355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Артур Чарльз Кларк » Черты будущего » Текст книги (страница 7)
Черты будущего
  • Текст добавлен: 15 октября 2016, 06:05

Текст книги "Черты будущего"


Автор книги: Артур Чарльз Кларк



сообщить о нарушении

Текущая страница: 7 (всего у книги 19 страниц)

6
В погоне за скоростью

Наш век часто называют «веком больших скоростей», и для такого эпитета есть все основания. Никогда ранее скорость передвижения не возрастала такими потрясающими темпами, и, возможно, что они никогда уже не будут превзойдены.

Чтобы убедиться в справедливости сказанного, составим таблицу, в которой перечислим все мыслимые диапазоны скоростей, расположив их в порядке возрастания, и укажем с точностью до десятилетия дату освоения каждого нового диапазона. Результаты получаются поистине ошеломляющие:


Затратив всю свою предысторию и большую часть исторического периода на освоение двух первых диапазонов, человечество пронеслось сквозь третий за срок жизни одного поколения. Я не знаю точной даты, когда паровоз достиг рубежа скорости 150 километров, но это определенно стало возможным примерно к 1880 году. Поезд «Эмпайр стейт экспресс» развил скорость 175 километров в час на линии «Нью-Йорк-сентрал» в 1893 году.

Еще более удивителен тот факт, что весь четвертый диапазон мы преодолели за десять с небольшим лет: с точностью, достаточной для наших целей, можно считать, что в период с 1950 по 1960 год был совершен гигантский скачок от полета со сверхзвуковыми скоростями в атмосфере к орбитальному полету вне ее пределов.

Этот скачок явился следствием невиданного успеха в области ракетостроения, прорыва, который привел, как сказали бы математики, к разрывности кривой нарастания скоростей. Нам вряд ли следует рассчитывать на то, что развитие в этой области будет идти подобными же темпами, иначе мы, например, должны были бы еще до 1970 года достичь рубежа 150 000 километров в час. Это в принципе возможно, однако весьма маловероятно. Еще менее вероятный результат будет получен, если мы продолжим нашу столь наивную экстраполяцию, – окажется, что мы должны достичь 9-го диапазона, а с ним и конечного предела скорости, возможной во Вселенной, к 2010 году.

Дело в том, что последняя строка таблицы совершенно фантастична; границы 9-го диапазона по-настоящему должны обозначаться так: «150 000 000–1 073 000 000 километров в час». Во Вселенной не существует скорости, превышающей последнюю цифру – величину скорости света.

Не будем заниматься вопросом, почему скорость света является пределом; сосредоточим пока наше внимание на низших диапазонах спектра скоростей. Диапазоны с 1-го по 4-й целиком перекрывают полосу скоростей, удовлетворяющую все наши земные нужды; в сущности, многие из нас вполне удовлетворены рамками 3-го диапазона – считается, например, что современные реактивные пассажирские самолеты летают с достаточно высокой скоростью.

Для сверхскоростных передвижений, порядка нескольких тысяч километров в час, потребуется применить ракеты; маловероятно, что использование химического топлива окажется экономически целесообразным. Правда, уже сейчас человек способен за девяносто минут облететь вокруг земного шара, но для этого приходится спалить около ста тонн горючего. Даже когда такие ракеты будут полностью усовершенствованы, вряд ли удастся сократить затраты горючего до уровня ниже десяти тонн на одного пассажира (примерно в двадцать раз больше, чем расходуется на одного пассажира крупным реактивным самолетом в дальних рейсах, хотя и это количество весьма внушительно – полтонны керосина). А ведь, кроме горючего, ракета должна нести еще и запас кислорода – своего рода штраф за полет вне атмосферы.

Поскольку уже сейчас конструируются пилотируемые ракетные орбитальные корабли, предназначенные для военных целей, вероятно, будут предприняты попытки приспособить их для перевозки пассажиров. Все гражданские самолеты многим обязаны военным типам машин, даже в тех случаях, когда они не являются непосредственно их вариантами. Конечно, трудно представить себе пассажирское потомство современных экспериментальных летательных аппаратов, но ведь совсем недавно казалось столь же невероятным, что реактивные самолеты будут когда-нибудь возить пассажиров.

Существует два направления развития, которые могут сделать высокоскоростной транспорт экономически целесообразным. Во-первых, это использование дешевой, надежной, безопасной системы ядерных двигателей, что позволило бы резко снизить загрузку ракеты топливом. Такого рода двигателей пока не видно даже на горизонте. Они не могут быть основаны на принципе расщепления атомного ядра – единственной доступной нам сейчас управляемой реакции освобождения энергии атома. Рискуя показаться реакционным старым чудаком, я все же осмелюсь усомниться, что следует разрешить взлет в воздух машинам, работающим на урановом или плутониевом горючем. С самолетами всегда будут происходить аварии (внимайте дерзостному предсказанию!); очень скверно, когда на вас брызнет горящий керосин, но такие несчастья все же носят местный и преходящий характер. Радиоактивным осадкам не свойственно ни то, ни другое.

В атмосфере и в околокосмическом пространстве можно разрешить находиться только тем подвижным ядерным энергетическим установкам, которые не радиоактивны. Пока мы не умеем создавать такие системы, но, возможно, научимся, когда овладеем управляемой термоядерной реакцией. Тогда мы сможем перебрасывать вокруг света тяжелые грузы со скоростью, доходящей до орбитальной, то есть до 29 000 километров в час, и с затратой нескольких килограммов лития и тяжелого водорода в качестве горючего.

Высказывалась также идея (одна из тех, про которые говорят, что они слишком хороши, чтобы быть реальными), что можно разработать конструкцию бестопливного самолета, способного непрерывно летать в верхних слоях атмосферы, получая энергию от природных источников, которые там существуют. Эти источники уже были использованы в ряде эффективных экспериментов. Так, если на соответствующей высоте выпустить из ракеты облако паров натрия, оно вызовет реакцию между диссоциированными частицами вещества, слой которых расположен на границе земной атмосферы и космического пространства. В результате на многие километры в небе распространится ясно видимое сияние. Это энергия солнечного света, накопленная атомами в дневное время, высвобождается под воздействием соответствующего импульса.

К сожалению, хотя количество энергии, накапливаемой в верхних слоях атмосферы, весьма велико, но она сильно рассеяна. Для получения сколько-нибудь полезного эффекта необходимо собрать и переработать гигантские объемы разреженного газа. Если бы какой-то скоростной летательный аппарат, скажем с прямоточным реактивным двигателем, мог пропускать сквозь себя разреженный воздух, извлекая из него в форме тепла достаточное количество энергии, необходимой для возникновения силы тяги, он летал бы вечно, без какой-либо затраты топлива. В настоящее время такой проект представляется маловероятным, потому что затраты энергии на засасывание воздуха были бы больше энергии, извлеченной из воздуха и преобразованной в силу тяги. Но все же идею эту не следует полностью отвергать. Несколько десятилетий назад мы не имели ни малейшего представления о существовании подобных источников энергии; вполне вероятно, что нам предстоит обнаружить в атмосфере еще более мощные энергетические ресурсы.

В конце концов, в самой идее ничего принципиально абсурдного нет. Плавали же мы тысячи лет по морям на бестопливных судах, движимых энергией ветров. А она ведь тоже даруется не чем иным, как Солнцем.

Впрочем, даже если бы горючее было бесплатным и имелось в неограниченных количествах, достижение особо высоких скоростей полета все равно встретило бы ряд препятствий. Цирковые артисты терпят, когда ими выстреливают из пушки, но пассажиры высокоскоростных аппаратов возражают против больших ускорений, а такие ускорения неизбежны, когда мы стремимся достичь подлинно высоких скоростей.

Даже теперь при взлете реактивного самолета пассажира вдавливает в кресло на довольно длительный отрезок времени, а ведь испытываемое при этом ускорение составляет всего лишь малую долю ускорения земной силы тяжести и достигаемая скорость весьма скромна в сравнении с величинами, которые мы рассматриваем здесь.

Проанализируем несколько цифр. Ускорение 1 g означает, что за каждую секунду скорость возрастает почти на 10 метров в секунду. При таком ускорении потребуется почти 14 минут, чтобы достичь орбитальной скорости (29 000 километров в час), и на протяжении всего этого времени каждый пассажир будет чувствовать себя так, как будто у него на коленях сидит еще один человек. Затем последует 20 минут полной невесомости (при самом продолжительном полете, за время которого корабль облетает пол земного шара по экватору), которая, вероятно, причинит еще большие неудобства. А после этого еще 14 минут снижения скорости до нуля, и опять под воздействием ускорения 1 g. За весь полет никто не почувствует себя в покое ни на одно мгновение, что же касается «невесомого» отрезка трассы, то в это время даже знаменитый бумажный пакетик окажется бесполезным. И, может быть, не лишне указать также, что в первую половину времени полета до туалета нельзя будет добраться, а во вторую половину им нельзя будет пользоваться.

Близкая орбита спутника устанавливает своеобразный естественный предел скорости полета вокруг Земли; тело, вышедшее на такую орбиту, движется по ней без затраты энергии со скоростью около 29 000 километров в час, совершая один оборот вокруг Земли примерно за 90 минут. При попытке двигаться с большими скоростями мы столкнемся с новыми проблемами.

Все вы испытали, что такое «центробежная сила», возникающая при повороте автомобиля или самолета во время быстрого движения. Я заключил этот термин в кавычки, потому что испытанное пассажиром состояние вовсе не есть воздействие какой-то внешней силы, а всего лишь естественный протест его тела против того, что оно лишено неотъемлемого права продолжать движение по прямой и с постоянной скоростью. Единственная сила, фактически действующая в этом случае, это сила, которую приложило к пассажиру кресло автомобиля или самолета, чтобы помешать ему продолжать такое движение.

В полете вокруг Земли и, по существу, при любом движении по ее поверхности вы перемещаетесь по кругу радиусом более шести тысяч километров. При нормальных скоростях вы не замечаете незначительной дополнительной силы, отрывающей вас от поверхности, – ваш вес с избытком перекрывает такую силу. Однако при скорости 29 000 километров сила, направленная внутрь, или, иначе говоря, вниз к центру Земли, будет точно равна вашему весу. Это является необходимым условием орбитального полета: притяжение Земли как раз достаточно, чтобы удерживать тело, перемещающееся вокруг нее с указанной скоростью.

Но, если вы движетесь быстрее 29 000 километров в час, вам, чтобы удержаться на орбите, нужно создать дополнительную силу, направленную вниз: одно притяжение Земли с этой задачей не справится. Таким образом, возникает ситуация, которой пионеры космонавтики не могли даже вообразить, когда они бились над решением задачи, как оторваться от Земли. Оказывается, при таких скоростях придется толкать вниз летательный аппарат, чтобы удержать его на нужной высоте, – без некоторой обуздывающей силы, без привязи, так сказать, он улетит в космос, словно камень, сорвавшийся с пращи.

При движении по околоземной орбите со скоростью 40 000 километров в час дополнительная сила, требуемая для удержания корабля на орбите, будет в точности равна силе тяжести. Она может быть создана специальными ракетами, направляющими космический корабль к центру Земли с ускорением 1 g. Корабль снижаться не будет, и единственное различие между движением по такой силовой траектории и движением спутника, свободно летящего по нормальной орбите, будет состоять в том, что в первом случае этот полет пройдет с бóльшими скоростями и оборот вокруг Земли будет совершаться за 60 минут вместо 90, а члены экипажа корабля уже не будут испытывать состояния невесомости. Им покажется, что у них нормальный вес, только направленный в противоположную сторону; «низ» будет там, где звезды, а Земля повиснет над сбитыми с толку космонавтами, совершая полный оборот вокруг своей оси за 60 минут.

При бóльших скоростях потребуются еще большие силы для удержания корабля на его искусственной орбите – искусственной в том смысле, что в природе она невозможна. По-видимому, подобные трюки, к тому же требующие огромных затрат энергии, не найдут никаких практических приложений, но страсть человека к побитию рекордов, вероятно, толкнет его на совершение этих сверхскоростных полетов вокруг Земли, как только они станут технически осуществимыми. Любопытно подсчитать величины ускорений, испытываемых пассажирами, и время одного оборота вокруг Земли в зависимости от скорости полета. Эти цифры приведены в таблице.


Как видите, путешествие вокруг света менее чем за тридцать минут – затея нелегкая, да к тому же и весьма дорогая. Для оборота за 15 минут потребуется выдержать ускорение, равное 30 g; это возможно лишь при одном условии, – если пассажир (или пилот) будет полностью погружен в воду; впрочем, в какой бы среде он ни находился, он так или иначе не сможет проявлять во время полета особого интереса к происходящему вокруг. Я считаю, однако, что подобного рода фокусы находятся уже за пределами разумного. Совершать пируэты вокруг этакой «булавочной головки», как Земля, бессмысленно и нецелесообразно. Люди будут облетать вокруг света за 80 минут спокойно и комфортабельно, но за 8 минут при известных ныне силовых установках они этого никогда не смогут проделать.

Оговорка, что наши рассуждения касаются только известных ныне силовых установок, отнюдь не является запоздалой попыткой перестраховать себя. Я думаю, что когда-нибудь мы будем располагать силовыми установками, принципиально отличными от ранее существовавших. Во всех без исключения известных нам средствах транспорта, пассажиры испытывают силу инерции в виде толчка; эта сила воспринимается или подошвами ног, или местом, на котором пассажиры сидят. Сказанное верно и для телеги, запряженной быками, и для велосипеда, и для автомобиля, и для ракеты. Но оно не обязательно должно оставаться правомерным в дальнейшем – на эту мысль нас наводит одно любопытнейшее свойство гравитационных полей.

Когда вы свободно падаете под воздействием силы притяжения Земли, скорость падения каждую секунду возрастает на 9,8 метра в секунду, но вы при этом вообще ничего не ощущаете. Это положение остается правильным для гравитационного поля любой мощности. Если бы вы падали, скажем, на Юпитер, приращение скорости падения составляло бы каждую секунду 27 метров, близ Солнца оно было бы равно 270 метрам, но вы все равно не ощущали бы воздействия какой-либо силы. Существуют звезды, известные под названием белых карликов, мощность гравитационных полей которых более чем в тысячу раз превышает мощность гравитационного поля Юпитера; вблизи такой звезды приращение скорости падения могло бы достигать каждую секунду 4200 метров; при этом вы опять-таки не испытывали бы ни малейших неудобств (до тех пор, конечно, пока не начали бы выбираться из такого поля).

Вы не испытываете никаких ощущений и физического напряжения в результате воздействия гравитационного поля любой интенсивности по той простой причине, что это воздействие испытывают одновременно все атомы вашего тела. При этом вы не ощущаете на себе толкающей силы, которая в условиях обычного движения сообщается вам через пол или кресло транспортной машины и проникает сквозь ваше тело не сразу, а последовательно, так сказать, слой за слоем.

Вы, конечно, уже поняли, к чему я клоню. Если мы, как я предположил в предыдущей главе, научимся когда-нибудь управлять гравитацией, то не только приобретем способность плавать в воздухе, подобно облакам. У нас появится возможность развивать ускорение в любом направлении, не ощущая ни малейшего физического напряжения или воздействия силы; пределы этой возможности будут устанавливаться только наличием энергетических ресурсов. Такой способ передвижения можно было бы назвать «безынерционным движением»; этот термин (и многое другое) я заимствовал у маститого писателя-фантаста д-ра Смита, который, правда, придавал ему несколько иное значение.

При таком движении наши транспортные средства могли бы останавливаться и отъезжать почти мгновенно. Что еще важнее, они были бы практически избавлены от любых аварий и катастроф. Защищаемые своими искусственными гравитационными полями, они могли бы сталкиваться друг с другом на скоростях порядка сотен километров в час, нанося ущерб разве только нервам своих пассажиров. Они могли бы поворачивать под прямым углом и разворачиваться кругом на одной точке; правда, реакции пилота оказались бы слишком замедленными для управления такими эволюциями, но безопасность и комфорт пассажиров ничуть не были бы нарушены. Притом независимо от величины сообщаемого таким машинам ускорения можно было бы предусмотреть непрерывное воздействие на пассажиров определенной некомпенсируемой силы, равной силе земной тяжести, чтобы они в полете всегда ощущали свой нормальный земной вес.

На Земле мы можем отлично обойтись без этих хитроумнейших способов движения, но в конечном счете они все равно появятся как побочный результат исследований космоса. Будем откровенны: ракета – малоцелесообразное средство транспорта, с этим согласится любой, кто мог наблюдать испытание мощного ракетного двигателя, находясь вне укрытия, примерно в полутора километрах от испытательного стенда. Мы обязательно должны найти способ потише, почище и понадежнее, который вместе с тем позволил бы нам переступить границы 6, 7, 8 и, наконец, 9-го диапазонов скоростей.

В дальней перспективе, – наверно, я заглядываю сейчас на несколько столетий вперед – мы поочередно применим и отбросим все виды транспортных средств, используемых нами в нашем восхождении к вершине спектра скоростей. Наступит время, когда межконтинентальная баллистическая ракета покажется такой же тихоходной, как ассирийская боевая колесница. Три тысячи лет, разделяющие их, – всего лишь мгновение в ходе исторического процесса, смыкающего прошлое с будущим; люди почти во все исторические эпохи будут интересоваться лишь двумя крайними участками спектра скоростей.

Я надеюсь, что им всегда будет приятно бродить по Земле со скоростью 3–4 километра в час, упиваясь красотой и таинственностью нашего мира. Но в часы, не посвященные этому занятию, они будут спешить и не успокоятся, пока не достигнут скорости света – этого предела скоростей.

Конечно, и эта скорость будет совершенно недостаточной для покорения межзвездного пространства, но для Земли она была бы равнозначна мгновенному перемещению. Световая волна может обежать вокруг земного шара за 1/7 секунды. Давайте разберемся, можно ли надеяться, что люди когда-нибудь смогут сами передвигаться с такой скоростью.

7
Мир без расстояний

Идея мгновенного перемещения в пространстве – телепортации – очень стара; она нашла отражение в некоторых восточных религиях. Наверно, многие из живущих сейчас людей верят, что телепортация уже осуществлена йогами и другими кудесниками исключительно силой собственной воли. Все, кто видел демонстрацию настоящего хождения сквозь огонь[11]11
  См. главу 17.


[Закрыть]
, какую довелось видеть мне, должны очевидно, сделать вывод, что дух обладает почти неограниченной властью над материей, но я в данном случае осмелюсь проявить скептицизм.

В романе Альфреда Бестера «Звезды – моя цель», описывающем общество, в котором, можно сказать, все держится на телепортации, приводится с некоторым оттенком иронии одно из лучших доказательств невозможности телепортации силой духа. На первых же страницах мы находим интересное допущение: человек, которому угрожает внезапная смерть, способен невольно и бессознательно телепортировать себя в безопасное место. Убедительным аргументом, говорящим о неосуществимости этой идеи, представляется тот факт, что нет ни одного достоверного описания подобных событий, хотя каждый год происходят миллионы случаев, позволяющих практически проверить, способен ли на это человек.

Так что давайте лучше рассматривать проблему телепортации с научных позиций, на основе уже доступного нам – и предвидимого, – а не с позиций веры в силу духа, которая представляет собой нечто гипотетическое и совершенно нами неизведанное. Пути решения этой проблемы следует, по-видимому, искать только с помощью электроники. Мы научились посылать вокруг Земли звуки и изображения со скоростью света; почему бы нам не научиться посылать предметы и даже людей?

Очень важно уяснить, что в предыдущем предложении факты существенно искажены, сомневаюсь, впрочем, что это было замечено многими. Мы никуда не посылаем звуки и изображения – ни по радио, ни по телевидению, ни с помощью каких-либо иных средств. Они остаются там, где возникли, и там же через долю секунды исчезают. Мы посылаем только информацию – описание или, скажем, их план в форме электромагнитных колебаний, – на основе которой эти звуки или изображения могут быть воссозданы.

Передача звука – задача сравнительно несложная, и ее можно считать решенной: при действительно качественной аппаратуре копию от оригинала отличить очень трудно. Задача эта проста (я прошу прощения у нескольких поколений ученых и инженеров-акустиков, которые ломали над ней головы) по той причине, что звук «одномерен». Иными словами, любой звук, как бы он ни был сложен, может быть представлен как величина, имеющая в каждый отдельно взятый момент времени единственное значение.

Кажется совершенно невероятным, что вся масса звуков произведения Вагнера или Берлиоза может скрываться в извилистой бороздке, прорезанной на поверхности пластмассовой пластинки. И тем не менее это так, при условии, что извилины бороздки достаточно детальны. Человеческое ухо не способно улавливать звуки, частота которых превышает 20 тысяч колебаний в секунду; этим и устанавливается предел необходимой детализации, или, говоря на техническом языке, ширины полосы частот, которую должен пропускать звуковой канал.

С передачей изображения дело обстоит сложнее – здесь мы сталкиваемся с двумерной свето-теневой картиной. В то время как в каждое отдельное мгновение звук может иметь только один уровень громкости, изображение обладает тысячами оттенков яркости, И все эти оттенки надо воссоздать, если мы хотим передать изображение.

Телевизионные инженеры решили эту проблему, расчленив изображение на мелкие кусочки. В телевизионной камере изображение рассекается приблизительно на четверть миллиона элементов, примерно так, как рассекается растром фотография при изготовлении газетного клише. По существу, камера выполняет невообразимо быстрый обзор и оценку величин яркости всех элементов снимаемой сцены или картины и передает эти величины телевизионным приемникам, которые в соответствии с полученной информацией воспроизводят соответствующие яркости на экранах электроннолучевых трубок. В каждое отдельно взятое мгновение телевидение передает изображение всего одной точки, но, поскольку за долю секунды на экране вспыхивает четверть миллиона таких изображений, мы получаем иллюзию полной картины. А благодаря тому, что весь процесс повторяется тридцать раз в секунду (в странах, где переменный ток имеет 50 периодов, – 25 раз в секунду), изображение выглядит непрерывным и движущимся.

Таким образом, через телевизионный канал должно проходить за одну секунду почти астрономическое количество информации о светах и тенях. Умножив четверть миллиона на тридцать, мы получим 7 миллионов 500 тысяч отдельных сигналов в секунду; на практике телевизионный канал, пропускающий полосу частот в четыре мегагерца, дает приемлемый, но отнюдь не блестящий стандарт четкости изображения, характерный для наших домашних телевизоров. Если эта четкость кажется вам хорошей, сравните изображение на экране телевизора с высококачественным фотоснимком такого же размера.

А теперь позволим себе погрузиться в этакие технические грезы наяву – по стопам многих авторов научно-фантастических произведений. Начнем, пожалуй, с Конан-Дойля – заглянем в одно из малоизвестных его произведений, главным героем которого является профессор Челленджер. Это «Дезинтегратор», опубликованный в 20-х годах. Представьте себе некую сверхрентгеновскую установку, которая способна разложить твердое тело атом за атомом, подобно тому как телевизионная камера разлагает изображение в студии. Такая установка сможет послать цепочку электрических импульсов, которые будут означать: здесь – атом углерода, еще на две десятые ангстрема дальше – атом кислорода и так далее, пока весь предмет не будет описан необычайным и исчерпывающим образом. Если допустить, что подобная машина осуществима, ненамного труднее покажется обеспечение обратного процесса, то есть создание на основе переданной информации копии оригинала, совершенно идентичной ему. Можно назвать такую систему «передатчиком материи», но это название только вводило бы в заблуждение. Она не будет передавать материю, точно так же, как телевизионная станция не передает свет. Она передавала бы только информацию, руководствуясь которой приемник смог бы черпать неупорядоченную материю из соответствующего запаса и придавать ей желаемые формы.

Тем не менее фактическим результатом было бы мгновенное перемещение материальных тел, или, во всяком случае, перемещение их со скоростью радиоволн, обегающих Землю за 1/7 секунды.

Однако практические трудности, связанные с реализацией этой схемы, столь колоссальны, что, как только мы их уясним, вся идея покажется нам совершенно абсурдной. Достаточно сопоставить те две сущности, между которыми мы проводим аналогию, – поистине неисчислимы различия между плоским изображением довольно слабой четкости и пространственным телом со всем бесконечным богатством и сложностью его микроскопических деталей, вплоть до самых элементарных частиц. Мыслимо ли словами или каким-либо иным способом описания перекрыть пропасть, лежащую между фотографией человека и самим человеком?

Для иллюстрации сложности проблемы предположим, что нас попросили изготовить точную копию Нью-Йорка – до последнего кирпича, стекла в окне, бордюрного камня на тротуаре, дверной ручки, газовой трубы, водопроводных магистралей и всех линий электропроводки. Последнее особенно важно, потому что дубликат города не только должен быть точным во всех своих материальных деталях, но и в его бесчисленных силовых и телефонных сетях должны быть те же значения токов, что и в сетях оригинала в момент его воспроизведения.

Совершенно очевидно, что потребуется целая армия архитекторов и инженеров, чтобы составить необходимое описание города, или, переходя на язык телевизионной техники, осуществить процесс разложения, сканирования изображения. А за время их работы город так сильно изменится, что придется проделывать все заново, то есть, по существу, эту работу никогда нельзя будет закончить.

Но человек сложнее такого создания своих рук, как Нью-Йорк, в миллион, а может быть, и в триллион раз. (Забудем на время о весьма немаловажном различии между живым, чувствующим существом и неодушевленным предметом.) Мы вправе предположить, что процесс копирования человека будет соответственно более длительным. Если, скажем, потребуется год на «сканирование» Нью-Йорка (предположение крайне оптимистичное!), то на одного человека понадобится, вероятно, весь тот срок, который отделяет нас от эры, когда погаснут звезды. А для передачи полученной таким образом информации по какому-либо каналу связи потребуется, наверно, еще столько же времени.

Мы легко можем убедиться в этом, взглянув на цифровые величины, с которыми сопряжен этот процесс. В человеческом теле содержится, в грубом приближении, 5 · 1027 атомов; вспомним, что телевизионное изображение имеет 250 тысяч элементов. На передачу этого числа элементов по телевизионному каналу затрачивается 1/30 секунды. Простой арифметический подсчет показывает, что на передачу «материального образа» из одной точки в другую по каналу такой же пропускной способности потребуется около 2 · 1013, или 20 триллионов, лет.

Наш анализ, хотя он по-детски примитивен и любой инженер-связист, подумав, сумеет отбросить пять-шесть нулей от этой цифры, показывает тем не менее всю сложность проблемы и ее неосуществимость с помощью технических средств, мыслимых и предвидимых ныне. Анализ этот отнюдь не доказывает, что такую задачу нельзя будет решить никогда, а лишь свидетельствует, что она выходит далеко за пределы возможностей современной науки, Попытавшись ее осуществить, мы выглядели бы совершенно так же, как Леонардо да Винчи, если бы он вознамерился построить, скажем, чисто механическую систему телевидения.

Аналогия здесь настолько точна, что имеет смысл развить ее подробнее. Действительно, что стал бы делать Леонардо да Винчи для решения проблемы передачи изображения высокой четкости (250 тысяч элементов) из одной точки в другую?

Вы будете удивлены, узнав, что он смог бы справиться с такой задачей, хотя, конечно, это было бы лишь бесполезным трюком. Он мог бы действовать следующим образом.

При помощи большой линзы изображение было бы спроецировано на белый экран в затемненной комнате. (Камера-обскура была известна Леонардо, он описал ее в своих заметках.)

На изображение наложили бы прямоугольную сетку с 500 ячейками по каждой стороне прямоугольника; таким образом, экран расчленился бы на 250 тысяч элементов. Каждую ячейку пронумеровали бы, чтобы любую точку всего поля экрана можно было обозначать двумя трехзначными координатами, например 123/456.

Затем какого-нибудь человека, обладающего острым зрением, попросили бы осмотреть изображение, элемент за элементом, и в зависимости от того, освещен элемент или затенен, сказать «да» или «нет». Вообразите, что разглядываете через лупу газетное клише, – и вы получите весьма ясное представление об этой процедуре. Если условиться обозначать темный элемент «0», а освещенный – «1», можно описать всю картину в пределах этого уровня четкости с помощью ряда семизначных чисел. Скажем, 1/001/001 означало бы, что элемент в левом верхнем углу освещен, а 0/500/500, – что последний элемент в правом нижнем углу экрана затемнен.

Далее перед Леонардо встала бы проблема передачи этого ряда из 250 тысяч семизначных чисел в какой-то удаленный пункт. Это можно проделать многими способами – семафорами, световыми вспышками и т. п. На приемном конце этой линии связи изображение можно было бы синтезировать, скажем, зачернив соответствующие ячейки на бланке, разлинованном на 500 х 500 клеток, или установив перед белым экраном четверть миллиона крохотных заслонок, которые можно открывать и закрывать, или еще десятком других способов.


    Ваша оценка произведения:

Популярные книги за неделю