355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » История электротехники » Текст книги (страница 35)
История электротехники
  • Текст добавлен: 9 октября 2016, 11:39

Текст книги "История электротехники"


Автор книги: авторов Коллектив



сообщить о нарушении

Текущая страница: 35 (всего у книги 78 страниц) [доступный отрывок для чтения: 28 страниц]

6.4. ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ
6.4.1. ОБЩИЕ СВЕДЕНИЯ

К электрическим аппаратам (ЭА) относят широкий класс электротехнических устройств, применяемых при производстве, распределении и потреблении электрической энергии. Область устройств, относящихся к ЭА, и их классификация постоянно изменяются в процессе развития электротехники. В настоящее время под ЭА понимают технические средства управления потоком электрической энергии в целях изменения режимов работы, регулирования параметров, контроля и защиты электротехнических объектов и их составных частей. Как правило, функции большинства видов ЭА осуществляются посредством коммутации электрических цепей с различной частотой.

До 1878 г. все ЭА назывались приборами и термин «аппарат» в близком понимании нашего времени впервые в том году был использован военным электротехником Н.А. Азаровым. С 1879 г. известный русский электротехник П.Н. Яблочков распространил термин «аппарат» на электротехнические устройства той эпохи – рубильники, переключатели, коммутаторы, реле и регуляторы.

Электрические аппараты обычно классифицируют по напряжению – аппараты высокого напряжения (АВН) и аппараты низкого напряжения (АНН). Большинство последних, как правило, разделяют на следующие основные виды:

аппараты управления и регулирования – автоматические выключатели, контакторы, пускатели электродвигателей, регуляторы напряжения и другие аппараты, выполняющие преимущественно функции исполнительных устройств в системах управления режимами работы и защиты электротехнических систем и их компонентов;

аппараты автоматики и защиты – реле, датчики и другие аппараты, осуществляющие функции контроля, усиления и преобразования электрических сигналов.

Аппараты автоматики используются преимущественно на информационных уровнях, а также в отдельных случаях, например в маломощных электротехнических устройствах, в качестве исполнительных устройств.

Создание и развитие ЭА неразрывно связаны с историей электротехники. Большой вклад в развитие электроаппаратостроения был сделан отечественными электротехниками. Истории развития ЭА посвящено много статей и монографий, но наиболее полно она нашла отражение в работах М.А. Бабикова [6.49; 6.50], где особенно ярко показан вклад отечественных ученых и инженеров в создание ЭА на разных исторических этапах.

Конец XIX в. явился периодом, когда были созданы и внедрены первые образцы, многих видов ЭА. Создателей этих приборов отличала многогранная деятельность в различных областях электротехники. Примером могут служить выдающиеся русские электротехники В.Н. Чиколев и М.О. Доливо-Добровольский.

В.Н. Чиколевым были созданы первые сигнальные электромагнитные реле и автоматические выключатели с дистанционным управлением, автоматический регулятор напряжения, реостатный регулятор напряжения для возбуждения генератора и предохранители. М.О. Доливо-Добровольский разработал и впервые применил: в 1890 г. – пусковой реостат к асинхронным двигателям и высоковольтный плавкий предохранитель; в 1891 г. – минимально-максимальное токовое реле; в 1893 г. – автотрансформатор для регулирования, выключатель-рубильник с пружинными контактами и автоматом; в 1910 г. – дугогасительное устройство из изоляционного материала с узкими щелями и металлической решетки; в 1914 г. – деионную решетку со специальными электромагнитами для втягивания дуги в щель.

Промышленное производство ЭА в России было организовано впервые в 1878 г. морским ведомством в г. Кронштадте под руководством А.П. Давыдова. Затем в более крупном масштабе было начато производство ЭА на первой электротехнической фирме «П.Н. Яблочков – изобретатель и К°. Товарищество электрического освещения и изготовления электрических аппаратов и машин в России».

Развитие отечественного электроаппаратостроения после 1917 г. происходило в рамках плановой государственной экономики, ориентированной на создание мощной отечественной базы электротехнической промышленности.

В 1920 г. в соответствии с планом ГОЭЛРО началось развитие электромашиностроения как самостоятельной отрасли промышленности. В 1921 г. были созданы электроаппаратные цехи на крупнейших электромашиностроительных заводах – «Электросила», ХЭМЗ и «Динамо». С 1925 по 1927 г. первым в Советском Союзе электроаппаратным заводом «Электроаппарат» (г. Ленинград) была разработана серия электрических аппаратов высокого напряжения и освоен их промышленный выпуск.

В период с 1928 по 1932 г. в России были созданы новые конструкции аппаратов на напряжения до 110 кВ, вентильные разрядники на напряжение 35 кВ, комплектные распределительные конструкции, трансформаторы тока с фарфоровой изоляцией и многие другие новые типы ЭА. С 1933 по 1937 г. впервые были разработаны и освоены в производстве масляные выключатели на напряжение до 220 кВ. В этот период также был налажен выпуск широкой номенклатуры быстродействующих реле защиты, аппаратов системной автоматики и др.

В первые послевоенные годы (1946–1950 гг.) были созданы новые типы безмасляных выключателей высокого напряжения на сжатом воздухе, автогазовые и с магнитным дутьем. Большое внимание было уделено созданию комплектно-распределительных устройств, а также аппаратов автоматики и защиты, в частности быстродействующих реле. Следует отметить, что в этот период большое внимание уделялось разработкам методов расчета и проектирования различных видов ЭА.

В 50-х и начале 60-х годов возникла потребность в повышении рабочих напряжений ЭА (до 400 кВ и выше) для дальних линий электропередачи, а также для широкого внедрения систем автоматизации в различных областях промышленности. В результате в научных учреждениях и на промышленных предприятиях отечественного электроаппаратостроения в эти годы были созданы все необходимые виды ЭА для оснащения линий передачи 400 кВ.

В 1890 г. во Франции впервые была синтезирована шести фтористая сера SF6, и во всем мире этот газ известен именно под этим названием. Только в России с 1947 г. этот газ называется элегазом – электрическим газом, это название дано шестифтористой сере Б.М. Гохбергом, который еще перед войной начал изучать электрические свойства этого удивительного газа в связи с проводившимися в его лаборатории работами по созданию высоковольтных электростатических ускорителей заряженных частиц. Им же впервые были высказаны предположения о возможности применения элегаза в качестве изоляционной среды оборудования высокого напряжения не только электрофизического, но и энергетического назначения – конденсаторов, трансформаторов, кабелей. Исследования отечественных ученых по применению элегаза велись по четырем основным направлениям:

получение экспериментальных данных по электрической прочности отдельных видов чисто газовых промежутков, в том числе типовых для изоляционных узлов элегазовых аппаратов (А.Г. Арсон, В.Н. Борин, А.Л. Виленчук, М.И. Сысоев, О.Н. Щербина). На базе экспериментальных данных строились инженерные методы расчета элегазовой изоляции;

изучение электрической прочности вдоль поверхности твердого диэлектрика в элегазе, разработка инженерных методов расчета напряжения поверхностного разряда и конструирование на этой основе изоляторов для элегазового оборудования (В.Н. Борин, В.Н. Вариводов, А.Л. Виленчук, А.Л. Петерсон, О.Н. Щербина);

изучение физики пробоя элегаза, построение физически обоснованного метода расчета элегазовой изоляции (И.М. Бортник, В.П. Вертиков, А.А. Панов);

изучение химических процессов в элегазовой изоляции, в том числе происходящих под действием электрических разрядов, изучение процессов взаимодействия элегаза, примесей в нем и продуктов его разложения в электрическом разряде с проводниковыми и диэлектрическими материалами, разработка на этой основе методов обеспечения стабильных характеристик элегаза и конструкционных материалов (В.Г. Аракелян).

Надо отметить, что по всем четырем перечисленным направлениям отечественные работы по научному уровню не отставали от уровня зарубежных исследований, а иногда и опережали их.

Создание дальних линий передачи напряжением 750 кВ также потребовало разработки новых высоковольтных ЭА, которые были успешно разработаны и внедрены в эксплуатацию.

Важнейшей частью большинства видов ЭА являются контакты. Поэтому создание эффективных ЭА неразрывно связано с разработкой научных основ в этой области. Многочисленные исследования контактных явлений с использованием научных достижений в электродинамике и теплопередаче позволяли развивать теоретические основы проектирования контактов. Основными движущими факторами в этом направлении являлись уменьшение потерь мощности, улучшение массогабаритных характеристик и уменьшение стоимости ЭА. Научные достижения на этих направлениях нашли воплощение в создании теории композиционных жидкометаллических контактов.

Исторически жидкометаллические контакты появились одновременно с первыми электротехническими устройствами, в которых осуществлялась коммутация тока с неподвижной части на подвижную. Однако их развитие замедлилось в связи с тем, что в качестве жидкого металла, как правило, использовалась ртуть, являющаяся сильным токсичным элементом. В то же время преимущества жидкометаллических контактов – малые потери энергии, возможность работы в экстремальных условиях и др. – сделали научно-исследовательские работы в этой области актуальными. В результате в конце 50-х и начале 60-x годов под руководством Н.Е. Лысова начали проводиться широкомасштабные научные исследования по созданию жидкометаллических контактов на основе нетоксичных элементов и их сплавов. Дальнейшее развитие эти работы получили в ряде научных коллективов СССР под руководством В.Г. Дегтяря, B.C. Зарецкаса, Л.Н. Тучинского и др. В результате этих работ были развиты основы теории жидкометаллических контактов и создан широкий класс композиционных контактных элементов с жесткими и эластичными каркасами, переходное сопротивление которых очень мало, является стабильным и не зависит от положения в пространстве и направления силовых воздействий.

С середины 60-х годов во всех развитых государствах мира, включая СССР, начинается массовое производство полупроводниковых приборов, применение которых в электроаппаратостроении оказало существенное влияние на технико-экономические характеристики различных видов ЭА, особенно низкого напряжения. В результате внедрения усилителей, функциональных преобразователей и других полупроводниковых устройств стало возможным повысить быстродействие контакторов и реле за счет форсирования режимов включения и отключения, расширить их функциональные возможности.

В этот период были созданы и внедрены первые гибридные ЭА, сочетающие достоинства электромагнитных и полупроводниковых ЭА. Одновременно были существенно улучшены конструкции электромагнитных ЭА за счет использования новых, высокоэффективных электрических материалов. Это позволило улучшить массогабаритные показатели ЭА.

Промышленное освоение мощных тиристоров стало основой для возрождения и расширения работ по созданию высоковольтных линий электропередачи постоянного тока. Для оснащения этих линий потребовались новые виды выключателей, разъединителей, предохранителей и других видов ЭА. Так, например, для защиты тиристорных преобразователей потребовалось разработать специальные быстродействующие ЭА на основе жидких металлов.

С середины 80-х годов начала интенсивно развиваться силовая электроника. На основе достижений электронных технологий были созданы силовые полупроводниковые приборы, отличающиеся полной управляемостью, низким потреблением энергии на управление и высоким быстродействием. Использование нового поколения силовых электронных приборов в сочетании с достижениями в области микроэлектронных технологий позволило создавать принципиально новые виды бесконтактных ЭА, сочетающих функции регулирования, контроля, диагностики и защиты. В этом смысле в 90-х годах стало возможным говорить о новом поколении «интеллектуальных» ЭА.

6.4.2. АППАРАТЫ ВЫСОКОГО НАПРЯЖЕНИЯ

Выключатели высокого напряжения. Выключатель является одним из основных видов ЭА, обеспечивающих включение и отключение электрических цепей с различными токами, в том числе токами перегрузки и коротких замыканий.

В начале XX в. появились первые выключатели, в которых гашение дуги происходило под воздействием продуктов разложения минерального масла. Поэтому такие выключатели получили название масляных. Конструктивно первые выключатели были выполнены в виде бака с трансформаторным маслом, в котором располагались неподвижные части контактов. Подвижная часть контактов прикреплялась к траверсе, подвешенной на вертикальных бакелитовых трубках. Эти стержни соединялись с конструктивными элементами приводного механизма. В каждой фазе контакт обеспечивался двумя неподвижными контактами и одной траверсой. В результате обеспечивалось два разрыва цепи на каждую фазу и соответственно в процессе коммутации возникало две дуги. Гашение дуги обеспечивалось за счет увеличения ее длины при движении траверсы и воздействия продуктов разложения масла, возникающих под воздействием высокой температуры дуги. Эти продукты в виде газового пузыря создавали дугогасящую среду, и при прохождении тока через нуль происходил процесс деионизации и восстановления электрической прочности между разрывными контактами. Трансформаторное масло служило одновременно изоляцией токоведущих частей от заземленного корпуса бака.

Первые отечественные масляные выключатели были разработаны на напряжение от 6 до 110 кВ. Среди них были как однобаковые выключатели типа МА-5, ВМ-12, так и трехбако-выетипаМВ-18, МВ-24.

Большое значение при создании ЭА имеет теория электрической дуги. Исследования методов гашения электрической дуги для ЭА были проведены в период 1910–1914 гг. М.О. Доливо-Добровольским, и им впервые предложено использовать для этих целей магнитное дутье, обеспечивающее гашение длинной дуги в узких щелях специальных дугогасительных камер.

В начале XX в. были заложены основы теории электрической дуги по результатам исследований, выполненных в 1902 г. англичанкой Тертой Айртон и в 1905 г. русским ученым В.Ф. Миткевичем. Основополагающими для развития теории дуги явились выводы об ее электронной природе, а также установление зависимостей между током дуги, ее длиной и напряжением.

По мере развития ЭА расширялись исследования и в области электрической дуги. Наиболее существенные результаты исследований в этой области были получены в 20-х годах XX в. американскими учеными Комптоном и Слепяном. В развитии теории дуги и разработке методов ее эффективного гашения принимали участие многие ученые, среди которых значительное место принадлежит отечественным специалистам.

Особенно плодотворным был период 30–40-х годов. Так, например, Д.А. Рожанским впервые (1937 г.) разработана математическая модель дуги, учитывающая тепловую инерцию и тепловой баланс в различных режимах ее существования. А.Я. Буйлов впервые исследовал в 1933–1935 гг. процесс деионизации при высоком напряжении и установил зависимость изменения диэлектрической прочности от скорости восстановления напряжения. Г.А. Буткевич в период 1929–1936 гг. установил температуры дуг переменного и постоянного тока. Е.М. Цейров в 1941 г. предложил аналитический метод расчета дуги. В 30-е годы большой вклад в исследование электрической дуги внес М.М. Акодис, которым предложено много оригинальных конструкций дугогасительных устройств. М.А. Бабиковым в 1934–1939 гг. исследованы переходные процессы при изменениях дуги. Всесторонние исследования поведения дуги низкого напряжения в щелевых дугогасительных камерах выполнены О.Б. Броном и его учениками.

В более поздние периоды большой вклад в развитие теории дуги внесли A.M. Залесский, Г.А. Кукеков, И.С. Таев, А.А. Чунихин и многие другие отечественные ученые. Следует также отметить работы Г.Г. Нестерова в области гашения дуги в жидких средах нагруженных аппаратов.

Для уменьшения габаритов и снижения массы масляных выключателей были разработаны конструкции маломасляных выключателей, в которых масло использовалось только как дугогасящая среда (рис. 6.10). Изоляция же между токоведущими частями обеспечивалась твердыми изоляционными материалами – фарфором и бакелитами.

Совершенствование масляных выключателей, повышение их коммутационной способности шло различными путями. Одним из таких путей являлось использование деионной решетки, погруженной в масло, что позволяло более эффективно осуществлять дугогашение при более высоких напряжениях. Другим способом стало применение дугогасительных камер из изоляционного материала. Возникновение дуги повышало давление в этих камерах. Поэтому при выходе подвижного контакта из камеры происходил более интенсивный обдув дуги и ускорялся процесс ее деионизации. В дальнейшем конструкции с дугогасительными камерами были усовершенствованы за счет создания процесса так называемого масляного дутья. Масляные выключатели с дугогасительными камерами продольного масляного дутья были впервые разработаны в 1931 г. в США фирмой «Дженерал электрик» («General Electric»), а с поперечным масляным дутьем – в 1930 г. в Британской научно-исследовательской электротехнической ассоциации.

Рис. 6.10. Маломасляный выключатель на напряжение 110 кВ колонкового типа 

Одним из направлений совершенствования масляных выключателей являлось применение многоразрывных дугогасительных систем.

Факторами, ограничивающими развитие масляных выключателей, явились их пожароопасность, относительно большие габариты, повышенные эксплуатационные расходы и др.

Практически параллельно с масляными выключателями начали развиваться воздушные, которые впоследствии составили им серьезную конкуренцию. Принцип действия воздушного выключателя основан на гашении дуги потоком сжатого воздуха под давлением 2–4 МПа. Первый воздушный выключатель высокого напряжения создан в 1929 г. в Германии фирмой АЕГ (AEG). В 1935 г. воздушный выключатель создан в Швейцарии, различные его модификации разрабатывались фирмой «Броун Бовери» («Brown Boveri»). Общий вид воздушного выключателя этой фирмы с дугогасительным устройством на 12 разрывов, созданного в 1940 г., представлен на рис. 6.11.

Первые отечественные конструкции выключателей со сжатым воздухом типа ВВ-110 на напряжение 110 кВ были разработаны в ВЭИ и выпущены в период 1940–1948 гг. заводом «Электроаппарат».

Рис. 6.11. Воздушный выключатель фирмы «Броуи Бовери» с дугогасительным устройством на 12 разрывов

В дальнейшем воздушные выключатели совершенствовались за счет улучшения аэродинамических качеств сопловых систем подачи воздуха, увеличения числа разрывов дуги, введения металлических камер с постоянно сжатым воздухом, что позволило поднять уровень их рабочего напряжения до 750 кВ при токах до 63 кА.

Воздушные выключатели разрабатывались также и без применения сжатого воздуха на основе использования деионных решеток и электромагнитного воздействия на дугу– Так, например, в 1929 г. Слепяном (фирма «Вестингауз» («Wectingose»)) была разработана дугогасительная система с деионной решеткой для гашения дуги в воздухе при атмосферном давлении. Принцип действия системы был основан на разбиении дуги на ряд коротких дуг посредством решетки из металлических пластин, электрически изолированных одна от другой. Дуга при отключении втягивалась в эту решетку под воздействием внешнего магнитного поля.

В электромагнитных выключателях фирмы «Дженерал электрик» (1940 г.) был применен принцип дугогашения за счет затягивания дуги под воздействием магнитного поля в щелевые лабиринты специальных камер, где происходило ее удлинение и более интенсивное охлаждение [6.51].

Развитие выключателей высокого напряжения в направлении уменьшения их габаритов и повышения удельных коммутирующих показателей связано с использованием вместо воздуха элегаза (шестифтористой серы).

Наиболее мощным стимулом для широкого использования элегаза стало требование о минимизации влияния оборудования высокого напряжения на окружающую среду. Поэтому реально первыми элегазовыми аппаратами энергетического назначения стали выключатели высокого напряжения. Применение элегаза позволило сохранить преимущества воздушного выключателя перед пожароопасным баковым масляным выключателем и в то же время уйти от одного из основных недостатков воздушных выключателей в условиях населенных пунктов – сильного шума при выхлопе отработавшего воздуха. Первый элегазовый выключатель был построен фирмой «Вестингауз» в 1955 г. С этого момента все большее число фирм подключается к разработке и производству элегазовых выключателей, а их номинальные параметры непрерывно повышаются.

Первые работы по применению элегаза в коммутационных аппаратах начались почти одновременно в ВЭИ, Москва (A.M. Бронштейн, B.C. Чемерис) и ЛПИ, Ленинград (A.M. Залесский, А.И. Полтев) с 1962–1963 гг. Хотя исследовательские работы и продолжались, но реального освоения производства элегазовых коммутационных аппаратов за последующие 15 лет так и не произошло. В эксплуатацию были поставлены небольшие партии выключателей нагрузки, отделителей, выключателей для железнодорожных подстанций. Лишь в конце 70-х годов в результате совместных усилий ВЭИ им. В.И. Ленина и ЛенПО «Электроаппарат» (Ю.И. Вишневский) появляются первые сильноточные элегазовые выключатели высокого напряжения.

Первые ячейки комплектно распределительных устройств с элегазовой изоляцией (КРУЭ) на напряжение 110 кВ были созданы в России в 1975–1977 гг. сначала на Опытном заводе ВЭИ, а затем на ЛенПО «Электроаппарат». К середине 80-х годов в ВЭИ был создан первый в мире макет КРУЭ на напряжение 1150 кВ.

Создание комплектных распределительных устройств потребовало разработки не только коммутационных элегазовых аппаратов, но и других типов элегазового и совместимого с ним оборудования – вводов с элегазовой изоляцией и муфт масло – элегаз, трансформаторов тока и напряжения, ограничителей перенапряжения, токопроводов. До появления потребности в КРУЭ развитие работ по этим видам оборудования происходило весьма медленно: в ВЭИ (М.И. Сысоев, А.Г. Арсон) были созданы элегазовые трансформаторы для метрополитена, там же (И.М. Бортник, А.А. Панов) и в ЭНИН им. Г.М. Кржижановского (В.И. Попков, А.Г. Ляпин) велись работы по созданию первых образцов токопроводов (линий) с газовой изоляцией.

В результате элегазовые выключатели имеют мощные приводы и существенно более компактные конструкции, а также позволяют легче реализовать высокое быстродействие процесса коммутации.

Из экономических соображений и экологических требований элегазовые выключатели разрабатываются с замкнутым циклом функционирования без выбросов отработанных газов в атмосферу.

Развитие дугогасительных систем происходило не только с использованием дутья газами повышенного давления, но и созданием вакуума. Так как вакуум обладает высокой электрической прочностью, поддержание дуги в вакуумных выключателях происходит не за счет ионизированных частиц газов, а за счет ионизированных паров металлов электродов контактных систем.

Вакуумные выключатели заняли прочное место в классах средних напряжений 3–35 кВ. В этих классах напряжений они наиболее полно соответствуют современным требованиям. Высокие электрическая прочность и дугогасительная способность вакуумных промежутков дают возможность создать вакуумные выключатели с малыми габаритами и массой, большими ресурсом, надежностью и сроком службы. Они экологически чисты и взрывопожаробезопасны, вибростойки и сейсмостойки, работоспособны в условиях холодного и тропического климата, характеризуются предельно малыми эксплуатационными расходами.

Первая попытка создать вакуумный выключатель была сделана в Калифорнийском технологическом институте (США) в 1923 г. Однако только в 60-х годах после решения научных и технологических проблем был начат промышленный выпуск вакуумных выключателей. В нашей стране систематические исследования и разработки вакуумных дугогасительных камер и выключателей были начаты В.Л. Грановским и его сотрудниками в 1956 г.

В настоящее время в России и за рубежом созданы выключатели на все требуемые потребителю параметры в классах напряжения 3–35 кВ (с номинальными токами до 3150 А).

Наибольший вклад в дело становления отечественной вакуумной коммутационной аппаратуры был внесен сотрудниками ВЭИ, такими как В.Н. Тихонов, В.Б. Козлов, И.А. Лукацкая, Г.С. Белкин, B.C. Потокин, А.А. Перцев, Ю.Г. Ромочкин и др.

Разъединители. Этот вид ЭА предназначен для отключения цепи высокого напряжения без тока. Первые разъединители на напряжение 6–10 кВ и номинальный ток 600–800 А появились в начале XX в. и представляли собой трехфазную систему с общим ручным приводом.

Развитие конструкций разъединителей шло по пути повышения их рабочего напряжения и уменьшения габаритов. Среди отечественных разъединителей следует отметить конструкцию разъединителя с подвижным контактом и электроприводом. В настоящее время разработаны разъединители на напряжение до 1150 кВ и токи до 3200 А.

Улучшение механических и электрических характеристик фарфоровых изоляторов, разработка полимерных изоляторов позволили существенно усовершенствовать конструкции разъединителей, в первую очередь сверхвысокого и ультравысокого напряжения.

В создании отечественных разъединителей наиболее существенную роль сыграли завод «Электроаппарат», Великолукский завод высоковольтных аппаратов, завод «Уралэлектротяжмаш», ВЭИ, НИИПТ, ЛПИ.

Разрядники и реакторы. Эти виды ЭА используются для защиты оборудования энергосистем и потребителей в различных аварийных режимах. Разрядники – ЭА, предназначенный для защиты оборудования от перенапряжений.

Первые разрядники были рассчитаны на защиту от атмосферных перенапряжений посредством искрового пробоя воздушного промежутка между двумя металлическими электродами. Такие электроды имели форму рогов, закрепленных на фарфоровых изоляторах (рис. 6.12). Такая форма электродов способствовала отводу от изоляторов электрической дуги, которая может возникать при пробое разрядника под воздействием молнии.

В дальнейшем функции разрядников расширились, и они стали использоваться для защиты от внутренних перенапряжений, возникающих в энергосистеме, в частности, из-за коммутации цепей с индуктивным характером сопротивления. С расширением функций одновременно усовершенствовались технические характеристики разрядников и их техническая реализация.

Начиная с 30-х годов стали широко использоваться трубчатые разрядники многократного действия. Такой разрядник состоял из дугогаси-тельной трубки, содержащей электроизолирующие материалы, например фибру или винипласт, которые генерируют газы под воздействием дуги. Эти газы повышали давление и создавали эффект газового дутья для гашения дуги.

Рис. 6.12. Роговой разрядник на напряжение 6 кВ 

В дальнейшем получили распространение разрядники на основе нелинейных резисторов, способных поглощать кратковременные импульсы энергии при перенапряжениях. Большая часть таких резисторов имеет вентильные вольт-амперные характеристики и создавалась на основе специальных материалов – тирита, вилита и др. В настоящее время в качестве разрядников преимущественно используются нелинейные резисторы, созданные на основе оксида цинка.

Для защиты электрооборудования в системах высокого напряжения также используются ограничивающие и шунтирующие реакторы.

Реакторы без стали для ограничения токов короткого замыкания начали использоваться с 20-х годов. Отечественные реакторы такого типа на напряжения 3—6—10 кВ и токи до 100 А были созданы в период 1921–1927 гг. Конструкция первых реакторов была сборной, а в качестве конструктивных элементов использовались деревянные прокладки, стягиваемые при помощи изолирующих болтов (шпилек). В дальнейшем для повышения динамической прочности провода реакторов стали помещать в специальные бетонные колонки, а для улучшения технико-экономических характеристик реакторов стали использовать ферромагнитные материалы.

Шунтирующие реакторы для снижения перенапряжений первоначально подключались к токопроводам или отключались от них посредством выключателей высокого напряжения для компенсации избытка реактивной мощности и снижения возникающего при этом перенапряжения. В дальнейшем в целях повышения быстродействия стали использовать управляемые шунтирующие реакторы с подмагничиванием. В настоящее время на основе полупроводниковых приборов (тиристоров) созданы шунтирующие реакторы с быстродействием не более 0,01 с на частоте 50 Гц.

Большой вклад в развитие отечественных аппаратов высокого напряжения внес Г.Н. Александров.


    Ваша оценка произведения:

Популярные книги за неделю