412 000 произведений, 108 200 авторов.

Электронная библиотека книг » авторов Коллектив » История электротехники » Текст книги (страница 52)
История электротехники
  • Текст добавлен: 9 октября 2016, 11:39

Текст книги "История электротехники"


Автор книги: авторов Коллектив



сообщить о нарушении

Текущая страница: 52 (всего у книги 78 страниц) [доступный отрывок для чтения: 28 страниц]

Первая межконтинентальная баллистическая ракета Р-7, созданная под руководством СП. Королева, с помощью которой запускались первые спутники и станция «Восток», была оснащена электрооборудованием, созданным во ВНИИЭМ. Эта работа была достойно отмечена, и свой первый орден – Трудового Красного Знамени – институт получил в 1961 г. после полета Ю.А. Гагарина, а главный конструктор А.Г. Иосифьян был удостоен звания Героя Социалистического Труда.

Первый запуск в 1963 г. созданной в институте космической электротехнической лаборатории «Омега» («Космос-14») определил направление деятельности на многие годы.

Институт под руководством его директоров А.Г. Иосифьяна, Н.Н. Шереметьевского, В.И. Адасько, С.А. Стомы последовательно наращивает потенциал головной организации по созданию среднеорбитальных космических аппаратов серий «Метеор», «Метеор-Природа», «Ресурс-О» и высокоорбитального, геостационарного КА «Электро», электромеханических устройств для КА других организаций. Одновременно институт участвует в реализации крупных государственных космических программ и международных проектов (орбитальные станции «Салют», «Алмаз», «Мир», «Альфа», ракеты тяжелого класса «Протон» и др.).

Для обеспечения функционирования космических аппаратов в НПП «ВНИИЭМ» разработаны изделия и системы с уникальными характеристиками:

1) силовой гироскоп – гиродин. Двенадцать гиродинов установлены на орбитальной станции «Мир»; быстроходный ротор массой 40 кг вращается с 10 000 об/мин в магнитных подшипниках, что обеспечивает срок службы в вакууме десятки тысяч часов в настоящее время; наработка составляет более 65 тыс. ч;

2) двухкоординатный электропривод сканирующего зеркала, применяется для телевизионной аппаратуры искусственных спутников Земли и обеспечивает получение качественных изображений облачного покрова, земной и водной поверхностей; управление движением сканирующего зеркала обеспечивается с погрешностью, значение которой близко к разрешающей способности интерферометрического измерителя перемещений;

3) шаровой двигатель-маховик с магнитным подвесом, разработанный для космической станции «Алмаз», используется в качестве электромеханического исполнительного органа системы, ее ориентации и стабилизации;

4) бесщеточные двигатели постоянного тока, работающие в течение десятков тысяч часов в агрессивных средах и вакууме; они установлены в системах терморегулирования, жизнеобеспечения и других системах КА и космических кораблей; на станции «Мир» работает более 100 таких двигателей.

Кроме названного оборудования в НПП «ВНИИЭМ» созданы и другие уникальные приборы, в частности: приводы систем ориентации солнечных батарей, построители местной вертикали, электрореактивные двигатели малой тяги, статические преобразователи повышенной частоты систем электропитания, бортовые криогенные системы радиационного типа, электроприводы информационно-измерительной аппаратуры КА и др.

Одним из важнейших направлений деятельности НПП «ВНИИЭМ», которое развивается с 60-х годов, является создание автоматических КА оперативного наблюдения и дистанционного зондирования Земли.

Работа велась по трем основным направлениям:

создание государственной метеорологической космической системы с использование КА «Метеор», «Метеор-2» (главный конструктор А.Г. Иосифьян) и «Метеор-3» (главный конструктор В.И. Адасько);

создание космических комплексов для оперативного природно-ресурсного и экологического наблюдения «Метеор-Природа» и «Ресурс-О» (главный конструктор Ю.В. Трифонов);

создание высокоорбитальных геостационарных К А «Электро-1» (главный конструктор Ю.В. Трифонов);

создание единой оперативной системы глобального экологического и геогелиофизического мониторинга из космоса, космические аппараты нижнего и верхнего ярусов которой функционируют соответственно на солнечно– и геосинхронных орбитах на основе средне– и высокоорбитальных многоцелевых космических платформ (главный конструктор Ю.В. Трифонов).

В 80–90-е годы в институте были созданы новые космические аппараты оперативного наблюдения и дистанционного зондирования Земли – геостационарный метеорологический КА «Электро-1» и среднеорбитальные КА на солнечно-синхронных орбитах «Метеор-Природа» № 3–4 и 2–4 и «Ресурс-01» № 1–4, а также комплексы уникального электрооборудования для КА.

31 октября и 4 ноября 1994 г. с космодрома Байконур были осуществлены запуски космических аппаратов «Электро-1» №1 и «Ресурс-01» № 3. Начался очередной этап развертывания российской двухъярусной системы оперативного обзорного наблюдения «Планета-О» в интересах народного хозяйства, обороны страны и международного сотрудничества.

Метеорологический геостационарный космический аппарат «Электро-1» № 1, получивший международное наименование GOMS, выведен ракетой-носителем «Протон» с разгонным блоком в точку 90° восточной долготы и с помощью бортовой корректирующей двигательной установки переведен в заданный рабочий диапазон 76±0,5° восточной долготы. Космический аппарат природоресурсного и экологического мониторинга «Ресурс-01» № 3 выведен ракетой-носителем «Зенит» на солнечно-синхронную, широтно-стабилизированную по высоте и местному времени орбиту в диапазон высот 663–690 км.

Накопленный четырехлетний опыт летных испытаний и эксплуатации космических систем GOMS и «Ресурс-О» с КА «Электро-1» № 1 и «Ресурс-01» № 3 показал, что бортовые и наземные комплексы и КА в целом спроектированы, разработаны, изготовлены и отрабатываются с учетом самых современных требований по надежности и длительности гарантированного ресурса; космические системы уже в ходе летно-космических испытаний способны обеспечить потребности многочисленных отечественных и зарубежных потребителей оперативной гидрометеорологической и природоресурсной информацией.

Первый российский геостационарный (высота орбиты 36 тыс. км) гидрометеорологический космический аппарат «Электро» вошел в систему гидрометеоспутников наряду с космическими аппаратами США, Японии, Европейского космического агентства. Каждые 2–3 ч от этого КА получается и рассылается через Всемирную метеорологическую службу информация о состоянии погоды на большей части восточного полушария, каждый час – гелиогеофизическая информация о радиационной и магнитной обстановке в космосе. Информация оперативного наблюдения и контроля состояния окружающей среды с космического аппарата «Ресурс-01», находящегося на солнечно-синхронной орбите со средней высотой 675 км, широко применяется в регионах России, а также принимается и обрабатывается в Швеции в интересах многих фирм и организаций Европы.

10 июля 1998 г. ракетой-носителем «Зенит» в новый высотный диапазон 818–846 км был выведен четвертый КА серии «Ресурс-01». Кроме традиционного природоресурсного комплекса в его составе имеется аппаратура для проведения радиационно-метрических, гелиогеофизических, а также метеорологических измерений.

В области международного сотрудничества НПП «ВНИИЭМ» имеет установившиеся научно-технические связи со многими организациями, в том числе с фирмами CNES (Франция), INEN (Италия), «ОНВ system» (Германия), «Technion» (Израиль), «Suparco» (Пакистан) по установке научной аппаратуры и ее сопровождению со служебными системами на космических аппаратах «Ресурс-01».

Хронология запусков КА, разработанных ВНИИЭМ

2 КА «Омега» – 1963 г.

36 КА «Метеор» – 1964–1978 гг.

22 КА «Метеор-2» – 1975–1993 гг.

7 КА «Метеор-3» – 1984–1994 гг.

7 КА «Метеор-Природа» – 1974–1983 гг.

4 КА «Ресурс-01» – 1985–1998 гг.

1 КА ГОМС «Электро» – 1994 г.

НПП «ВНИИЭМ» является участником создания космических комплексов «Восток», «Союз», «Молния», «Салют», «Алмаз», «Мир», «Альфа». Институт постоянно работает по заказам и в тесном взаимодействии с Российским космическим агентством, войсковыми частями космического назначения, гидрометеослужбой страны, ведущими фирмами России: Ракетно-космической корпорацией «Энергия» им. СП. Королева и ЦНИИмашиностроения Российского космического агентства, НПО им. СА. Лавочкина, ОКБ Московского энергетического института, Институтом космических исследований Российской Академии наук, НПО «Квант», КБ «Салют», Российским НИИ космического приборостроения, НИИ точных приборов, НПО «Геофизика», Московским НИИрадиосвязи, Институтом прикладной геофизики им. акад. Е.К. Федорова, НПО «Планета», Научно-исследовательским центром природных ресурсов, ВНИИ телевидения, Оптико-механическим объединением, Центральным специализированным конструкторским бюро, НПО «Полет» и др.

НПП «ВНИИЭМ» является участником Федеральной космической программы России в части опытно-конструкторской разработки образцов космической техники научного и народнохозяйственного назначения и традиционным участником международных проектов: «Болгария 1300» (с Болгарской Народной Республикой в 1981, 1983 гг.), «Метеор-3-ТОМС» (совместно с США в 1991 г.), «Ресурс-01» № 3 и 4 (совместно со Швецией с 1994 г.), «Ресурс-01» № 4 (совместно с Германией, Израилем, Англией, Австрией, Францией, Италией и др. с 1998 г.). Перспективны К А «Метеор-3М», «Ресурс-01» № 5 и «Электро» №2 – пуски 1999–2001 гг.

В настоящее время НПП «ВНИИЭМ» приступил к разработке серии универсальных малогабаритных космических платформ для дистанционного зондирования Земли, гелиогеофизических исследований, обеспечения службы спасения, а также обслуживания и обмена информацией в интересах государственных и коммерческих организаций. Пуски возможны с 2000 г.

СПИСОК ЛИТЕРАТУРЫ

8.1. Раков В.А. Локомотивы железных дорог Советского Союза. М.: Трансжелдориздат, 1955.

8.2. Раков В.А. Локомотивы и мотор-вагонный подвижной состав железных дорог Советского Союза. 1956–1965. М.: Транспорт, 1966.

8.3. Раков В.А. Локомотивы и мотор-вагонный подвижной состав железных дорог Советского Союза. 1966–1975. М.: Транспорт, 1979.

8.4. Раков В.А. Локомотивы и мотор-вагонный подвижной состав железных дорог Советского Союза. 1976–1985. М.: Транспорт, 1990.

8.5. Раков В.А. Локомотивы отечественных железных дорог 1845–1955. М.: Транспорт, 1995.

8.6. Раков В.А. Электровозы переменного тока. М.: Машгиз, 1961.

8.7. Магистральные электровозы. Электрические аппараты. Полупроводниковые преобразователи, системы управления/ В.И. Бочаров, Н.М. Васько, А.Г. Вольвич и др. М.: Энергоатомиздат, 1994.

8.8. Теория электрической тяги / В.Е. Розенфельд, И.П. Исаев, Н.Н. Сидоров, М.И. Озеров. М.: Транспорт, 1995.

8.9. Преобразовательные устройства электропоездов с асинхронными тяговыми двигателями/ A.M. Солодунов, Ю.М. Иньков, Г.Н. Коваливкер и др. Рига: Зинатне, 1991.

8.10. Проектирование систем управления электроподвижным составом / Н.А. Ротанов, Д.Д. Захарченко, А.В. Плакс и др.; Под ред. Н.А. Ротанова. М.: Транспорт, 1986.

8.11. Электроподвижной состав с асинхронными тяговыми двигателями / Н.А. Ротанов, А.С. Курбасов, Ю.Г. Быков и др.; Под ред. Н.А. Ротанова. М.: Транспорт, 1991.

8.12. Бочаров В.И. Вехи творчества в электровозостроении. Ростов: Изд-во Ростовского университета, 1993.

8.13. Большая энциклопедия транспорта. В 8 т./ Под общей ред. В.П. Калявина. Т. 4. Железнодорожный транспорт. СПб.: «Элмор», 1994.

8.14. История отечественного судостроения. Т. III, IV и V. СПб.: Судостроение, 1996.

8.15. Гребные электрические установки: Справочник. Л.: Судостроение, 1985.

8.16. Электрооборудование судов: Учебник для вузов / Д.В. Вилесов, В.Л. Галка, Ю.Н. Киреев и др. СПб.: Судостроение. 1996.

8.17. 300 лет российскому флоту // Судостроение. 1996. № 10.

8.18. Архангельский Е.Б. Электрификация русского флота// Судостроение. 1989. № 9.

8.19. Гилерович Ю.М. Электроэнергетические системы и электрооборудование судов и установок, используемые на континентальном шельфе // Судостроение за рубежом. 1988. № 12.

8.20. Гилерович Ю.М., Чернух Е.А. Гребные электрические установки ледоколов береговой охраны США и Канады // Судостроение за рубежом. 1990. № 9.

8.21. Китаенко Г.И. Состояние и некоторые вопросы развития судовой электротехники // Судостроение. 1978. № 1.

8.22. Каганович А.Н. Развитие электроэнергетических систем кораблей русского Флота (1869–1917 гг.) // Судовая электротехника и связь. 1973. Вып. 2.

8.23. Жоллифф Джеймс В. Дилемма использования электрического оборудования, работающего на токе частотой 400 Гц: Пер. с англ. // The Naval Engineers Journal. 1981. №10.

8.24. Карпов В.А. Современное электрическое оборудование автомашин// Электричество, 1931. №2. С. 69–76.

8.25. Гольдберг С.Я. Современное автомобильное электрическое оборудование // Электричество. 1939. № 3. С. 5–14.

8.26. Девяткин К.А. Приборы зажигания и электрооборудование колесных и гусеничных машин. М.: Воениздат, 1932.

8.27. Галкин Ю.М. Автотракторное электрооборудование. М.: Машгиз, 1948.

8.28. Schuiz М. Development sistem avtoelectrical eqipment// Popular Mechanics, 1965. Vol. 162. №4. P. 192–194.

8.29. Справочник по электрооборудованию автомобилей. M.: Машиностроение, 1994.

8.30. Электрические трансмиссии пневмоколесных транспортных средств / И.С. Ефремов, А.П. Пролыгин, Ю.М. Андреев, А.Б. Миндлин. М.: Энергия, 1976.

8.31. Электрические машины в тяговом автономном электроприводе / Ю.М. Андреев, С.К. Исаакян, А.Д. Машихин и др. М.: Энергия, 1979.

8.32. Фельдман Ю.И., Машихин А.Д., Скибинский В.А. Автоматизированные электроприводы для городского электротранспорта, большегрузных автосамосвалов и краново-подъемных механизмов // Электротехника. 1993.

8.33. Автоматизированные тяговые электроприводы для большегрузных карьерных автосамосвалов // Электротехника, 1993.

8.34. Основы электрооборудования самолетов и автомашин / Под ред. А.Н. Ларионова. М.: Госэнергоиздат, 1955.

8.35. Лазарев И.А. Синтез структуры систем электроснабжения летательных аппаратов. М.: Машиностроение, 1976.

8.36. Лазарев И.А., Розанов А.В., Яньшев Ю.А. Концепция единой энергетической системы транспортных средств и возможные пути ее реализации // Известия АН СССР. Энергетика и транспорт. 1983. № 1.С. 124–133.

8.37. Морозовский В.Г., Синдеев И.М., Рунов К.А. Системы электроснабжения летательных аппаратов. М.: Машиностроение, 1973.

8.38. Сизов И.И., Шабловский В.К. Бортовые источники электрического питания. М.: Воениздат, 1973.

8.39. Панченко Е.И., Коровкин А.С. Космическая электроэнергетика. М.: Знание, 1967.

8.40. Куландин А.А., Тимашев СВ., Иванов В.П. Энергетические системы космических аппаратов. 2 изд. М.: Машиностроение, 1977.

8.41. Бортовые энергосистемы космических аппаратов на основе солнечных и химических батарей. Ч. I и II: Учебное пособие/ Н.В. Белан, К.В. Безручко, В.Б. Елисеев и др. Харьков: ХАИ, 1992 (ХАИ).

8.42. Прямое преобразование энергии. Вопросы космической энергетики: Пер. с англ. М.: Мир, 1975.

8.43. Коутс Т., Микин Дж. Современные проблемы полупроводниковой фотоэнергетики. М.: Мир, 1988.

8.44. Колтун М.М. Солнечные элементы. М.: Наука, 1987.

8.45. Фаренбух А., Бьюб Р. Солнечные элементы: Пер. с англ. М.: Энергоатомиздат, 1987.

8.46. Грилихес В.А., Орлов П.П., Попов Л.Б. Солнечная энергия и космические полеты. М.: Наука, 1984.

8.47. Раушенбах Г. Справочник по проектированию солнечных батарей: Пер. с англ. М.: Энергоатомиздат, 1983.

8.48. Солнечные элементы и батареи / А.А. Полисан, К.А. Щуров, И.С. Оршанский и др. // Итоги науки и техники. Сер. Генераторы прямого преобразования тепловой и химической энергии в электрическую. 1989.Т. 9.

8.49. Лидоренко Н.С., Мучник Г.Ф. Электрохимические генераторы. М.: Энергоатомиздат, 1982.

8.50. Тейшев Е.А. Применение топливных элементов для энергопитания космических кораблей. М.: Информстандартэлектро, 1967.

8.51. Калайда Т.Н. Химические источники электрической энергии для летательных аппаратов. Л.: ЛВИКА им. Можайского, 1965.

8.52. Багоцкий B.C., Скундин A.M. Химические источники тока. М.: Энергоиздат, 1981.

8.53. Кедринский И.А., Дмитрием ко В.Е., Грудянов И.И. Литиевые источники тока. М.: Энергоатомиздат, 1992.

8.54. Иосифьян А.Г. Электротехника в космосе. Сер. Космонавтика, астрономия. М.: Знание, 1979.

8.55. Иосифьян А.Г., Шереметьевский Н.Н., Трифонов Ю.В. Советские космические аппараты для дистанционного зондирования типа «Метеор»// Электротехника. 1982. №6. С. 29–34.

8.56. Космические аппараты оперативного метеорологического и природно-ресурсного назначения. Проблемы. Технические решения. Международная интеграция/ В.И. Адасько, А.Г. Иосифьян, Ю.В. Трифонов, Н.Н. Шереметьевский // Электротехника. 1991. №9. С. 32–38.

8.57. Stoma S.A., Trifonov Y.V. Geostationary Space System «Electro» (GOMS): Preconditions for Creation and Structure // Space Bulletin. 1995. Vol. 2. №3. P. 2–4.


Глава 9.
СВЕТОТЕХНИКА

9.1. ВВЕДЕНИЕ

В настоящее время понятие «светотехника» включает в себя целый ряд разделов науки и техники, к которым относятся:

генерация излучения в оптическом диапазоне спектра – источники излучения;

физические процессы при распространении излучения в различных средах;

возникновение зрительного ощущения при попадании излучения в глаз человека;

взаимодействие излучения с различными средами и использование его в различных тепловых, химических, энергетических, медицинских и других установках;

фотометрия;

конструирование световых приборов различного назначения, т.е. создание приборов для перераспределения энергии излучения в пространстве;

светотехнические установки для внутреннего, наружного, архитектурного и специального освещения.

Такие разделы светотехники, как источники излучения, световые приборы и светотехнические установки имеют прямое отношение к электротехнике. Сегодня в мире на освещение тратится до 20% всей вырабатываемой электроэнергии (в России 14%). Поэтому сочетание вопросов светового дизайна и экономии электроэнергии на освещение весьма актуально.

В настоящей главе представлена история развития источников излучения, световых приборов, светотехнических установок и светотехнического образования.


9.2. ИСТОЧНИКИ ИЗЛУЧЕНИЯ

Развитие и совершенствование источников излучения (ИИ) определялось определенными целями, а именно:

повышением энергетической эффективности (светоотдачи, равной отношению светового потока, измеряемого в люменах, к затраченной энергетической мощности);

увеличением срока службы (времени, за которое начальный световой поток уменьшается на 30%);

улучшением цветовых характеристик излучения (цветовой температуры, индекса цветопередачи и т.д.);

выделением специальных спектров излучения для медицины, растениеводства, животноводства и т.д.;

конструированием ламп специального назначения для фотографии, областей тонкой технологии, проектирования и др.

Светоотдача в каждой стране является одним из показателей уровня научно-технического развития. Обеспечение необходимой освещенности при меньших затратах электроэнергии сказывается весьма заметно на экономике страны.

Первые электрические лампы накаливания А.Н. Лодыгина, усовершенствованные и выпускаемые серийно в Америке Т. Эдисоном (1879 г.) имели светоотдачу 2–3,5 лм/Вт.

Стремление повысить светоотдачу ламп накаливания привело к появлению сначала ламп с металлизированной угольной (1890–1900 гг.), затем с осмиевой (1898 г.) и танталовой (1902 г.) нитями. В 1906–1909 гг. была разработана технология изготовления вольфрамовых проволок для изготовления электродов. В 1913 г. появилась газонаполненная лампа И. Ленгмюра с вольфрамовой нитью. С целью повышения светоотдачи и увеличения срока службы меняли конструкцию электродов, наполняли колбу газом, не вступающим во взаимодействие с материалом электрода, что уменьшало интенсивность испарения материала электрода и должно было привести к увеличению срока службы (главная причина выхода из строя ламп накаливания – перегорание электрода). Причем возможность увеличения рабочей температуры электрода за счет газового наполнения не только компенсировало потери теплоты через газ, но и увеличивало светоотдачу.

В 1936 г. появились газонаполненные лампы накаливания с биспиральным катодом – лампы с криптоном, а затем и с ксеноновым наполнением. В 50-е годы появились галогенные лампы накаливания. Особенностью этих ламп является то, что галогениды (соединения йода, брома, хлора, фтора) дают устойчивое соединение с вольфрамом лишь в определенном диапазоне температур, что позволяет возвращать испаренный вольфрам на электрод, тем самым увеличивая срок службы лампы и светоотдачу. Светоотдача в них достигала 30 лм/Вт, а срок службы 1000 ч.

Развитие разрядных ламп шло значительно медленнее. Лишь через 70 лет после открытия дуги В.В. Петровым был создан первый источник света дугового разряда П.Н. Яблочковым, представляющий собой открытую угольную дугу. Угольные дуги, имеющие заметно большую, чем лампы накаливания, светоотдачу (70–90 лм/Вт) нашли применение в прожекторных и проекционных установках.

Изобретение в 1901 г. ртутной разрядной лампы низкого давления по существу определило возможность получения серьезных результатов в технике освещения, однако на пути были серьезные препятствия, связанные с тем, что наибольшая доля мощности излучения в ртутном разряде приходится на ультрафиолетовую область. Поэтому главным препятствием в ртутных разрядных ИИ было преобразование излучения из ультрафиолетовой области в видимую. Эту задачу решил С.И. Вавилов с учениками [9.2], который в 1927 г. открыл закон, связывающий квантовый выход люминесценции с длиной волны возбуждающего излучения [9.3]. Под его руководством учениками (В.В. Левшиным, В.А. Фабрикантом, М.А. Константиновым-Шлезингером, Ф.А. Бутаевым, В.И. Долгополовым) были установлены основные процессы люминесценции, созданы люминофоры и люминофорные смеси. В 1941 г. появились первые люминесцентные лампы серийного изготовления. Люминесцентные лампы, используемые в настоящее время имеют световую отдачу 60–100 лм/Вт.

В настоящее время существует большое количество ртутных ламп, имеющих различное целевое назначение. В зависимости от давления наполняющего газа различают ртутные лампы низкого давления (p = 0,0013 ÷ 0,13 кПа), высокого давления (p = 0,03 ÷ 0,3 МПа), сверхвысокого давления (p > 0,3 МПа).

Рис. 9.1. Общий вид основных типов ртутных люминесцентных ламп низкого давления 

Ртутные лампы низкого давления являются весьма эффективными с точки зрения ультрафиолетового излучения с длинами волн 185 и 254 нм. На эти волны при низких давлениях приходится до 80% излучаемой разрядом мощности. Эти спектральные волны могут быть перемещены либо в эритемную, либо в видимую область излучения с помощью люминофора, наносимого на внутреннюю поверхность колбы лампы. Существуют различные типы люминесцентных ламп (ЛЛ):

с самокалящимися электродами, в которых зажигание разряда происходит при предварительном накале катодов;

высоковольтные мгновенного зажигания с самокалящимися электродами без предварительного накала;

высоковольтные тлеющего разряда с холодными электродами;

компактные (КЛЛ), которые можно прямо вкручивать в патрон вместо ламп накаливания;

высокочастотные КЛЛ (ВЧКЛЛ);

безэлектродные КЛЛ.

На рис 9.1 показаны некоторые типы люминесцентных ламп.

КЛЛ имеют по сравнению с обычными лампами накаливания в 10 раз больший срок службы и потребляют при равных световых потоках в 5 раз меньше электроэнергии [9.4]. В настоящее время они используются с электромагнитными или электронными аппаратами. Большими преимуществами, по сравнению с КЛЛ обладают ВЧКЛЛ. Эти преимущества связаны с увеличением светоотдачи с ростом частоты питания и уменьшением вредного влияния частотных колебаний светового потока на глаз человека.

На срок службы ЛЛ заметное влияние оказывают электроды, во-первых, из-за распыления их материала, которое приводит к потеменению горелки и уменьшению светового потока, и, во-вторых, из-за увеличения при эксплуатации лампы работы выхода электронов, приводящей к увеличению напряжения зажигания и ускорению выхода лампы из строя. Поэтому проводились работы по созданию безэлектродных КЛЛ [9.5, 9.6], в которых поддержание разряда в парах ртути в смеси с инертными газами осуществляется электромагнитным полем, создаваемым генераторами вне горелки. Общий вид безэлектродной КЛЛ с соленоидальным индуктором показан на рис. 9.2. Разработано немало разновидностей конструкций безэлектродных ламп (кольцеобразной формы, с передачей электромагнитной энергии с помощью антенны и др.).

Безэлектродные ИИ бывают низкого и высокого давления. В.каждом диапазоне давления они делятся на ИИ повышенной частоты (с рабочей частотой до 3 МГц), высокой частоты (с рабочими частотами от 3 до 300 МГц) и сверхвысокочастотные (с частотой, превышающей 300 МГц). С увеличением частоты возможности увеличения светоотдачи растут. Если при частотах меньше 3 МГц светоотдача не превышает 52 лм/Вт, то при частотах больше 300 МГц светоотдача уже превышает 100 лм/Вт.

Рис. 9.2. Общий вид (в разрезе) безэлектродной КЛЛ с солеиоидальным индуктором
1 – цоколь Е-27; 2 – блок автогенератора; 3 – наполнение, ртуть и инертный газ; 4 – соленоидальный редуктор; 5 – люминофорный слой; 6 – цилиндрическая полость в колбе; 7 – стеклянная колба 

Возможности широкого применения ИИ определяются кроме чисто светотехнических факторов также экономическими (стоимостью ИИ, генератора колебаний) и опасностью воздействия ВЧ-излучения на человека.

При решении многих научно-технических проблем требуется создание световых импульсов большой интенсивности. Это привело к созданию импульсных ИИ. Соотношения между параметрами (мощностью, яркостью, световым потоком) ИИ непрерывного действия и импульсных приведены в табл. 9.1 [9.7].

Кратковременные световые вспышки могут быть получены различными методами: при химической реакции (лампы с металлической фольгой, сгорающей в атмосфере кислорода или фтора), кратковременном возбуждении люминофора электронным пучком, кратковременном электрическом разряде в газе или в парах металла. Наибольшее распространение получили импульсные разрядные источники излучения.

Таблица 9.1. Сравнительная таблица наиболее мощных и ярких импульсных и непрерывного действия ИИ

Тип лампыНаибольшая мощность, кВтНаибольшая яркость, Мкд/м2Наибольший световой поток, клм
Непрерывные ИС
Накаливания (прожекторные) 2030600
Трубчатые ксеноновые с водяным охлаждением 500100022 000
Шаровые ксеноновые сверхвысокого давления 3060001300
Открытые дуги высокой интенсивности 10014004500
Импульсные ИС
Трубчатые ксеноновые кварцевые 200 00010 00010 000 000
Шаровые ксеноновые 10 000100 000200 000

В последние годы появилась информация о новых безэлектродных микроволновых серных лампах [9.8]. Анализ характеристик серной лампы и сравнение ее с другими, серийно выпускаемыми ИИ был сделан Г.Н. Рохлиным [9.9]. Схематически общий вид серной лампы показан на рис. 9.3. Светящее тело в виде шаровой кварцевой колбы имеет малые размеры (диаметр около 3 см). Колба наполнена инертным газом и определенным количеством серы. Исследования показали, что разряд в шаровой колбе практически не взаимодействует со стенками и срок службы лампы определяется постепенным разрушением наружных стенок колбы за счет пылинок в охлаждаемой струе воздуха. В настоящее время срок службы лампы составляет несколько десятков тысяч часов, световая отдача – 130–150 лм/Вт, световая отдача с учетом потерь в генераторе микроволновой энергии – 90–100 лм/Вт. Спектр излучения серной лампы близок к солнечному. На рис. 9.4 показаны спектральное распределение энергии излучения серной лампы, солнечный спектр и кривая относительной спектральной чувствительности глаза. Из сопоставления кривых можно сделать вывод об очень хорошей эффективности серной лампы для человеческого глаза. Изменяя состав наполнения колбы, можно получать хорошие спектры излучения в различных участках оптического диапазона спектра (видимой, ультрафиолетовой, инфракрасной). Серные лампы выпускаются мощностью 6, 5 и 1 кВт. Ведутся разработки серных ламп на меньшие мощности. Очевидно, что серные лампы в будущем найдут широкое применение в технике излучения. В России разработкой серных ламп занимается лаборатория под руководством Э.Д. Шлиффера.

Рис. 9.3. Микроволновая серная безэлектродная лампа фирмы «Fusio Lighting»а – схема лампы;
1 – шаровая колба; 2 – отражатель, 3, 3' – место подачи микроволновой энергии; 4 – блок вращения колбы; 5 – трубка для охлаждающего воздуха; б – общий вид светового прибора

Твердотельные полупроводниковые излучатели света – светодиоды (СД) на основе карбида кремния были открыты в 20-х годах О.В. Лосевым. Эти работы были продолжены Ж.И. Алферовым [9.10], который исследовал СД на основе арсенидов галлия – алюминия. Работы С. Накамуры [9.11] позволили использовать многослойные гетероструктуры для создания голубых и зеленых СД.

На рис. 9.5 изображена типичная конструкция СД. Площадь кристалла СД имеет размер (0,25x0,25) ÷ (0,5x0,5) мм. Фокусировка излучения в необходимом телесном угле обеспечивается линзой 5.

Рис. 9.4. Спектральное распределение энергии для микроволновой лампы
1 – лампа; 2 – солнечный спектр; 3 – кривая относительной спектральной чувствительности глаза
Рис. 9.5. Типичная конструкция СД
1 – полупроводниковый кристалл; 2 – кристаллодержатель; 3 – выводы; 4 – контактные проволоки; 5 – пластмассовый колпачок (линза)

Достижения науки за последние три десятилетия позволили получить красные, зеленые и голубые СД и наладить их промышленное производство. В настоящее время серийно выпускаются СД из трех материалов на одном кристаллодержателе, позволяющие получать разные цвета, в том числе и белый. Сила света у ряда СД превышает 10 кд. Срок службы 100 тыс. ч. Допустимые температуры эксплуатации от -40 до + 100 °С. Если учесть, что СД по светоотдаче уже превышают лампы накаливания, а на обслуживание требуют мало затрат, то можно прогнозировать им большое будущее в светотехнике. Сегодня СД начинают применяться в индикаторных устройствах, возможно создание полноцветных светодиодных табло, бегущих строк, рекламных панелей большой площади, плоских телевизионных экранов. Уже вводятся в эксплуатацию светофоры на СД.

Рис. 9.6. Двухэлектродная модификация ИИ
Рис. 9.7. Трехэлектродная модификация ИИ

Достаточно новыми источниками излучения (ИИ) являются источники, основанные на автоэлектронной эмиссии. Если электроны, появившиеся за счет автоэлектронной эмиссии (эмиссии, обеспеченной снижением потенциального барьера катода электрическим полем), направить на люминесцирующее вещество, то можно получить источник излучения со спектром, зависящим от состава люминофора. Одна из проблем, возникающая при создании такого источника, это необходимость иметь у катода напряженность электрического поля 106-107 В/см. Были предложены и сконструированы экспериментальные образцы ИИ на основе автоэлектронной эмиссии (АЭ). Главным элементом разрабатываемых ИИ является многоострийный автоэмиссионный катод. Кривизна острия составляет 10-5 см. В зависимости от расстояния между катодом и анодом рабочее напряжение может составлять от нескольких десятков вольт (при расстоянии десятые или сотые доли миллиметра) до нескольких киловольт (при расстоянии несколько сантиметров). На рис. 9.6 и 9.7 показаны принципиальные конструкции ИИ двух– и трехэлектродной модификаций: 7 – катод; 2 – стеклянная колба; 3 – люминофор; 4 – анод; 5 – сетка; 6 – преобразователь напряжения. Геометрия ИИ на основе АЭ может быть различной в зависимости от назначения. Экспериментальные образцы имели срок службы 10 тыс. ч.


    Ваша оценка произведения:

Популярные книги за неделю