекте, существующем за счет другого – тоже живого объекта. В мире неживой природы мы паразитизма не знаем.

Так на всех уровнях биологической организации – от уровня нуклеопротеида, каковым может являться вирус, и до уровня человеческого организма – мы неизменно сталкиваемся с невозможностью однозначно провести границу между живым и мертвым.

Значит, мы подходим к выводу, что на современном уровне наших знаний пока не располагаем таким определением понятия «жизнь», которое охватило бы все стороны явления и объяснило бы его сущность, исходя из первичных, уже известных нам понятий. Вот почему мы сегодня должны оставаться при том общем определении, которое гласит: жизнь – это наивысшая из известных нам форм существования материи, достигнутая ею в процессе эволюции.

При таком определении сразу же возникает вопрос: в чем же состоит более высокое качество этой формы существования материи, в чем эта форма превосходит прочие?

Превосходство, о котором идет речь, выражается в различных аспектах. Многообразие химических компонентов и сложность химического строения подавляющего большинства органических соединений в огромной степени превосходят все, что известно в неживой природе. То же самое справедливо и в отношении динамики, то есть многообразия и быстроты протекания превращений материи. Те уровни, которыми характеризуются живые системы, на много порядков превышают наблюдаемые в неживом мире. Однако, сколь ни важны приведенные признаки, еще гораздо большее значение имеет начало упорядоченности как наиважнейшее качество всего живого. Именно в способности живого создавать порядок из хаотического теплового движения молекул состоит наиболее глубокое, коренное отличие живого от неживого.

Уникальность химического состава, своеобразие условий протекания превращений, которым вещества подвергаются в процессе жизни, – эти особенности и типичные черты живого еще не вступают в конфликт с тем, что мы знаем о явлениях неживого мира, Это различия, но не противоречия. Тенденция к упорядоченности занимает в этом отношении особое место. Здесь живой объект, не нарушая законов, действующих во всей природе, вступает в антагонизм с ними. Можно сказать, что, вместо того чтобы пассивно подчиняться закону природы, жизнь обеспечивает возможность активного противодействия этому закону, подобно тому как, поднимая тяжелый предмет, мы не нарушаем закона тяготения, но противодействуем ему.

Тенденция к упорядоченности, к созданию порядка из хаоса есть не что иное, как противодействие принципу возрастания энтропии, то есть второму закону термодинамики. Отсюда вытекает следствие первостепенной важности: живые объекты должны представлять собой открытые системы, то есть быть способными взаимодействовать с окружающей средой, обмениваясь с ней энергией. Именно этим и устраняется противоречие, порождаемое якобы нарушением второго закона термодинамики: уменьшение энтропии, возникающее в изолированно взятом живом объекте, на самом деле сопровождается ее возрастанием в системе «живой объект – среда», и, следовательно, никакого нарушения второго закона на самом деле не происходит.

Мы можем сказать, что жизнь представляет собой совокупность некоторого числа начал, из которых каждое, взятое в отдельности, не определяет собою жизни, но при отсутствии хотя бы одного из них жизни быть не может.

Во-первых, одним из таких начал является структурная организация. Во-вторых, в основе жизни лежит сочетание трех потоков: вещества, энергии и информации. И хотя эти потоки качественно глубоко различны, они сливаются в некое единство высшего порядка, составляющее динамическую основу жизни. Нуклеиновые кислоты играют ведущую роль в осуществлении потока информации, а поток материи и поток энергии обусловлены свойствами белков, в первую очередь их каталитической активностью.

Именно существование этих трех потоков, как мне представляется, является обязательным условием для того, чтобы решать, принадлежит данная система к числу живых или не принадлежит.

Одним из крупнейших успехов современного естествознания явилось открытие принципа матричного синтеза, который позволил дать конкретное истолкование одного из коренных атрибутов жизни, притом доведенное до уровня молекулярной структуры. Сущность матричного синтеза проста и ясна, но его механизмы необычайно тонки.

Суть этого принципа заключается в том, что новые молекулы синтезируются в точном соответствии с планом (или программой), уже заложенным в структуре существующей молекулы. Роль матрицы играет молекула ДНК. Важность принципа матричного синтеза ясна из того, что он лежит в основе построения обоих главных типов макромолекул, которые мы выше охарактеризовали как обязательные и необходимые материальные компоненты живых систем – нуклеиновых кислот и белков. Мы бы зашли слишком далеко, если бы захотели утверждать, что в матричном синтезе заложена сущность жизни. Но с полной уверенностью можно сказать, что без матричного синтеза жизнь, какой мы ее знаем на нашей планете, не была бы возможна.

Представления о потоках вещества и энергии уже сформировались в основном в предыдущие периоды, а представление о потоке информации – одно из достижений естествознания самого последнего времени. В область биологии проникают воззрения, заложенные в кибернетике, поскольку теория информации служит одной из ее первооснов.

Следует особо подчеркнуть, что информация всегда связана с тем или иным материальным носителем. Вот почему поток информации неразрывно связан с потоками вещества и энергии. И если без потока информации невозможна жизнь, то без нуклеиновых кислот невозможно движение этого потока. Поэтому нуклеиновые кислоты наряду с белками являются обязательными компонентами живых систем.

Итак, говоря словами замечательного современного английского ученого Джона Бер-нала, «жизнь перестала быть мистической тайной, практически говоря, она становится криптограммой, головоломкой, кодом, который можно расшифровать, рабочей моделью, которую рано или поздно удастся создать».

Ученые уже синтезировали в пробирке нуклеиновую кислоту, входящую в состав одного из вирусов. Соединившись со своим специфическим белком, она образовала полноценный вирус. Мы вправе сказать, что если считать вирус простейшей формой живого, то человеком искусственно получена одна половина этого биологического образования (вторая была достроена той клеткой, в которую попала нуклеиновая кислота вируса). Потому-то и можно сказать, что уже пройдена половина пути до синтеза простейшей формы жизни.

Другим эпохальным событием явился синтез гена, то есть части молекулы ДНК, которая способна программировать синтез какого-либо индивидуального макромолекулярно-го вещества.

Продолжая идти этими путями, мы, быть может, получим нечто живое, еще не имея исчерпывающего ответа на вопрос: что такое жизнь? Мне думается, именно таким путем, как бы нарушая последовательность логических этапов, будет сделан шаг решающего значения и для приближения к познанию сущности жизни. Можно не сомневаться в том, что это будет величайший триумф естествознания нашего века.


    Ваша оценка произведения:

Популярные книги за неделю