355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Разум побеждает: Рассказывают ученые » Текст книги (страница 15)
Разум побеждает: Рассказывают ученые
  • Текст добавлен: 13 июня 2017, 20:30

Текст книги "Разум побеждает: Рассказывают ученые"


Автор книги: авторов Коллектив


Соавторы: Еремей Парнов,Петр Кропоткин,Игорь Петрянов-Соколов,Виталий Гинзбург,Бонифатий Кедров,Леонид Ефремов,Владилен Барашенков,Владимир Брагинский,Борис Кузнецов,Яков Зельдович
сообщить о нарушении

Текущая страница: 15 (всего у книги 20 страниц)

Существуют ли гравитационные волны!
На вопросы отвечает доктор физико-математических наук В. Б. Брагинский

Что дает основание для вывода о существовании гравитационных волн?

Вывод о возможности существования волн тяготения (гравитационных волн) – одно из следствий общей теории относительности Эйнштейна. До сих пор каких-либо оснований сомневаться в справедливости этой теории у нас не было. Целый ряд предсказанных ею космических и физических явлений, в том числе такой фундаментальный факт, как расширение Вселенной, получили наблюдательные и экспериментальные подтверждения. Поэтому мы вправе ожидать, что оправдаются и другие ее предсказания, в частности и относительно существования гравитационных волн.

Всем хорошо знакомы электромагнитные волны. Они образуются в тех случаях, когда возникают возмущения электрического или магнитного полей. Эти возмущения отрываются от источника и распространяются в пространстве со скоростью, равной скорости света. Аналогичное явление в принципе должно происходить и при возмущениях поля тяготения, гравитационного поля…

Всякое ли возмущение поля тяготения приводит к возникновению гравитационных волн?

Нет, как показал Эйнштейн, только при определенных условиях возмущение гравитационного поля может оторваться от источника и начать самостоятельную жизнь. В космосе их могут, например, порождать двойные звезды (две звезды, обращающиеся вокруг общего центра масс) или столкновения двух звезд. По-видимому, гравитационные волны могут возникать и при вспышках сверхновых звезд, а также при гравитационном коллапсе – в момент образования «черных дыр».

Какое научное значение имело бы открытие гравитационных волн?

Прежде всего, тем самым получила бы добавочное подтверждение общая теория относительности Эйнштейна. К тому же гравитационные волны от внеземных источников, если они будут обнаружены, могут стать чрезвычайно важным каналом для поступления астрофизической информации. В частности, с их помощью можно будет получать интереснейшие данные о гравитационном коллапсе звезд, о рассеянии материи космическими объектами, о динамике многих других космических процессов.

Они также способны принести уникальные сведения буквально о самых первых мгновениях расширения Вселенной.

Вы сказали: «Если удастся обнаружить». Как это следует понимать?

Все дело в том, что заключение о существовании гравитационных волн не является однозначным выводом из общей теории относительности. На пути от уравнений этой теории к интересующему нас выводу делаются различные допущения физического порядка. При этом одни ученые считают, что подобные допущения вполне оправданны, а другие разделяют прямо противоположную точку зрения. Лично я придерживаюсь того мнения, что гравитационные волны существуют. Но, разумеется, окончательным судьей в этом споре может быть только эксперимент.

В свое время в печати появлялись сообщения о том, что американскому физику Веберу удалось зарегистрировать гравитационные волны. Что бы вы могли сказать по этому поводу?

Вебер сконструировал специальные антенны для обнаружения всплесков гравитационных волн от внеземных источников. Чтобы исключить влияние каких-либо иных физических процессов, например сейсмических толчков, две установки были разнесены на 1000 километров одна от другой. Учитывались только те воздействия, которые фиксировались одновременно обоими детекторами. И уже в первых сериях наблюдений был зарегистрирован ряд таких совпадений. Сообщения об этом произвели настоящую сенсацию, в ряде стран стали спешно создаваться аналогичные устройства для повторения подобных наблюдений. Эта своеобразная «гонка», продолжавшаяся около двух с половиной лет, закончилась, однако, ничем. Никому результатов Вебера повторить ни разу не удалось. Видимо, он все-таки ошибся. Хочу, впрочем, подчеркнуть, что ошибка эта отнюдь не относится к категории тривиальных. Ведь речь идет о длительных, многомесячных измерениях весьма малой физической величины, измерениях, которые к тому же требуют абсолютной гарантии от каких бы то ни было помех.

В таком случае возникает естественный вопрос: что же регистрировали в действительности приборы Вебера?

Еще в 1972 г. сотрудники одного из советских научно-исследовательских институтов провели интересное исследование. Они вложили в электронно-вычислительную машину результаты наблюдений Вебера, а также данные о ходе ряда других природных явлений за тот же период, в том числе и о вариациях магнитного поля Земли, пятнах и вспышках на Солнце. Оказалось, что между всеми этими явлениями существует определенная взаимозависимость. Впоследствии аналогичную работу проделали американские ученые и пришли к такому же результату.

А как вы относитесь к предположению о том, что Веберу удалось зарегистрировать гравитационное излучение, исходящее из центра нашей Галактики?

Как я уже сказал, Вебер, видимо, вообще регистрировал не гравитационные волны. Что же касается гравитационного излучения из центра нашей Галактики, то в принципе те физические процессы, которые там происходят, вероятно, могут порождать гравитационное излучение. Но если бы оно действительно оказалось таким, каким его зарегистрировал Вебер, то всего за 100 тысяч лет вся центральная часть нашей звездной системы должна была бы превратиться в гравитационное излучение. Совершенно очевидно, что подобный результат вступает в явное противоречие с многомиллиардным возрастом Галактики.

Каковы же перспективы дальнейших исследований в области изучения гравитационных волн?

В настоящее время в разных странах, в том числе и в Советском Союзе, ведутся интенсивные работы по созданию новых, более чувствительных приемников гравитационного излучения. Я думаю, в ближайшем будущем в этой области появятся новые результаты, которые значительно расширят наши знания о фундаментальных закономерностях мироздания.

ПОЯСНЕНИЕ НЕКОТОРЫХ СПЕЦИАЛЬНЫХ ТЕРМИНОВ

Античастицы. – В конце 20-х годов текущего столетия знаменитый английский физик Поль Дирак разработал теорию движения электронов в атомах. Из этой теории вытекало, что элементарные частицы могут отличаться не только массой, но и своими электрическими и магнитными свойствами. В частности, его теория предсказывала существование «антиэлектронов» – частиц с массой электрона, но обладающих положительным зарядом.

Прошло всего четыре года, и в 1932 г. при изучении космических лучей американский физик К. Андерсон обнаружил частицу, свойства которой совпадали со свойствами «антиэлектронов» Дирака. Новая частица получила название позитрона. В настоящее время физикам известны антинейтроны, антипротоны и многие другие античастицы. Любопытно, что частицы и античастицы не могут сосуществовать. При соприкосновении друг с другом они аннигилируют – взаимно уничтожаются с выделением большого количества энергии, полностью превращаясь в излучение.

Атом водорода. – Водород – простейший и в то же время самый распространенный химический элемент во Вселенной. Атом водорода состоит из положительно заряженного ядра – протона и движущегося вокруг него электрона. Электрические заряды электрона и протона одинаковы, но противоположны по знаку. Масса протона в 1836 раз больше массы электрона. Масса атома водорода в граммах составляет 1,67·10–24 грамм.

Масса электрона – 9,1·10–28 грамм. Диаметр атома водорода не может быть точно определен, его граница размыта, приблизительно он равен 10–8 сантиметра. Эта единица, равная одной стомиллионной доле сантиметра, в честь шведского ученого Андерса Ангстрема названа ангстремом.

Радиус протона примерно в 100 тысяч раз меньше радиуса атома водорода. Он составляет 1,3·10–13 сантиметра. Длина 10–13 сантиметра принята за ядерную единицу длины. Она получила название ферми в честь знаменитого итальянского физика Энрико Ферми. Плотность вещества в протоне фантастически велика – около 200 миллионов тонн в кубическом сантиметре. Приблизительно такова же плотность вещества во всех атомных ядрах.

Дейтерий. – Кроме обычного водорода в природе существует еще так называемый тяжелый водород, или дейтерий, который был открыт в 1932 г. Электронная оболочка атома дейтерия, так же как и у водорода, состоит из одного электрона, но его ядро – дейтон – примерно вдвое тяжелее и состоит из двух частиц – протона и нейтрона.

Дейтерий применяется в современной ядерной технике как взрывчатое вещество. В будущем он будет использоваться как горючее в термоядерных энергетических установках. Запасы термоядерной энергии дейтерия, имеющиеся в воде земных океанов, примерно в 100 миллионов раз превосходят запасы энергии ископаемого топлива (угля, нефти, газа, торфа).

Инвариантность – неизменяемость. В математике и физике инвариантные величины – величины, не меняющие своего значения, при том или ином классе преобразования играют весьма важную роль.

В широком – философском – смысле инвариантность – это независимость от способа описания.

Камера Вильсона. – В конце прошлого столетия физик Ч. Вильсон, работая на горной обсерватории в Шотландии, обратил внимание на любопытные оптические явления, возникающие при освещении солнечными лучами облаков и тумана. Ученый решил воспроизвести подобное явление в лаборатории и провел несколько экспериментов, получая искусственные облака путем расширения паров. Эти опыты натолкнули Ч. Вильсона на плодотворную идею, которая и легла в основу знаменитой камеры для регистрации элементарных частиц, названной его именем. В камере Вильсона пролетающие частицы оставляют видимые следы из капелек воды в парах, образующихся в результате быстрого расширения. Эти следы можно фотографировать.

Масса и энергия. – Из теории относительности следует, что полное количество энергии, содержащейся в некотором количестве материи, равно произведению массы этой материи на квадрат скорости света в вакууме. Поэтому в физике высоких энергий массы измеряются в единицах энергии – так называемых миллионах электрон-вольт (мэв). В этих единицах массы электрона и позитрона равны примерно 0,5 мэв, а массы протона и нейтрона – 940 мэв. Иногда используется более крупная единица, равная одному миллиарду электрон-вольт (гэв), – гигаэлектрон-вольт. Масса одного грамма вещества выражается астрономическим числом – 6·1023 гэв.

Мезоны. – Изучая взаимодействия частиц, входящих в состав атомного ядра, японский физик Юкава пришел к выводу, что их взаимное притяжение является результатом непрекращающегося обмена особыми частицами – мезонами. Юкава предсказал также, что масса мезона должна примерно в 200 раз превосходить массу электрона. Впоследствии были открыты три мезона с близкими массами, но с разными электрическими зарядами: положительный, отрицательный и нейтральный. Эти ядерные мезоны получили название пи-мезонов. Кроме того, открыты еще два мю-мезона – положительный и отрицательный. Они возникают при распаде соответственно положительного и отрицательного пи-мезонов.

Нейтрон и нейтрино. – Нейтрон – частица с массой 1838,6 электронной массы – был открыт в 1932 г. английским ученым Д. Чедвиком. Вне атомного ядра нейтрон не стабилен. Средняя продолжительность его жизни 17 минут. Затем нейтрон распадается на протон, электрон и антинейтрино (распад).

В свое время физики обнаружили, что нейтрон может самопроизвольно распадаться на протон и электрон. Однако при этом обнаружилось странное нарушение закона сохранения энергии. Общая энергия продуктов реакции оказалась меньше, чем следовало из теоретических расчетов. Известный швейцарский физик В. Паули высказал предположение о том, что недостающую энергию уносит с собой неизвестная частица. Однако обнаружить эту частицу, названную по предложению Э. Ферми нейтрино (что одновременно означает «маленький» и «нейтральный»), удалось лишь сравнительно недавно.

Главная отличительная особенность нейтрино – удивительная способность беспрепятственно проходить сквозь громадные толщи вещества. Длина свободного пробега нейтрино в космосе сравнима с радиусом доступной современным исследователям области Вселенной.

Пузырьковая камера. – Одно из наиболее эффективных устройств для регистрации явлений, вызываемых частицами высоких энергий. Принцип ее работы сходен с принципом работы камеры Вильсона. Жидкость, наполняющая камеру, перегревается и приобретает способность легко вскипать. Благодаря этому вдоль пути, пройденного заряженной частицей, образуется видимый след, состоящий из пузырьков газа.

Поле. – Особая форма существования материи. Представим себе мощный радиопередатчик, излучающий электромагнитные волны. Где бы мы ни помещали антенну нашего приемника, они будут возбуждать в ней движение электронов, электрические токи, которые после соответствующего усиления и преобразования создают звук в динамике. Энергия, излучаемая передатчиком, заполнила определенную область пространства. Но энергия – это свойство материи, которое не может существовать отдельно, независимо от самой материи. Она всегда должна иметь материального носителя. В данном случае носителем энергии является электромагнитное поле. О материальной природе электромагнитного поля говорит и то обстоятельство, что оно способно оказывать на помещенные в него объекты не только электрическое, магнитное, но и прямое механическое воздействие. Так, электромагнитные (например, световые) волны производят определенное давление на преграды, а излучатели таких волн испытывают реактивный эффект, получая ускорение в противоположном направлении, как если бы выбрасывали обычные частицы вещества.

Типы взаимодействий. – Современной физике известны четыре типа взаимодействий между элементарными частицами.

Взаимодействие большой интенсивности, обусловленное обменом пи-мезонами и удерживающее в атомном ядре протоны и нейтроны, называется сильным взаимодействием.

Несколько слабее – электромагнитное взаимодействие, притяжение и отталкивание разноименных и одноименных зарядов.

Третий тип – слабые взаимодействия, возникающие при распадах и столкновениях частиц со средними и малыми массами.

Последний тип взаимодействия – притяжение масс, или гравитация. Однако в микромире гравитационные силы почти не играют никакой роли, так как они во много раз слабее других сил.

II. К истокам живого
Наука о живом

Живая природа всегда поражала человека своим многообразием, сложностью, целесообразностью, беспрерывным и быстрым изменением. От невидимого мира и микроорганизмов, бесчисленных простейших, лишайников, мхов, трав, кустарников и деревьев до мира животных – насекомых, рыб, земноводных, птиц, млекопитающих – такова цепь жизни, которая тянется к венцу природы – человеку, единственному из биологических существ, способному изучать и осмысливать закономерности природы.

На протяжении тысячелетий жизнь, ее зарождение и развитие, удивительная приспособляемость, наконец, сам человек с его разумом – все это казалось людям таинственным, необъяснимым, сверхъестественным. Загадка жизни всегда была прибежищем идеализма и религии. У всех религий имеется своя трактовка происхождения и сущности жизни.

Согласно христианско-иудейской Библии, бог создал все живые существа одним словом. В другом варианте библейской легенды он творит человека из «праха земного», вдувая ему в уста «дыхание жизни» (Бытие, гл. 2, ст. 7). В Коране сказано: «Хвала Аллаху!.. Он – тот, кто сотворил вас из глины…» (Сура 6, ст. 1–2). В другом месте этой священной книги мусульман утверждается: «О Боже, царь царства!.. Ты… выводишь живое из мертвого, и выводишь мертвое из живого…» (Сура 3, ст. 25–26).

Немало столетий прошло, пока человек накопил достаточно знаний для научного понимания мира живой природы. Для этого понадобилось развитие физики и химии, познание законов строения живых организмов, деятельности их органов и тканей, умение заглянуть внутрь организмов, проникнуть в мельчайшую их структуру. Пытливая мысль и эксперименты многих и многих поколений естествоиспытателей привели к заключению о постоянном развитии всего многообразия растительных и животных видов в процессе смены бесчисленных поколений белковых тел.

Какой сложной психологической перестройки потребовал такой взгляд даже от выдающихся умов! Еще в середине XVIII в. молодой Дени Дидро писал, что, склоняясь к неверию, возвращается к мысли о бытии бога, как только вспоминает о целесообразности живого: «Разве божество не запечатлено столь же ясно в глазу насекомого, как способность мыслить в произведениях великого Ньютона?» Но уже вскоре религиозному представлению о целесообразности живого был нанесен решающий удар – Чарльз Дарвин создал теорию происхождения видов путем естественного отбора. «Дарвин положил конец воззрению на виды животных и растений, как на ничем не связанные, случайные, «богом созданные» и неизменяемые, и впервые поставил биологию на вполне научную почву»[25]25
  В. И. Ленин. Полн. собр. соч., т. 1, стр. 139


[Закрыть]
, отмечал В. И. Ленин.

В наши дни мысль о последовательном развитии животного и растительного мира под воздействием естественных факторов, изменчивости и наследственности стала хрестоматийной. Современная биология идет гораздо дальше – в глубь живой материи, изучает самые сокровенные ее структуры. Сегодня это обширная область знаний, она включает много специальных направлений, изучающих жизнь во всех ее проявлениях, во всем бесконечном многообразии.

Еще совсем недавно биология не считалась достаточно точной наукой, нередко ее выводы, хотя и базировались на эксперименте, носили общий, весьма предположительный характер. Но уже Ф. Энгельс, констатировавший, что применение математики в биологии равно нулю[26]26
  См. К. Маркс и Ф. Энгельс. Соч… т. 20, стр. 587


[Закрыть]
, высказал идею о формах движения материи, начиная от самой простейшей – механической и кончая наиболее сложными – биологической и социальной как неотъемлемых ее структурах. Согласно его точке зрения, биологическая форма движения – такое же естественное свойство материи, как и физическая или химическая. «Материя, – говорил Ф. Энгельс, – во всех своих превращениях остается вечно одной и той же… ни один из ее атрибутов никогда не может быть утрачен…»[27]27
  Там же, стр. 363


[Закрыть]
.

Так философия диалектического материализма, обобщая данные естествознания, раскрыла качество жизни как одно из свойств материального мира, не сводимое к низшим формам движения, но органически из них вытекающее при определенных условиях на тех или иных этапах развития Вселенной. Так было покончено с религиозной фетишизацией явления жизни, а биологические процессы оказались вовлеченными в круг феноменов, исследуемых с такой же точностью, как и в других естественных науках.

Эти теоретические предпосылки все в большей степени реализуются современной наукой. Сегодня уже совершенно точно известно: биологическая форма движения вырастает на плечах физико-химических взаимодействий, осуществляющихся в живом организме и свойственных только ему. И исследование этих процессов ведется методами, принятыми в физике и химии микромира при помощи самой совершенной электронной аппаратуры, с применением математики и электронно-вычислительных машин.

Использование этих методов и средств позволило перенести фронт исследования жизни в сферу самых «интимных» ее процессов. И если еще совсем недавно фронт познания биологической формы движения проходил по рубежу, главными вехами которого были проблемы происхождения видов, целесообразности, тайны психики, то сегодня материалистическая наука здесь уже подходит к рубежам, механизм познания которых позволит узнать самую суть живого, управлять жизнедеятельностью, даже синтезировать живую материю.

Но некоторые современные биологи делают попытки свести представления о живой системе к «простым» исходным элементам или структурам. Это приводит к механистическому подходу в изучении живого, при котором единство мира превращается в его единообразие. Известный французский биолог, сделавший ряд выдающихся открытий в молекулярной биологии, лауреат Нобелевской премии Ж. Моно в своей книге «Случайность и необходимость. Исследование натурфилософских проблем современной биологии» сравнивает клетку с машиной, отрицает эволюцию внутри структуры и эволюцию самих структур, считая, что основной базой в биологии служит не принцип эволюции, а генетический код, изолированный, неспособный получать информацию извне.

На почве метафизически ограниченного механистического мышления естествоиспытателей в их философских выводах возникает идеализм. Возрождение представлений о «жизненной силе», о «тенденции к самоусовершенствованию» (развитие живого нельзя объяснить только посредством мутаций, возможно, возникновение жизни обязано принципу «тенденции к самоусовершенствованию» – по мнению известного американского биолога А. Сент-Дьердьи) – это дань идеализму в современной биологии. Это теневая сторона успехов быстро развивающейся науки.

Применение методов физики, химии, кибернетики в исследованиях живых систем привело к появлению представления о «живых молекулах» первоначальных единицах живого, обнаруживающих особые «витальные свойства».

Это тоже возвращение к идеям о «жизненной силе», к витализму.

На протяжении веков в сознании естествоиспытателей воздвигался мировоззренческий и психологический барьер – убеждение, что между неорганическим и органическим миром существует непроходимая пропасть: мол, биологические закономерности или не имеют ничего общего с законами физики и химии, или содержат в себе нечто к ним несводимое, – «жизненную силу».

Успехи молекулярной биологии не оставляют места для таких представлений. Само появление этой науки стало возможным лишь в результате преодоления метафизической концепции, лежащей в основе и механицизма, и витализма. Согласно молекулярной биологии, качественно новый уровень организации материи – жизнь возникает не в результате добавления нематериальных факторов извне, а на основе уже предшествующих элементов, соединенных в новую целостность, благодаря новому типу противоречивых связей и отношений между этими элементами.

Современные разновидности идеализма в биологии отражают реальные противоречия и трудности процесса познания явлений жизни. Это – главная причина, почему под влиянием религиозных представлений или идеалистической философии находится ряд известных ученых-биологов – Г. Шрамм (ФРГ), А. Портман (Швейцария), Э. Синнот (США), не говоря уже о тех, кто является дипломированными теологами, совмещающими теологию с занятиями наукой, – И. Хаасе, Ф. Дессауэре (ФРГ), Д. Бландино (Италия).

В течение нескольких последних десятилетий в науке достигнуты рубежи, отметающие прежние представления о сущности жизни. С помощью молекулярной биологии исследователи перешли от изучения целых организмов, органов и тканей к изучению мира клетки, ее органелл – митохондрий, рибосом, отдельных молекул. Был сделан ряд выдающихся открытий, позволивших поднять науку о жизни до уровня точных наук. Эти открытия повлияли на систему всего биологического знания в целом и на ряд его отраслей, в частности на развитие генетики. Так как генетика – наука о наследственности и изменчивости, а эволюционная теория Ч. Дарвина изучает суммарное действие трех основных факторов эволюции – наследственности, изменчивости и естественного отбора, то становится видна внутренняя связь между эволюционной биологией и генетикой, вытекающая из общности предмета исследования. Таким образом, молекулярная биология способствовала дальнейшему развитию дарвиновского эволюционного учения, то есть с развитием ее появился новый уровень познания эволюции.

Современная генетика понимает эволюцию как появление резких, полезных для вида, наследственных изменений – мутаций, подхваченных естественным отбором. В естественных условиях мутации редки, но необходимо учесть огромное количество живых организмов почти в каждом из видов и миллиарды лет, в течение которых эволюция происходила и происходит, причем совсем не в тех пределах, которые «придумал господь бог» при «сотворении мира».

Один из крупнейших естествоиспытателей, Джон Бернал, писал: «Благодаря успехам биохимии и молекулярной биологии удалось понять, что жизнь на Земле почти наверняка представляет собой единство. Не только все организмы генетически родственны друг другу, как это предположил Дарвин, но и самые молекулы, из которых они построены, представляют собой комбинации небольших молекул абиогенного происхождения – потомков тех первичных молекул, которые присутствовали в «первичном бульоне», или, что кажется более вероятным, тех полимеров, которые возникли из этих молекул на втором этапе, когда впервые появился решающий по своей важности процесс молекулярной репликации»[28]28
  Дж. Бернал. Возникновение жизни. М., 1969, стр. 204


[Закрыть]
.

Биохимическая универсальность молекул живой клетки позволяет им оставаться неизменными и создавать основу для бесконечной повторяемости от поколения к поколению, от вида к виду тех биохимических «начал» жизни, без которых ее невозможно представить.

В 1953 г. английскими исследователями Дж. Уотсоном и Ф. Криком была расшифрована структура двойной спирали ДНК и предложена гипотеза о ее информационной роли. В настоящее время известен весь «алфавит», кодирующий наследственную информацию. Раскрытие тайны генетического кода произошло так стремительно, что это достижение науки не имеет себе равных. Удалось искусственно синтезировать молекулу ДНК, синтезировать первый ген для транспортной РНК дрожжей, выделить чистый ген из молекул ДНК живой клетки.

Универсален механизм биосинтеза белка, нуклеиновых кислот и других соединений для всех организмов. Принципы организации процессов жизнедеятельности и их регуляции (несмотря на различие регуляторных систем у низших и высших организмов) на молекулярном уровне также универсальны.

Но принцип единства всего живого неотделим от принципа развития. Поэтому молекулярная биология неразрывно связана с проблемами эволюции и с диалектикой, общей наукой о развитии. Вместе с тем успехи молекулярной биологии привели к выводу, что существуют определенные границы в применении физико-химических методов и концепций в науке о живом, за пределами которых возникает необходимость в иных способах, найденных при исследовании надмолекулярных уровней организации живого. Многие естествоиспытатели, в том числе и Дж. Бернал, поддерживают точку зрения А. Сент-Дьердьи, что «для понимания мышцы необходимо спуститься на электронный уровень, законы которого регулируются квантовой механикой», и что предстоит еще открыть значительную область науки, находящуюся пока за рамками современной биохимии и биофизики.

В чем сущность биологической формы движения материи? Вопрос этот пока открыт, но из этого вовсе не следует, что для его решения необходимо искать помощи в области сверхъестественного.

Упорядоченность, организованность в процессах жизнедеятельности, наследование потомством свойств родителей, развитие организма из одной клетки и т. д. – все это религия активно использовала в прошлом и использует в настоящем для обоснования идеи о сверхъестественности жизни, о. божественном ее происхождении. Однако научные данные говорят о том, что синтез белков в клетке определен (несмотря на всю его сложность и организованность) физико-химическими факторами, и никакого сверхъестественного элемента здесь не обнаружено. Высокая упорядоченность достигается благодаря взаимодействию электронных оболочек атомов и молекул.

«…Химическая эволюция происходила одновременно с биологической эволюцией. Первые стадии химической эволюции должны были происходить до формирования совершенных внутриклеточных структур», – писал Джон Бернал в книге «Возникновение жизни» (стр. 98). Известный голландский исследователь М. Руттен говорит о происхождении жизни: «В этих процессах нет ничего божественного, сверхъестественного, мистического, виталистического или хотя бы неестественного. Чтобы уяснить себе обыденный характер этих процессов, надо помнить, что в основе своей они не отличаются от всех других неорганических процессов, в том числе и тех, что идут по сей день. Например, от природы процессов образования облаков, отложения кристаллов соли в лагунах, высыхающих на жарком солнце, или, скажем, процессов ржавления железа»[29]29
  М. Руттен. Происхождение жизни. М., 1973, стр. 81


[Закрыть]
.

Дж. Бернал остроумно заметил: «…трудно представить себе какое-либо божество, занятое созданием посредством какой-то духовной микрохимии молекулы дезоксирибонуклеино-вой кислоты, которая дала организму с первичной последовательностью возможность расти и размножаться»[30]30
  Дж. Бернал. Возникновение жизни, стр. 181


[Закрыть]
.

На данном этапе развития науки еще не удалось понять и воспроизвести тайну перехода из неорганического мира в органический, но наука на пути к разгадке. При современных темпах развития науки, возможно, мы станем свидетелями ее триумфа – разгадки тайны жизни.

Однако, несмотря на все успехи современной биологии, защитники религии здесь, как и в других областях науки, весьма широко используют то обстоятельство, что на любом этапе своего прогресса человеческое познание не может до конца исчерпать предмет исследования, вечную, постоянно изменяющуюся материю.

Религиозно-идеалистические спекуляции в науке о живом оказываются возможными еще и потому, что обыденное массовое сознание с трудом воспринимает сложный язык современной науки, ее положения, которые нередко весьма далеки от наглядных повседневных истин. Религиозные же утверждения в этой сфере гораздо проще, более доступны, к тому же им ныне придается убедительность при помощи наукообразной формы, ссылок на якобы неопровержимые «научные» аргументы, намеков на какие-то якобы подтверждающие догматы религии открытия и т. п.

Вот почему в атеистической пропаганде совершенно необходима широкая популяризация подлинного смысла современных достижений биологической науки, а они убедительно подтверждают истинность диалектико-материали-стического взгляда на мир.

Как уже отмечалось, фронт исследований живого сегодня поистине необъятен. Рассказать популярно обо всем, что в этой области делается, в одном, сравнительно небольшом, разделе книги не представляется возможным. Читатель познакомится лишь с несколькими «горячими точками» современной биологии – с исследованиями проблемы жизни у самых ее истоков, на молекулярном уровне. Эта тема имеет особо важное значение в борьбе науки с религиозным миропониманием, так как именно здесь находится ответ на вопрос: что представляет собой жизнь? Какова ее сущность? Как она появилась на Земле?


    Ваша оценка произведения:

Популярные книги за неделю