Текст книги "Техника и вооружение 2003 09"
Автор книги: авторов Коллектив
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 3 (всего у книги 9 страниц)
Система-125
Боевое применение комплексов М-125
Продолжение. Начало см. ТиВ № 5,8/2003 г.
Как известно, наиболее ярким периодом в истории ЗРК С-75 стали годы Вьетнамской войны, в ходе которой это оружие применялось достаточно интенсивно, что в значительной мере и определило характер и исход боевых действий. В середине 1960-х гг. комплексы С-125 еще считались крайне секретной техникой, чтобы рисковать возможностью ознакомления с ней не только вьетнамцев, но и специалистов другой, куда более просторной страны Дальнего Востока.
Звездный час С.-125 пробил весной 1970 г., когда по решению советского руководства в процессе проведения операции «Кавказ» в Египет была направлена большая группа наших ракетчиков и летчиков. Они были призваны обеспечить ПВО этой страны в условиях усилившихся налетов израильской авиации, осуществлявшихся в ходе так называемой «войны на истощение» 1968–1970 гг. Боевые действия велись в основном в зоне Суэцкого канала, на западный берег которого израильтяне вышли по завершении победоносной для них «шестидневной» войны 1967 г.
При доставке вооружения из СССР в Египет использовалось около полутора десятков сухогрузов («Роза Люксембург», «Дмитрий Полуян» и др.), перевозивших, по официальной версии, «сельскохозяйственную» технику. Зенитные ракетные дивизионы комплексов С-125 с советским персоналом, объединенные в дивизию ПВО, были призваны усилить группировки египетской ПВО, оснащенной ЗРК С-75. Основным преимуществом советских ракетчиков, наряду с более высоким уровнем подготовки, стала новизна для израильтян, как и для поддерживающих их американцев, особенностей комплекса С-125, работавшего в несколько ином частотном диапазоне по сравнению с уже «засветившимся» у противника С-75– Поэтому на первых порах израильские самолеты не оснащались эффективными средствами радиоэлектронного противодействия С-125. Кроме того, используя равнинный характер местности, израильские летчики, как правило, действовали на предельно малых высотах, недоступных для эффективного применения С-75. Атакуя эти комплексы, они выполняли горку и пикировали в «воронку» не простреливаемой зоны над позицией ЗРК.
Обломки сбитых израильских самолетов, выставленные в египетском музее
Отправка в Египет ограниченного советского воинского контингента способствовала реализации ряда мероприятий по повышению боевой устойчивости ЗРК. В частости, для самообороны позиций ЗРК каждому дивизиону придавались три-четыре зенитных самоходных установки ЗСУ-23-4 «Шилка» и отделение переносных зенитных ракетных комплексов «Стрела-2». В дальнейшем в Египте «Шилки» располагались в 200–300 м от позиции ЗРК. а позиции стрел ков-зенитчиков со «Стрелой-2» выдвигались на удаление около 5–7 км в направлении вероятного подхода самолетов противника на малых высотах, так как в те годы это оружие могло поражать самолеты противника только вдогон. Непосредственно на огневой позиции выставлялся пост визуального наблюдения. Связь между всеми постами и командным пунктом дивизиона осуществлялась по проводимым линиям. При боевом использовании комплекса С-125 в Египте для обороны от воздушного противника на малых дальностях также применялись пулеметы ДШК Целесообразность и даже необходимость этих мер обеспечения самообороны была очевидна уже на протяжении многих лет, по их внедрение в жизнь осуществилось только применительно к частям, направлявшимся в Египет. Кроме того, силами египетских строителей позиции ЗРК были заранее оборудованы защитными сооружениями для размещения кабин и агрегатов комплекса. Железобетонные сооружения. присыпанные слоем песка толщиной -4-5 м, обеспечивали надежную защиту от бомб калибра до 500 кг пусковые установки ракет прикрывались обваловкой. Предполагалось создать в месгах базирования каждой группировки ряда запасных полевых и ложных позиций. а также обеспечить зенитное прикрытие как стационарных, так и запасных позиций вспомогательными средствами. Буксировка пусковых установок к условиях пустыни осуществлялась тягачами АТ-С, введенными в состав дивизионов.
Как всадится, первой блин оказался комом, притом кровавым. Заступление на боевое дежурство в ночь с 14 на 15 марта 1970 г. советские ракетчики отметили боевой работой, сбив двухракетным залпом египетский Ил-28, вошедший в зону поражения ЗРК С-125 на высоте 200 м с неработающей аппаратурой государственного опознавания. При этом рядом с советскими офицерами находились и египетские военные, клятвенно заверившие наших ракетчиков в том, что их самолетов в зоне обстрела быть никак не может. Наши соотечественники отметили несколько странную реакцию «просто душных» египтян на этот инцидент. Поражение своего Ил-28 они восприняли чуть ли не с восторгом, многократно повторяя: «Лучше «Хока», лучше «Хока».
Похоже, что, стремись продлить восторг египтян, три дня спустя расчет переносного ЗРК «Стрела-2», прикрывавшего позицию советского дивизиона С-125, обстрелял также и египетский Ан-24. К счастью, пассажирский самолет с одним неработающим двигателем дотянул до аэродрома и сел, хотя бравые стрелки-зенитчики отрапортовали о «бесславном конце израильского агрессора».
Тем не менее, через несколько недель дело дошло до стрельб по настоящему противнику. Вначале они прошли безрезультатно. Израильские летчики старались обходить зоны поражения ЗРК, размещенных на позициях с защитными сооружениями. Стрельбы по самолетам противника, находящимся на дальней границе зоны пуска, завершались тем, что израильский летчик успевал развернуться и уйти от ракеты.
Пришлось откорректировать тактику применения ЗРК Комплексы выводили из оборудованных надежными укрытиями районов постоянной дислокации на позиции «засады», пуск ракет производился по целям на дальностях до 12–15 км Совершенствуя боевое мастерство в условиях реальной угрозы со стороны противника, советские ракетчики довели время свертывания комплекса до 1 ч 20 мин вместо 2 ч 10 мин, заданных по нормативу.
В результате 30 июня 1970 г. дивизиону капитана В.П. Маляуки удалось сбитъ первый «Фантом», а спустя пя ть дней дивизион С.К. Завесницкого «завалил» и второй F-4E. Последовали и ответные удары израильтян. В ходе ожесточенного боя 18 июля в дивизионе В.М. Толоконникова погибло восемь советских военнослужащих, но и израильтяне не досчитались четырех «Фантомов*. Еще три израильских самолета были сбиты дивизионом Н.М. Кутынцева 3 августа, а спустя несколько дней при Посредничестве третьих стран было достигнуто соглашение о прекращении боевых действий в зоне Суэцкой) канала.
Заряжание с ТЗМ двухбалочной ПУ египетского ЗРК С-125
Позиция египетского антенного поста УНВ комплекса С-125
На боевой позиции египетского ЗРК С-125
Приведенные выше сведения о боевой работе советских ракетчиков основаны на воспоминаниях участников событий, опубликованных в изданных в 2001 г. сборниках «Тогда в Египте» и «Интернационалисты». По данным командира развернутой в Египте советской дивизии ПВО генерал-лейтенанта А.Г. Смирнова, результативность боевого применения ЗРК С-125 с июня по август 1970 г. характеризуется девятью сбитыми и тремя поврежденными самолетами противника, а по несколько эмоциональным оценкам других ветеранов с более развитым воображением – 21 победой.
Сами израильтяне подтвердили потерю всего пяти своих самолетов, сбитых комплексами С-125. По тем же израильским оценкам, еще шесть их самолетов было сбито арабскими ЗРК С-125 в ходе октябрьской войны 1973 г. Несколько раньше на счет С-125 американцы записали один из их «Фантомов», сбитых над Вьетнамом в 1972 г.
После 1973 г комплексы С-125 применялись иракцами в 1980–1988 it. в войне с Ираном, в 1991 г. – при отражении начетов авиации многонациональной коалиции. Использовались сирийцами против израильтян в ходе ливанского кризиса 1982 г, ливийцами для стрельбы по американским самолетам в 1986 г., югославами против американцев и их союзников в 1999 г. именно комплексом С-125 27 марта 1999 г. в небе над Югославией был сбит F-117А, фотографии фрагментов которого были опубликованы в средствах массовой информации.
Окончание следует
Человеческий фактор
Николай Юрьев
В 1909 г. – начальник отдела Донгузского полигона, в 1976 г. – заместитель начальника полигона
100-мм зенитная пушка КС-19
Этот термин часто употребляется в последнее время и воспринимается как ошибка в управлении или в эксплуатации определенных технических средств (самолета, корабля, автомобиля и др.), приведшая к чрезвычайному происшествию, аварии, катастрофе. Как правило, причиной этих явлений чаше всего (с точки зрения т. н. «человеческого фактора») является нарушение или отступление от инструкций, правил, порядка эксплуатации изделий.
Мы же поговорим об этом самом «человеческом факторе» при испытаниях военной техники и вооружения.
Проявление «человеческого фактора». допущенное при испытаниях, может сказаться через неопределенное, иногда довольно длительное время. Маршал артиллерии П.Н. Кулешов, посещая полигон и беседуя с инженерами-испытателями, не уставал повторять: «Ошибка, допущенная вами на испытаниях при оценке технических и боевых характеристик опытного объекта, поступит в войска многократно повторенная в виде серийных образцов, поставляемых на вооружение». Поэтому на полигоне, как нигде, особо важно и весомо значение народной мудрости: «Семь раз отмерь – один раз отрежь». Ведь полигон, по суги, является последней инстанцией, мерилом соответствия образца заданным тактико-техническим характеристикам.
Как правило, проявление «человеческого фактора» обуславливается несовершенством методик испытаний. Несовершенство же методик объясняется в ряде случаев новизной образца (отсутствие прототипа) и, соответственно, отсутствием уже отработанных и проверенных на практике методик, а также необходимых для испытаний специального оборудования и техники, не всегда имеющихся к началу испытаний на полигоне. ну и, конечно же, неподготовленностью и недостаточной ответственностью испытателей. Однако последнее – неподготовленность испытателен – компенсируется тем. что на первоначальном этапе к проведению испытании широко привлекаются специалисты (вплоть до операторов систем и боевых расчетов) иредприятий-разработчиков, а также тем, что испытания проводятся под руководством комиссий (совместных, государственных. полигонно-войсковых), возглавляемых высококвалифицированными специалистами. Необходимые же приборы, аппаратура и оборудование должны при необходимости создаваться и поставляться на полигон разработчиками соответствующих систем и элементов комплекса. что. кстати, не всегда выполняется, особенно при срыве сроков разработки основного образца. Как говорится. не до жиру – быть бы живу.
В конце 1950-х гг. для управления огнем батареи 57-мм зенитных пушек С– 60 в НИИ-20 Министерства вооружения под руководством М.М. Косичкина был разработан, испытан на полигоне и принят на вооружение мобильный малогабаритный радиолокационно– приборный комплекс РНК-1 «Ваза», размещенный на автомобиле Урал-375. Не перечисляя состав комплекса и всех его ТТХ, упомянем лишь те, о которых I юидет речь в дальнейшем. 15 РЛС комплекса был предусмотрен ряд специальных мер по защите от пассивных и активных помех. Станция обеспечивала точность измерения координат со среднеквадратическими ошибками 1.5 ду. по угловым координатам и 15 м по дальности.
Испытания в условиях пассивных помех проводились по самолету Ил-28. Пассивные помехи создавались двумя самолетами Ил-28, оснащенными автоматами сброса помех ДСО-2И. В качестве помех использовались отражатели ДОС-17. Самолет-цель заводился в полосу помех через расчетное время полного раскрытия пачек помех с учетом их снижения но высоте и сноса ветром. Контроль за нахождением цели в помехах осуществлялся но индикаторам аэродромных РЛС управления полетами типа П-30 и П-15.
Ширина диаграммы направленности антенн этих станций составляла около 4,5 град. и. учитывая соотношение импульсного объема РЛС «Ваза» и ширины ДНА 11–15 (П-30), оценить с требуемой точностью нахождение самолета-цели предполагалось путем кратковременного переключения РЛС «Ваза» из режима СДЦ в амплитудный режим для корректировки положения цели в полосе помех. Но если в случае этих манипуляций цель сбрасывалась с автосопровождения, то залет считался незачетным по причине именно этого переключения. И в результате испытаний РЛС «Ваза», согласно выводам акта государственных испытаний, обеспечивала в режиме СДЦ сопровождение цели типа Ил-28 в условиях пассивных помех плотностью две пачки на 100 м пути.
Техническими условиями (ТУ) на РНК предусматривалось па больших контрольных испытаниях (ВКИ) образца проверять на соответствие заданным требованиям при одновременном воздействии на РЛС активных и пассивных помех. Однако из программы ВКИ который раз по представлению полигона заказывающим управлением исключался этот пункт из-за отсутствия аппаратуры создания активных помех. Но в 1969 г. через 10 лет после принятия на вооружение РНК-1 – Ваза», на полигоне было принято решение проверить РЛС в условиях пассивных помех.
В процессе этих испытаний была уточнена методика в части контроля нахождения самолета-цели в облаке (создаваемой полосе) помех. Методикой предусматривалось выведение сигнала от цели и помехи непосредственно после ПУПЧа. перед его поступлением на СДЦ, на встроенный в станцию осциллограф. Теперь положение цели в полосе помех корректировалось по сигналу на осциллографе без вынужденного переключения режимов работы РЛ((СДЦ– амплитудный).
57-мм зенитная пушка С-60
Результат оказался впечатляющим. Как только самолет-цель точно заводился в полосу помех, так автосопровождение цели срывалось. Вызванные представители завода-изготовителя и заказчика высказали для начала сомнение в квалификации войскового расчета, затем в правильности выбора позиции РПК-1, наконец, в нормальной работе автоматов сброса помех на самолетах-постановщиках и в соответствии техническим условиям дипольных отражателей ДОС 1.
Солдатский расчет РПК-1 заменили на заводской, как более квалифицированный. позиции PПK-1 сменили в соответствии с рекомендациями представителей завода и заказчика. Проверили работу автоматов сброса помех АСО-2И на соответствие ТУ и вручную пересчитали количество отражателей в пачке ДОС-17 (должно быть около 600000 иголочек). Однако устойчивого сопровождения цели в условиях пассивных помех плотностью две пачки на 100 м пути добиться так и не удалось.
Тогда экспериментальным путем было определено, что устойчивое сопровождение (с вероятностью 0,9) самолета типа Ил-28 осуществляется в помехах плотностью 1,1 пачки на 100 м пути, а самолета типа МиГ-17 – 0,7 пачки на 100 м пути.
Для определения этих показателей в межсезонный (осенне-весенний) период, когда аэродром на Донгузском полигоне, не имевший взлетно-посадочной полосы с твердым покрытием, не функционировал, приходилось использовать для полетов аэродром Эмбинского полигона, откуда самолеты могли выполнят! всего один залет, в то время как с местного – три. Все это привело к удлинению сроков БКИ (по заданию 3 месяца, а продолжались 9 месяцев.).
Несовершенство методики контроля нахождения самолета-цели в полосе помех, а также, видимо, неразумно сокращенные сроки проведения госиспытаний привели к неправильной (завышенной) оценке помехозащищенности РЛС-1 «Ваза», что могло сказаться на оценке возможностей в условиях боевого применения и. кроме того, это привело к излишним затратам средств и времени для правильной оценки помехозащищенности, корректировки ТУ и ТГХ.
И второй пример. Командование войск ПВО СВ и ГРАУ было обеспокоено проблемой проверки функционирования снарядов к 100-мм зенитной пушке КС-19, оснащенных радиовзрывателями (РВ) АР-21. Промах, при котором срабатывал радиовзрыватель с заданной вероятностью, был задан по самолету типа Пе-2. К началу 1970-х гг. таких самолетов просто физически не было, и использовать какие бы то ни было лабораторные методы для оценки функционирования РВ не представлялось возможным.
В 1976 г. была изыскана возможность поставки радиоуправляемой мишени (РУМ) М-28, созданной на основе самолета Ил-28, для проведения стрельб батареей 100-мм зенитных пушек снарядами, оснащенными РВ АР-21. Следует попутно заметить, что для обслуживания орудий директивой Главкома СВ был осуществлен призыв на кратковременные сборы т. н. «партизан» из запаса, проживающих на территории бывшего Приволжского военного округа. Хотя цель призыва была ясна – кратковременная служба в подразделении ПВО, зенитчиков среди призванных было около 10 %, а некоторые к моменту призыва вообще не служили в армии.
К боевым стрельбам была подготовлена батарея 100-мм зенитных пушек КС-19 с РНК-1 «Ваза» со счетно-решающим прибором «Буксир». Для более полного «использования» РУМ М-28 к стрельбам привлекалась также 6-орудийная батарея 57-мм ЗП С-60 с РПК-1 «Ваза». Орудия на огневых позициях были размещены так, чтобы обеспечивалась стрельба всеми орудиями до параметра. После параметра (вдогон) стрельба не велась по условиям техники безопасности. Перед боевыми стрельбами было проведено достаточное количество тренировок для обучения и обеспечения слаженности расчетов, а также для проверки материальной части в динамике по самолетам и оценки точностных характеристик. Руководство и обучение расчетов осуществлялось инженерами-испытателями полигона.
РУМ М-28 была выведена на боевой курс на высоте 5000 м и проведена с курсовым параметром 1000–1500 м. Всего было осуществлено дна вывода мишени на боевой курс. Стрельба обеими батареями велась в режиме «все данные от РПК» с максимальным темпом, начиная с максимальной дальности. Ни в первом, ни во втором боевом залете РУМ не было зафиксировано ни одного попадания, ни одного разрыва 100-мм снаряда с РВ АР-21.
После каждого залета оценивалось, на сколько сбивалось (нарушалось) при стрельбе ориентирование орудий. И оказалось, что при оборудовании огневых позиций согласно наставлению, закреплении лафетов в фунте сошниками, вбитыми в твердую сухую почву "по самое некуда", ориентирование 100-мм орудий нарушалось от силы отдачи при выстреле и достигало 100 ду. Несколько сошников было согнуто, как алюминиевые ложки «дембелями», и они были извлечены из станин с помощью автогена.
Таких идеальных, с точки зрения прочности фунта, условий, какие имели место жарким летом на целинной земле полигона, будет недоставать при использовании комплекса КС-19 в полевых условиях при ведении боевых стрельб войсками.
Известно, что техника определенного назначения достигает в своем развитии совершенства к моменту появления принципиально новой техники этого же предназначения. В ЗП КС-19 на период ее создания и принятия на вооружение (1948 г.) были учтены последние конструкторские решения, и она была признана совершенным образцом. Однако не было проверено должным образом крепление пушки на огневой позиции в полевых условиях, и эффективность системы, если бы она применялась в боевых действиях, была бы сведена к нулю.
вверху Представление художника о том, какой могла бы стать лазерная боевая станция в космосе оснащенная 5 МВт лазером с 4-м зеркалом. На рисунке показано, как устройство управления наводит пучок на цель
Анатолий Демин
Лазер на полпути к «Звездным воинам»
Как известно, практически каждое тучное открытие или изобретение военные, прежде всего, пытаются превратить в непревзойденное «чудо– оружие». Не стал исключением и известный широкому читателю как «гиперболоид инженера Гарина», разработанный на рубеже 1950-1960-х гг. источник остронаправленного когерентного излучения, или просто лазер (от английской аббревиатуры LASER – Light Amplification by Stimulated Emission of Radiation, т.с. усиление света при помощи индуцированного излучения).
Начало исследований относится еще к 1917 г., когда А.Энштейн предсказал «вынужденное», или индуцированное излучение атомов, послужившее основой для появления лазеров. В 1940 г. профессор МЭИ В.А. Фабрикант сформулировал условия получения индуцированного излучения, в 1951 г. он совместно с М.М.Вудыйским и Ф.А. Бутаевой получил авторское свидетельство на способ усиления электромагнитного излучения ("ЭМИ"). В 1953–1954 гг. Н.Г.Басов и Л.М.Прохоров в (ХСР и группа Ч.Х. Таунса в США независимо друг от друга создали устройства, генерирующие ЭМИ при использовании индуцированного излучения СВЧ-диапазона. В 1958 г. А.М. Прохоров в СССР, а в США Ч.Таунс и А.Шавлов показали возможность использования индуцированного излучения оптического диапазона для создания источников когерентного света – лазеров. В 1959 г. Басов и Прохоров за разработку нового принципа генерации и усиления ЭМИ и создание СВЧ-устройств на его основе получили Ленинскую премию, а в 1964 г. они вместе с Таунсом стали Нобелевскими лауреатами по физике.
Принцип действия лазера заключается в том. что при возбуждении молекул определенных веществ, называемых рабочими веществами лазера, возникает так называемая инверсная заселенность атомов, и при возвращении в стабильное состояние происходит генерация узкополосного и когерентного электромагнитного излучения. Когерентность лазерного излучения означает. что все волновые процессы протекают синхронно во времени, поэтому лазер генерирует остронаправленный (нерасходящийся) пучок с очень высокой концентрацией энергии.
Основное отличие возможного боевого использования лазера от атомного оружия, прежде всего, заключается в том, что атомную бомбу применили практически сразу же вслед за первым экспериментальным ядерным взрывом и лишь десятилетие спустя вплотную приступили к созданию «мирного атома». Наоборот, вот уже около четырех десятилетий различные типы лазеров широко используются в самых разнообразных «мирных» отраслях науки и промышленности, но пока еще никак не удалось поднять его энергетические характеристики до того уровня, за которым начинается предпочтительное использование в качестве высокоэффективных «лучей смерти». Тем не менее. перспективы участия лазерного «абсолютного» оружия в «звездных войнах» многие Годы будоражили и продолжают занимать лучшие умы ученых, военных и всего мирового сообщества.
Объявление президентом (США Р.Рейганом в 1983 г. СССР империей зла» и начало работ по программе "Стратегической оборонной инициативы" (СОИ, по английски SDI – Strategic Defense Initiative) инициировало и у нас, и в Америке целый ряд уникальных разработок в области создания и испытания высокомощных лазерных систем. В "эпоху перестройки и гласности" грядущие «звездные войны» постепенно потеряли актуальность, и при демократе Б. Клинтоне программа СОИ тихо сошла на нет. Однако появление в Белом доме республиканской администрации и громогласные заявления нового президента США Дж. Буша-младшего о начале создания национальной системы ПРО. безусловно, повлекут за собой реанимацию старых и разработку новых методов и систем лазерного оружия. В связи с этим интересно вспомнить, каким путем шли работы по созданию и испытаниям в реальных условиях боевого лазера.
Масштабно уменьшенная модель химического лазера фирмы Bell Aerospace Textron Рядом с лазером находится малогабаритная аэродинамическая труба для создания скоростного воздушного потока для имитации полета самолетов и ракет В дальнейшем здесь предполагалось разместить лазер MIRACL фирмы TRW
Чем же лазер так привлекает военных? Прежде всего, принципиальной возможностью сфокусировать на значительных удалениях от источника очень высокие плотности энергии, по порядку величины соизмеримые с порогом повреждения объектов военной техники. Помимо этого, скорость распространения высокоэнергетического лазерного излучения, практически равная скорости света, устраняет необходимость решения одной из наиболее серьезных технических проблем любого оружия – необходимости упреждения при наведении для перехвата высокоскоростных целей.
Работы по тактическому лазерному оружию (ЛО) велись МО США с начала 1970-х гг. в связи с растущими потребностями в самых современных видах оружия. Угроза при ведении боевых действий для мобильных сухопутных и морских сил, равно как и для стационарных стратегических гражданских объектов, таких как аэропорты, центры управления. РЛС. АЭС. мосты, морские порты, исходит, прежде всего, от пилотируемых или беспилотных летательных аппаратов (71Л) или ракет. Со временем ДА становятся все более скоростными и эффективными, снабженными системами самонаведения и представляющими все большую опасность. поэтому в недалеком будущем практически каждый нападающий объект должен быть уничтожен даже при наличии очень большого количества атакующих целей. В условиях современного боя совершенно недостаточно уничтожить лишь большую часть из них.
Серьезную угрозу представляют боевые самолеты и вертолеты с уменьшенной радиолокационной заметностью, атакующие на малых высотах при активном функционировании бортовых радиоэлектронных средств противодействия, а также ракеты, запускаемые вне зоны ПВО и атакующие с малых и сверхмалых высот, или в конечной фазе полета пикирующие с больших высот. Как правило, такие ракеты оборудованы датчиками системы самонаведения, помехозащищены и нечувствительны к ложным целям, имеют несколько боеголовок или поражающих элементов. Кроме того, существуют телеуправляемые разведывательные ЛА, служащие в качестве целеуказателей или противорадиолокационных беспилотных ЛА.
В лаборатории оружия ВВС США на авиабазе Киртленд проводились лабораторные испытания электроразрядного СО2-лазера. На фото слева показано, как лазерный луч прожег небольшое отверстие в листе титана На фото справа видно, что при продолжительном тепловом воздействии лазерного луча отверстие быстро увеличивается
Современные средства защиты неэффективны против многих атакующих ЛА. Это справедливо как для систем управления огнем (обнаружение, опознавание п индикация цели), так и для самих систем оружия (обычных вооружений и управляемых ракет). Обычные снаряды с более высокой начальной скоростью могут быстро настигать цель па дальностях до 4 км, по отсутствие точных измерений траектории полета к цели существенно уменьшает эффективность поражения.
Эти недостатки попытались преодолеть путем увеличения темпов стрельбы (частоты пусков). Теоретически ракеты ПРО имеют вероятность поражения цели одним выстрелом порядка 0,9, а практически – только 0.6–0.7 с учетом мер противодействия, поэтому обычно осуществляют два залпа (пуска). Хотя системы самонаведения значительно увеличивают дальность действия ракет, но к недостаткам ракет ПРО можно отнести большое время ответной реакции, превышающее 5 с от момента обнаружения цели до запуска ракеты, которое в основном уходит на ориентацию систем самонаведения, меньшую скорость по сравнению с обычными снарядами и строго ограниченный боезапас. Из-за ограниченной скорости (-1000 м/с) проходит не менее 5-10 с с момента запуска до поражения цели, после чего может быть принято решение и выполнены другие необходимые операции. Сравнительно высокая скорость мишеней, снарядов или ракет означает, что необходим временной расчет траектории слежения или упреждения, или же необходимо использовать дорогостоящие головки самонаведения.
По мнению МО США, система ПВО должна отвечать следующим главным требованиям:
– время обнаружения цели – не более 1,5 с;
– способность обнаружения и сопровождения многих целей;
– автоматическая индикация цели – не более 0,1 с;
– время прицеливания – не более 0,5 с для первой цели и не более 0.1 с для соседних целей из одной группы;
– максимальная скорость доставки поражающего средства (минимальное время полета);
– минимальное время, обеспечивающее эффективное поражение целей;
– контроль поражения цели.
Проблемы сокращения времени обнаружения и индикации цели имеют в данном случае принципиальное значение могут быть решены за счет уменьшения массы или использования вертикально взлетающих ракет.
Физически максимально возможная скорость «полета» лучевых «снарядов» – скорость света -300000 км/с, при которой время задержки пренебрежимо мало – 3,3 мке/км. Единственный вид оружия, обладающий подобной скоростью, – лазерное или пучковое оружие. Но пучки заряженных частиц в атмосфере распространяться не могут, а вот лазерное оружие (ЛО) практически без задержки поражает цель. Время эффективного воздействия составляет от 0,1 с до нескольких секунд и необходимо для накопления поглощенной энергии излучения, чтобы поразить цель. Это время пренебрежимо мало по сравнению с временем полета отдельных снарядов. Как правило, в системе ЛО сам лазер жестко фиксируется, а для отслеживания целей, наведения и перенацеливания луча используют поворотное зеркало или систему зеркал с минимальной массой. Благодаря этому время наведения значительно сокращается.
На типичных для космических систем лазерного или пучкового оружия дальностях в тысячи километров время распространения поражающих факторов от источника до цели составляет сотые доли секунды, за которые цель сможет переместиться всего лишь па несколько десятков метров (На космических дальностях -1000 км и более угол упреждения составляет 0.5–1,0.10– 5 рад). Этим практически исключается возможность маневрирования цели для ухода от поражения и значительно упрощается задача прогнозирования траектории цели по сравнению с обычными средствами противоракетной (ПРО) и противокосмической обороны (ПКО).
К преимуществам систем ЛО следует отнести:
– ведение «огня» «прямой наводкой» в связи с отсутствием углов упреждения:
– быстрый (практически мгновенный) перенос поражающей энергии от источника к цели и такое же мгновенное получение данных об эффективности «стрельбы»;
– оперативный выбор точки прицеливания и наблюдения (оптимизация эффективности управления «огнем»):
– большая точность поражения малоразмерной скоростной цели:
– довольно большой (по сравнению с другими видами оружия) диапазон достижения цели без существенной задержки доставки энергии или уменьшения эффективности;
– эффективное ведение огня при круговом обзоре (360 град.), минимум затрат времени на изменение точки прицеливания как по горизонтали (360 град.), так и по вертикали, высокая скорострельность, точность попадания без существенного изменения при длительном прицеливании;
– низкая стоимость «выстрела» (порядка 500 долл.). минимальный разброс при прицеливании в одну точку.
Но, как известно, «бесплатный сыр бывает только в мышеловке», так и система лазерного оружия имеет свои недостатки и проблемы, к которым относятся: