355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Разум побеждает: Рассказывают ученые » Текст книги (страница 13)
Разум побеждает: Рассказывают ученые
  • Текст добавлен: 13 июня 2017, 20:30

Текст книги "Разум побеждает: Рассказывают ученые"


Автор книги: авторов Коллектив


Соавторы: Еремей Парнов,Петр Кропоткин,Игорь Петрянов-Соколов,Виталий Гинзбург,Бонифатий Кедров,Леонид Ефремов,Владилен Барашенков,Владимир Брагинский,Борис Кузнецов,Яков Зельдович
сообщить о нарушении

Текущая страница: 13 (всего у книги 20 страниц)

ПОЯСНЕНИЕ НЕКОТОРЫХ СПЕЦИАЛЬНЫХ ТЕРМИНОВ

Биосфера – от греческих слов «биос» (жизнь), «сфера» (шар), буквально – «сфера жизни». Биосфера – одна из земных оболочек, пространство, где обитают или обитали в прошлом живые организмы. Она охватывает тропосферу (нижний слой атмосферы высотой 10–15 км), гидросферу (водную оболочку), а также часть литосферы – твердой оболочки Земли до глубины 2–3 километров.

От состояния биосферы непосредственно зависит существование человека, так как зеленые растения, составляющие неотъемлемую часть биосферы, аккумулируют солнечную энергию в сложных органических соединениях, обеспечивая тем самым пищей животный мир нашей планеты, в том числе и человека. Биосфера является единственным каналом, через который к человеку поступает энергия, необходимая для жизни.

Создателем учения о биосфере является выдающийся русский и советский ученый, академик В. И. Вернадский. Наряду с биосферой он ввел также понятие ноосферы – материальной оболочки Земли, меняющейся в результате воздействия человека. «Человечество, взятое в целом, становится мощной геологической силой. И перед ним, перед его мыслью и трудом, становится вопрос о перестройке биосферы в интересах свободно мыслящего человечества как единого целого… Ноосфера есть новое геологическое явление на нашей планете», – писал он.

Глобальные проблемы – проблемы, связанные с изучением природных или других процессов и явлений, охватывающих всю нашу планету. К числу подобных процессов относятся, например, атмосферные явления, определяющие изменения погоды и климата. Для познания закономерностей глобальных процессов их необходимо изучать в масштабах всей Земли, вести одновременные наблюдения определенных явлений по единой программе. Во второй половине XX столетия был осуществлен ряд подобных международных научных мероприятий, в которых приняли участие ученые многих стран. К их числу относятся Международный геофизический год (МГГ), Международный год спокойного Солнца (МГСС), а также ряд других международных исследований. В 1979 г. намечается провести глобальный эксперимент по изучению метеорологических процессов. В течение нескольких месяцев наблюдения по согласованной программе предполагается одновременно вести на всем земном шаре.

Магнитные полюса и магнитная ось Земли – изучение магнитного поля Земли показало, что в первом приближении оно совпадает с полем магнитного диполя (магнитный диполь – магнит, состоящий из двух жестко связанных друг с другом магнитных зарядов, положительного и отрицательного, то есть северного и южного), находящегося в центре Земли. Ось этого диполя расположена под углом 11° к направлению оси вращения нашей планеты. Поэтому точки пересечения оси диполя с поверхностью Земли – магнитные полюса не совпадают с положением географических полюсов, хотя и находятся от них не так далеко.

Согласно современным представлениям, земной магнетизм порождается в результате самовозбуждения магнитного поля вследствие движения электропроводящего вещества в ядре Земли (так называемый динамо-эффект).

Палеомагнетизм, или остаточный магнетизм. Им обладают многие горные породы, из которых состоит земная кора. Его возникновение относится к тем временам, когда эти породы, изверженные из земных недр, находились в разогретом состоянии. Под действием земного магнитного поля происходило их намагничивание. При остывании направление этого поля как бы закрепляется в веществе и впоследствии может быть обнаружено. Следы магнитного поля Земли хранятся и в осадочных породах. Когда мелкие зерна осадочных пород оседают на дно водоемов, они ведут себя подобно маленьким магнитным стрелкам, ориентируясь в соответствии с направлением земного магнитного поля в данном месте.

Сопоставляя эти данные с возрастом тех или иных пород, который определяется одним из имеющихся в распоряжении ученых методов, можно установить, какое направление имело в том или ином районе нашей планеты земное магнитное поле в определенные исторические эпохи.

Тектоника – тектонические процессы – процессы, протекающие в земной коре (ее толщина – несколько десятков километров: около 35 км на материках, 5–7 км под дном океанов) и связанные с движениями вещества, происходящими под влиянием различных причин. С тектоническими процессами, в частности, связаны такие катастрофические явления природы, как землетрясения.

Техносфера – физико-географическая среда, преобразованная человеком и предельно насыщенная продуктами человеческой деятельности.

Микромир

I. В глубины вещества
«Странный» мир

В этой главе мы познакомимся с некоторыми достижениями одной из наиболее фундаментальных областей современного естествознания – физики микромира, занимающейся изучением строения материи на уровне микропроцессов – атомов, атомных ядер и элементарных частиц.

Пожалуй, нет другой области науки, где бы с такой отчетливостью и убедительностью происходила периодическая смена представлений, где бы «привычное» постоянно уступало место «непривычному», иногда весьма странному, где бы углубление знаний неуклонно вело ко все большему отходу от «наглядного», к отрыву от непосредственно окружающей нас реальности и где бы, несмотря на все это, неизменно умножалось число все более кардинальных практических приложений. По существу, вся короткая история атомной физики и физики элементарных частиц – сплошная цепь удивительных открытий.

По мере все более глубокого проникновения в тайны строения материи физика неоднократно сталкивалась с явлениями, которые вначале казались исключительными, парадоксальными. Например, теория относительности А. Эйнштейна показала, что с увеличением скорости масса тел не остается неизменной, а растет, что не существует единого времени – его течение происходит по-разному в различных материальных системах, движущихся относительно друг друга.

С не менее удивительными фактами столкнулась и атомная физика. В частности, выяснилось, что в области так называемых молекулярно-атомных процессов, характеризующейся пространственно-временными интервалами 10–6–10–11 см и 10–17–10–22 секунды, невозможно одновременно точно определить скорость движения микрочастицы и ее положение в пространстве (так называемый принцип неопределенности). Таким образом, оказалось, что движение микрочастиц (например, электронов в атомах) существенным образом отличается от движения обычных макроскопических тел, которые всегда в тот или иной определенный момент занимают вполне определенное положение в пространстве и обладают вполне определенной скоростью.

Тем самым уже на одном из начальных этапов проникновения в микромир обнаружилось, что привычные понятия классической механики не только не могут быть автоматически перенесены на микроявления, но и совершенно недостаточны для их описания.

Проникновение в тайны строения атомов потребовало экспериментов с энергиями от нескольких электрон-вольт до сотен тысяч электрон-вольт. Когда же были достигнуты еще более высокие энергии – до сотен миллионов и, наконец, миллиардов электрон-вольт, – то оказалось, что при таких энергиях поведение микрочастиц отличается уже не только от поведения макроскопических тел, но и от поведения элементарных частиц в обычных условиях, например электронов в атомах.

Было обнаружено, что при достижении определенного, достаточно высокого уровня энергии начинаются сложные взаимопревращения частиц. Частицы одних типов превращаются в частицы других типов.

В течение последних десятилетий эта область науки бурно прогрессировала. Еще какие-нибудь 20 лет назад физикам было известно всего около десятка элементарных частиц и казалось, что именно из этих частиц и состоят все объекты окружающего нас мира. Но затем благодаря введению в строй гигантских ускорителей и применению электронно-вычислительной техники было открыто множество новых частиц, и сейчас их число измеряется сотнями.

На первых порах мир элементарных частиц казался разрозненным – в нем трудно было усмотреть общие закономерности, связывающие различные частицы между собой. Однако в результате усилий сначала экспериментаторов, а затем и теоретиков удалось обнаружить некоторые закономерности, позволяющие систематизировать элементарные частицы и построить их классификацию, подобную периодической системе Менделеева. И подобно тому как система Менделеева позволила предсказать существование неизвестных химических элементов, система элементарных частиц, построенная физиками, дала возможность предсказывать новые неизвестные явления, открывать новые частицы с весьма необычными свойствами.

Теория элементарных частиц наряду с астрофизикой всегда играла чрезвычайно важную роль в формировании новых представлений о явлениях окружающего нас мира. В частности, современная теория элементарных частиц не только знакомит нас со все новыми и новыми объектами, но и подводит к новым представлениям о том, что такое элементарность. Еще сравнительно недавно считалось само собой разумеющимся, что Вселенная представляет собой последовательность вложенных друг в друга физических систем – от Метагалактики до неделимых элементарных частиц, не имеющих внутренней структуры. Подобная картина хорошо согласовывалась и с нашим повседневным здравым смыслом, согласно которому целое всегда больше и сложнее любой из составляющих его частей.

Но теперь мы знаем, что элементарная частица может содержать в качестве своих составных частей несколько точно таких же частиц, как и она сама. Так, протон на очень короткое время распадается на протон и пи-мезон, а каждый пи-мезон – на три пи-мезона. Таким образом, в микромире теряют смысл привычные представления о целом и части, а следовательно, теряет смысл и привычное для нас представление об элементарности.

Эти новые представления, разумеется, весьма необычны. Но в том, что по мере проникновения в тайны микроявлений подобные необычные представления возникают, нет ничего неожиданного. Теория элементарных частиц по мере своего развития ведет нас в глубины «все более странного мира», к открытию все более необычных, диковинных явлений. Но еще В. И. Ленин подчеркивал, что открытие диковинных явлений – «это только лишнее подтверждение диалектического материализма»[20]20
  В. И. Ленин. Полн. собр. соч., т. 18, стр. 276


[Закрыть]
.

Казалось бы, развитие физики, и в первую очередь тех ее разделов, которые изучают строение материи, должно «автоматически» служить укреплению атеизма, подрывать позиции религии.

Однако в действительности все обстоит значительно сложнее. Когда воздвигнутая классической физикой стройная картина, в которой все было строго определено и не оставалось места для каких-либо сверхъестественных сил, уступила место более глубокой, но зато и более сложной картине, «нарисованной» физикой XX столетия, теоретики богословия заметно оживились. Из революции, совершившейся в физике, они постарались сделать нужные им выводы: если классическая физика, отрицавшая идею бога, оказалась несостоятельной, значит, несостоятельны вообще любые попытки отрицать существование бога с точки зрения науки.

Как известно, в процессе становления новой физики выяснилось, что применение физических понятий за границами их применяемости неизбежно ведет к неполному и даже неверному описанию реальной действительности. Следовательно, в природе всегда существует некоторый круг явлений, описание которых остается за пределами возможностей современной науки. По-своему толкуя это бесспорное обстоятельство, теологи сделали вывод о том, что существует и такая область, в которую науке не удастся проникнуть никогда, – область сверхъестественного.

«У науки есть свои пределы… – утверждал известный теоретик православия митрополит Николай. – Но есть другая область, область другого, особого знания – это область веры»[21]21
  «Журнал Московской патриархии», 1957, № 9, стр. 21


[Закрыть]
.«…Откровение вступает в действие там, где наука теряет возможность что-либо объяснить», – провозглашает, например, один из видных теоретиков современной католической церкви, епископ О. Шпюльбек.

Однако все разговоры о пределах, о том, что за этими пределами будто бы исчезает материя, что существуют нематериальные, сверхъестественные силы, лишены какого бы то ни было основания. Конечно, возможность ссылаться на «нечто», что недоступно пока научному объяснению, у богословов сохранится всегда. Но может ли факт существования явлений, еще не познанных, служить сколько-нибудь серьезным аргументом в пользу религии?

Разумеется, нет. Тем более что весь опыт развития естествознания вообще и физики в частности убеждает в том, что не познанное сегодня затем неизменно получает естественное объяснение и экспериментальное подтверждение, сводится к естественным объективным закономерностям окружающего мира. Это правило не знает исключений.

Не оставляют богословы попыток толковать в пользу религии и некоторые выводы современной физики.

Как известно, главными основами науки являются законы сохранения: закон сохранения энергии, сохранения заряда, сохранения импульса, сохранения барионного числа и т. д.

Они лежат и в фундаменте теории элементарных частиц. В частности, исходя из того, что не может нарушаться закон сохранения энергии, физики предсказали существование такой частицы, как нейтрино.

«Однако закон сохранения энергии, – заявляет все тот же епископ Шпюльбек, – не имеет больше… всеобщей силы. С тех пор как стало известно, что энергия может излучаться из массы и, наоборот, энергия протонов может превращаться в массу, закон сохранения получил тяжелый удар. Массу необходимо рассматривать как форму энергии…» И это написано в 1957 г., то есть тогда, когда физики на страницах множества книг и брошюр популярно разъясняли, что ни о каком переходе массы в энергию нет и не может быть речи, что в действительности совершается переход вещества в излучение (поле), то есть переход одной формы материи в другую, при которой выделяется некоторое количество энергии.

Другие богословы используют более отвлеченные рассуждения для нападок на принцип сохранения. Никто не может доказать, утверждают они, что со временем не будут открыты такие факты, которые окажутся несовместимыми с принципом сохранения…

Может ли на самом деле произойти что-либо подобное? В принципе это возможно, то есть может быть, что сохранение как свойство материи также имеет свои определенные границы и в природе существуют условия, при которых это свойство не проявляется. Однако последовательный материалист и диалектик не увидит в этом факте ничего угрожающего его взгляду на мир. В конце концов важно не то, подчиняется или не подчиняется то или иное явление законам сохранения, а то, что любое явление всегда и во всех случаях подчиняется тем или иным объективным принципиально познаваемым законам.

Это положение, непосредственно вытекающее из принципа единства мира, носит фунда

ментальный характер. Оно имеет первостепенное, можно сказать, решающее значение для естествознания, для всего процесса познания человеком мира. Важно подчеркнуть и обратное. Тот факт, что в действительности реальный мир, даже такие его сокровенные глубины, как элементарные частицы и атомные ядра, на практике поддается научному исследованию, – наиболее убедительное свидетельство в пользу его материального единства, отсутствия области действия сверхъестественных сил.

Развитие физики микромира, несомненно, еще поставит перед наукой немало сложных философских и методологических проблем. Но, опираясь на основополагающие работы В. И. Ленина в области философии естествознания, ученые-материалисты, безусловно, смогут правильно осмыслить любые новые явления природы.

Явлениям микромира в нашей естественнонаучной атеистической пропаганде, к сожалению, уделяется значительно меньше места, чем астрономии или физике вообще. Причина ясна. Как известно, религия, уделяя весьма значительное внимание вопросам мироздания, положения Земли и человека во Вселенной, строения Солнечной системы и движения небесных тел, почти совершенно не касалась вопросов строения материи, особенно глубинного. Это объясняется тем, что космос привлекал пристальное внимание людей еще много веков тому назад. Атомная же физика и физика элементарных частиц, реально показавшие всю неисчерпаемость, противоречивость и многообразие микромира, появились, по сути, лишь в начале XX в. Популяризация диалектико-ма-териалистического осмысления достижений науки в сфере микромира – насущная задача атеистической пропаганды, тем более, что теологи и идеалисты всех мастей при каждом удобном случае стараются обратить в свою пользу открытия в этой области знания.

Ученые дают интервьюНеклассическая наука и современный рационализм
На вопросы отвечает профессор Б. Г. Кузнецов

В последние годы в ряде стран резко усиливаются нападки на разум и науку. Их рассматривают как угрозу человечеству и противопоставляют им алогическое мышление и религиозную веру. На чьей стороне в этом вековом споре между защитниками и противниками разума теория относительности и квантовая механика?

На стороне разума. Более того, современная неклассическая физика дает рационализму такие аргументы, каких он никогда еще не получал от науки. Вместе с тем она требует от рационализма, от апологии разума дальнейшего развития. Теория относительности изменила представление об евклидовой геометрии мира – многовековую основу рациональной познаваемости Вселенной. Напомню, что Достоевский в «Братьях Карамазовых» говорил об евклидовой геометрии мира как о рациональной схеме мироздания и о неевклидовой – как об иной, но также рациональной его схеме. Квантовая механика изменила саму логику рационального, научного мышления. Когда-то Лаплас писал, что человеческий разум испытывает меньше трудностей, когда он продвигается вперед, чем тогда, когда он углубляется в самого себя. Наука сейчас подошла к периоду очень быстрого «углубления разума в самого себя», очень быстрого перехода от одного логического строя к другому, от одного стиля научного мышления к другому.

Нужно подчеркнуть, что и в современной науке, стоящей на пороге систематического анализа парадоксальных процессов в космосе и в ультрамикроскопическом мире, и в современной культуре в целом речь идет не об отказе от рационалистического анализа, от детерминизма, не о каких-либо границах познания. Речь идет о более сложном, более парадоксальном рационализме, о более сложном детерминизме, о новых, еще более далеких от классических эталонов путях познания.

Мне кажется, в XX в. неклассическая физика перешла от характерного для науки XIX в. игнорирования элементарных процессов в макроскопической картине мира к переносу центра тяжести на индивидуальное, на то «элементарное», которое стало в современной науке очень сложным и тесно связанным с космическими процессами, со Вселенной в целом. Сейчас такая тенденция в физических представлениях о космосе и микрокосме стала еще более отчетливой. – С другой стороны, сейчас яснее видна связь неклассической физики с преобразованием энергетики и технологии, с характером труда, со стилем современного мышления, с судьбами современной культуры в целом.

Современный рационализм физической теории не может ограничиться познанием законов бытия, он включает трансформацию познавательных норм, логических правил, аксиом самого познания, и вместе с тем он ведет к рациональному преобразованию бытия. Классическая физика, и прежде всего законы механики, изложенные в «Математических началах натуральной философии» Ньютона, в известном смысле претендовали на роль вечных скрижалей науки. Большинство мыслителей XVIII–XIX вв. думали, что законы механики Ньютона представляют собой незыблемый фундамент естествознания. Классическая наука – это не только определенные аксиомы, но и уверенность в том, что это действительно аксиомы. Что же такое неклассическая физика? Иногда ее определяют чисто негативным образом: она «не классическая», в общем случае она отказывается от фундаментальных постулатов, из которых исходит классическая физика.

Но это лишь часть дела. С новыми открытиями в физике изменилось не только представление о самой науке. Теория относительности и квантовая механика не только заменили старые фундаментальные физические законы новыми. Эти новые законы уже не претендовали на окончательное решение основных проблем бытия.

В XIX в. Гельмгольц видел высшую и конечную цель науки в сведении всей картины мира к центральным силам, полностью подчиненным механике Ньютона. Современный же физик вообще не ставит перед собой какой бы то ни было окончательной цели. Подобные иллюзии утеряны навсегда. Неклассическая физика – это здание, которое не только растет вверх, но и углубляется в поисках все более глубокого фундамента, который, однако, никогда не будет последним.

Каждая эпоха в науке характеризуется некоторыми идеалами физического объяснения природы. Современный идеал науки отличается от классического не только своим содержанием, но и своей динамичностью. Современная наука даже в том идеале объяснения мира, к которому она стремится, видит нечто меняющееся уже на глазах одного поколения.

В чем же состоит этот динамический идеал науки второй половины XX в.? В чем состоят связанное с этим идеалом радикальное обновление стиля фундаментальных исследований и те новые принципы науки, которые несут в себе зародыш новой, послеатомной цивилизации?

Исходная область новой научной революции – теория элементарных частиц. Видимо, ближайшая ступень этой теории будет состоять в систематизации уже известных частиц и тех, что будут открыты. Есть также основания думать, что общей тенденцией дальнейшего развития науки будет уже наметившаяся тенденция, направленная к объяснению известных из эксперимента основных свойств элементарных частиц, к ответу на вопрос, почему частицы данного типа обладают именно такими, а не другими массами и зарядами.

Второй путь, который ведет к принципиально новым основаниям научной картины мира, – это современные космология и астрофизика. Оба эти пути все больше сливаются в один.

При рациональной организации общества этот путь развития науки приводит к существенному преобразованию роли человеческой личности: человек становится инициатором радикальных преобразований картины мира, характера труда, структуры производства, баланса используемых природных ресурсов. Современное учение о пространстве, времени, движении, веществе и жизни, наиболее фундаментальные исследования, которые иногда называют меганаукой, становятся непосредственным импульсом для самых радикальных, технических, экономических и экологических трансформаций. Отсюда – небывалый интерес в очень широких кругах к физике, к ее воздействию на другие науки, к возникновению и развитию неклассической науки, которая получает от современной физики импульсы, заимствует у нее понятия, применяет и конкретизирует ее выводы. И этот широкий интерес является существенным вкладом в современную идейную борьбу. Он направлен против иррационализма, он укрепляет доверие к разуму, он дает очень важную гарантию прогресса современной культуры.

По-видимому, практическое применение неклассической физики является одной из основ того интереса, о котором вы говорите?

Да, конечно. Важно отметить, что для такого применения требуется очень смелая постановка собственно познавательных задач. Здесь важны уверенность в том, что фундаментальные исследования не могут не принести важных практических результатов. Но эти результаты далеко не всегда можно предвидеть. Когда экспериментатор хочет установить новую, еще неизвестную закономерность, результат предстоящих исследований не может быть заранее известен. Когда мыслитель обдумывает кардинальные вопросы, на которые дадут ответы новые ускорители или новые телескопы, каждый из этих будущих ответов может поставить под сомнение самый смысл заданных вопросов. И во всяком случае, каждый такой ответ может быть совершенно неопределенным в смысле практических выводов. В космос и в микромир человека прежде всего ведет стремление к решению познавательных задач. Каковы бы ни были возможные практические результаты будущих астрофизических исследований или сооружения сверхмощных ускорителей элементарных частиц, отнюдь не эти результаты, которые нельзя определить заранее, служат непосредственным стимулом указанных исследований.

Теория относительности стала источником такого радикального практического результата, как атомная энергетика, именно благодаря общему, отвлеченному и чисто познавательному характеру поставленных в начале столетия вопросов о пространстве, времени, движении, массе, энергии… Сейчас перед наукой, и в первую очередь перед физикой элементарных частиц и астрофизикой, стоят еще более общие и еще более фундаментальные вопросы. И они, конечно, будут решаться независимо от определенности их будущих практических приложений.

Поэтому принципиальная уверенность в ценности разума, в ценности науки так важна сейчас для темпа исследовательской работы в области фундаментальных наук.

Все же можно ли сейчас нарисовать хотя бы самые общие контуры тех сдвигов в производстве, которые вызовет фундаментальная наука в ближайшие десятилетия?

Перспективы, скажем, до 2000 г. просматриваются довольно ясно и однозначно. К указанному сроку атомная энергетика станет преимущественной компонентой электроэнергетического баланса. Она будет опираться на реакторы-размножители, которые дают больше ядерного горючего, чем потребляют его. К этому времени основой технологии станет квантовая электроника. Кибернетика будет введена в основные производственные процессы. Молекулярная биология и особенно радиационная генетика позволят преобразовать органическую жизнь. Химия приблизится к возможности делать «все из всего» и коренным образом изменит сырьевую базу производства. Экономический эффект: в нашей стране производительность труда будет возрастать не только с большой скоростью, но и с непрерывным ускорением.

Что же касается более далеких прогнозов, которые еще не обрели хронологической определенности, то для них исходным пунктом являются теоретические коллизии современной физики и некоторые экспериментальные направления. Сейчас физика занята подготовкой вопросов, которые будут заданы природе с помощью новых, чрезвычайно мощных ускорителей частиц. Я имею в виду ускорители, которые будут превосходить самые мощные современные установки в десятки раз. Они дадут возможность проникнуть в очень малые пространственно-временные области – порядка 10–13 сантиметра и 10–24 секунды. Можно ожидать, что в этих областях наука столкнется с принципиально новыми явлениями. В частности, есть основания предполагать, что здесь частицы не движутся в обычном смысле, а возникают и исчезают, то есть основная проблема состоит не в поведении, а в бытии частиц.

Очевидно, развитие этого направления потребует не только огромных экспериментальных, но и весьма больших интеллектуальных усилий, преобразования логики научного мышления. А это в свою очередь не может не сказаться на общем интеллектуальном потенциале науки.

В свое время теория относительности не только привела к таким практическим выводам, как использование внутренней энергии атомного ядра, но и оказала заметное воздействие на цивилизацию вообще преобразованием самого стиля научного мышления. Современная физика, опираясь на изучение микромира и космоса, идет к еще более радикальному преобразованию научного мышления.

Можно ли сейчас сказать что-либо определенное о возможностях человеческой цивилизации, когда она овладеет тайнами микромира? Как будет выглядеть эта «послеатомная» цивилизация – эпоха, которая наступит тогда, когда практическое применение получат не только достижения атомной физики, но и физики элементарных частиц?

Контуры «послеатомной» цивилизации можно наметить лишь весьма неопределенно. Однако не исключено, что центральную роль в практических применениях «послеатомной» физики будут играть процессы трансмутации частиц, в том числе аннигиляции пар частица – античастица.

Сейчас такие процессы относятся к числу довольно экзотических. Но весьма вероятно, что именно они станут исходным научно-техническим звеном «послеатомного» века, подобно тому как экзотические для конца 30-х годов процессы деления ядер урана стали исходным звеном атомного века.

Процессы трансмутации частиц в принципе могут освободить всю энергию, соответствующую всей массе покоя вещества. Это примерно в тысячу раз больше, чем при делении ядер урана.

Если удастся изолировать античастицы, отделив их от частиц, мы получим аккумулятор, который сможет накапливать в каждом грамме вещества 9·1020 эрг энергии. Подобные сверхаккумуляторы найдут себе применение в космических кораблях и позволят достичь периферии Солнечной системы, а может быть, даже выйти за ее пределы.

С помощью достижений физики элементарных частиц станет возможной аккумуляция энергии в очень малых по размерам приборах, в которых на миллиметровых или еще меньших уровнях создаются мощные электромагнитные поля, высокие напряжения, температуры, давления… Высокоэнергетическая миниатюризация может радикально изменить всю технологию и силовой аппарат производства. Подобные сверхаккумуляторы найдут широкое применение и в медицине.

По-видимому, мир, который открывается перед современной физикой, – это все более «странный» мир?

Да, это так, но «странность» его – особая, специфическая для нашего времени. Очень крупные, эпохальные открытия всегда раскрывали «странную», непривычную, парадоксальную реальность. Такой реальностью была, например, гелиоцентрическая система.

Парадоксы неевклидовой геометрии стали парадоксами бытия, схемой реального «странного» мира в нашем столетии в рамках общей теории относительности и релятивистской космологии. Но даже не в этом специфическая «странность» современной картины мира. Сейчас новые фундаментальные представления о мире не перестают быть странными, не становятся традиционными. Из всех исторических традиций науки современная физика берет прежде всего «традицию антитрадиционализма» и делает ее необходимым условием научного творчества. Но именно в этом – отличие разума от рассудка: немецкая классическая философия присвоила рассудку функцию подведения наблюдений под известные законы, а разуму – функцию изменения законов. Современная наука (именно в этом «странность» ее результатов, именно в этом – смысл понятия «меганаука», именно в этом – основа характерной для нашего времени связи фундаментальных исследований с практикой) – апофеоз разума. И тем самым – беспрецедентное исключение иррационализма во всех его модификациях из современной культуры.


    Ваша оценка произведения:

Популярные книги за неделю