355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Антонио Дуран » Том 27. Поэзия чисел. Прекрасное и математика » Текст книги (страница 7)
Том 27. Поэзия чисел. Прекрасное и математика
  • Текст добавлен: 15 октября 2016, 00:00

Текст книги "Том 27. Поэзия чисел. Прекрасное и математика"


Автор книги: Антонио Дуран


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 7 (всего у книги 9 страниц)

* * *

ЭЙЛЕР И БЕСКОНЕЧНЫЕ РЯДЫ

Эйлер уточнил свою исходную идею следующим образом. Вернемся к произведению

(1 – az2)·(1 – bz2)·(1 – cz2)·… = 1 – Az2 + Bz4 Cz6 +…

Теперь рассмотрим число 8, на которое умножается z4. Нетрудно видеть, что это число В образуется попарным умножением с последующим сложением чисел а, Ь, с которые умножаются на z2 в левой части равенства: B = ab + ac + bc + …

Таким образом, если мы запишем Р = а + Ь + с +… и Q = а2 + Ь2 + с2 + …. путем простых подсчетов имеем: РA и Q = A·P2·B.

Если мы вновь рассмотрим два разложения для функции синуса:


и примем во внимание, что в этом случае А = 1/6, B = 1/120 и, как мы уже вычислили, Р = π2/6, получим значение суммы чисел, обратных четвертым степеням натуральных чисел: 1 + 1/24 + 1/34 + 1/44 + … = π4/90.

Нечто подобное можно выполнить для z6 и последующих степеней. Благодаря этому Эйлер вычислил суммы чисел, обратных четным степеням натуральных чисел, начиная от второй и заканчивая двадцать шестой. Несколько лет спустя Эйлер обнаружил общую формулу суммы чисел, обратных произвольной четной степени натуральных чисел. О сумме чисел, обратных нечетным степеням натуральных чисел, ничего не известно и поныне. Мы знаем лишь, что первые несколько подобных сумм являются иррациональными числами.

* * *

И вновь суммы Эйлера помогут нам понять, что Харди имел в виду, когда говорил о «глубине» математических идей. Эйлер связал математические понятия из разных областей. В методе Эйлера скрывается понятие бесконечности, принадлежащее, можно сказать, к метафизике. Этот метод относится и к арифметике, так как в его задаче рассматриваются натуральные числа – требуется сложить квадраты чисел, обратных им. При вычислении суммы на сцену выходит геометрия, так как значение суммы выражается с помощью квадрата числа π, описывающего геометрию окружности. Наконец, весь метод Эйлера вращается вокруг представления функции в виде бесконечной суммы и бесконечного произведения – эти методы относятся к математическому анализу. И все это богатство взаимосвязей между столь разными «стратами» проявилось в одной идее Эйлера, которая на первый взгляд кажется простой. Именно это имел в виду Харди, когда говорил о глубине идеи: он рассуждал о ее способности неизбежно и плодотворно самым блестящим образом связывать между собой разные математические «страты».


Неожиданная, неизбежная, экономичная и озаряющая

К общности и глубине Харди добавил еще три свойства, способные наделить математическую идею эстетической ценностью. Это не свойства идеи как таковые, а, скорее, характеристики, показывающие способность идеи вызвать определенную эстетическую реакцию. Харди назвал эти свойства неожиданностью, непреложностью и экономичностью. Он описал их так: «Доказательства необычны и удивительны по форме; используемые инструменты кажутся по-детски простыми по сравнению с далеко идущими результатами, но все заключения непреложно вытекают из теоремы».

Нетрудно видеть, что суммы Эйлера обладают всеми этими характеристиками.

С одной стороны, сама простота идеи Эйлера делает ее необычной, и этого достаточно, чтобы рассуждения ученого удивляли – как нечто столь простое может привести к таким глубоким результатам? Кроме того, читатель согласится с нами в том, что расчеты Эйлера имеют абсолютно неожиданный результат: мы не могли и представить, что суммы четных степеней натуральных чисел будут связаны с числом π. Именно об этом писал Харди, говоря о неожиданности математических идей.

В идеях Эйлера четко прослеживается непреложность выводов. Увидев простые и безупречные рассуждения Эйлера, число π2/6, которому равна сумма чисел, обратных квадратам натуральных, кажется абсолютно неоспоримым и неизбежным.

Наконец, отчетливо видна экономичность, с которой действовал Эйлер: всего в нескольких строках он смог решить задачу, с которой не справились Лейбниц, братья Бернулли и, возможно, сам Ньютон. Решение Эйлера, несомненно, прекрасный пример того, что философ Джордж Сантаяна в своей книге «Постижение красоты» назвал «выражением экономичности»: из нашей способности ценить экономичность вещей постепенно рождается эстетическое восприятие.

Три качества, о которых писал Харди, связаны с тем, что Сантаяна в «Постижении красоты» называл «изобретательностью», или с тем, что математик Джан-Карло Рота именовал «способностью идеи озарять» – в главе «Феноменология математической красоты» (The Phenomenology of Mathematical Beauty) своей книги «Непрерывные мысли» (Indiscrete Thoughts) Рота использует слово enlightenment («озарение»). С одной стороны, Сантаяна напрямую связывал гениальность с глубиной: «Гений обладает способностью проникать в глубины вещей, чтобы извлечь оттуда некое значимое обстоятельство или взаимосвязь, позволяющие увидеть рассматриваемый объект в новом, более ярком свете». С другой стороны, согласно Рота, «озаряющая» идея проливает свет на понятия, с которыми она связана, или помогает лучше проанализировать и определенные математические задачи. Именно этими качествами обладает идея, которую использовал Эйлер при вычислении суммы чисел, обратных четным степеням натуральных чисел.

Эта способность математических идей озарять восхищала ученых, инженеров и архитекторов во все времена. Приведем слова архитектора Ле Корбюзье, которые он произнес при работе над проектом одного из домов: «Отсутствие правила, закона, бросилось мне в глаза. Это наполнило меня ужасом, так как я увидел, что работаю в полном хаосе. В тот момент я понял необходимость вмешательства математики, потребность в каком-то регуляторе. С того момента эта одержимость всегда занимала уголок в моем мозгу».


Бесконечное у Эйлера и возвышенное у Канта

Два последних раздела главы посвятим книге Эйлера «Введение в анализ бесконечно малых», откуда мы заимствовали примеры, которыми проиллюстрировали рассуждения Харди о красоте математики.

Во «Введении в анализ бесконечно малых» не описывается ни дифференциальное, ни интегральное исчисление. В этой книге, в соответствии с ее названием, Эйлер показывает читателю, как следует обращаться с бесконечно большими и бесконечно малыми величинами. Он рассматривает элементарные функции с помощью бесконечных процессов: описывает представление функций в виде рядов и бесконечных произведений (впервые в истории математики), а также использует разложение функций для решения различных задач. Некоторые из них относятся к математическому анализу, например задача о вычислении сумм бесконечного числа слагаемых (примеры подобных задач мы привели в третьем разделе этой главы), другие же скорее относятся к теории чисел[11]11
  Я считаю своим долгом предупредить читателя, что мое мнение о «Введении в анализ бесконечно малых» Эйлера не вполне объективно, так как я был редактором и автором комментариев к первому изданию этой книги, вышедшей на испанском языке.


[Закрыть]
.

Метафизика бесконечного и способность Эйлера объяснять сделали «Введение в анализ бесконечно малых» одной из самых красивых книг в истории математики. Чуть позже мы расскажем, как эта прекрасная работа повлияла на один из фундаментальных трудов по эстетике – книгу «Критика способности суждения» немецкого философа Иммануила Канта, в частности эстетическую категорию возвышенного.

Чтобы ввести читателя в курс дела, вкратце расскажем о том, как понимал бесконечность Эйлер и что означают слова «бесконечно малые» в заглавии его книги. Эйлер не дал никакого определения бесконечно малым и бесконечно большим величинам, на которых основывались все понятия анализа в XVII, XVIII и большей части XIX века, а работал с ними на интуитивном уровне. Целью математика было обучить читателя работе с бесконечно малыми и бесконечно большими величинами, сформировать у него некоторое интуитивное представление об их особенностях.

* * *

«ВВЕДЕНИЕ В АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ», ОДИН ИЗ ТРЕХ КЛАССИЧЕСКИХ МАТЕМАТИЧЕСКИХ ТЕКСТОВ

«Введение в анализ бесконечно малых» не простая книга; она сыграла основополагающую роль в создании математического анализа. Историк математики Карл Бойер в своей статье о наиболее выдающихся математических текстах всех времен, написанной в 1969 году, поставил «Введение в анализ бесконечно малых» в один ряд с «Началами» Евклида и «Алгеброй» Аль-Хорезми: «Нетрудно видеть, что трактатом, оказавшим наибольшее влияние на математику древности (и на математику всех эпох), стали «Начала» Евклида. Определить, какой из средневековых трудов стал наиболее влиятельным, не так просто. Одна из подходящих кандидатур – «Алгебра» Аль-Хорезми. Можно ли выделить современный текст, сопоставимый с ними по авторитету и влиянию, которое они оказали? Да, можно выделить текст, который «стоял на плечах гигантов» – трудов барокко и Просвещения – и повлиял практически на всех последующих авторов. Это «Введение в анализ бесконечно малых» Эйлера. Эта книга стала для математики тем же, чем стали «Начала» Евклида для синтетической геометрии древних греков, а «Алгебра» Аль-Хорезми – для элементарной алгебры. Понятия функции и бесконечных процессов зародились в XVII веке, однако лишь с выходом «Введения в анализ бесконечно малых» они стали полноправными членами математического триумвирата, образованного геометрией, алгеброй и анализом».


Обложка первого издания «Введения в анализ бесконечно малых» Эйлера, опубликованного в 1748 году.

* * *

Краткое описание бесконечно малых величин в соответствии с тем, как их представлял Эйлер, может звучать так: бесконечно малая величина – это числовая функция или последовательность, которая стремится к нулю. Так как она не является строго равной нулю, ее можно использовать в знаменателе дроби, а так как она является бесконечно малой, ее можно принять равной нулю, когда мы хотим упростить выражение. Бесконечно большая величина, в свою очередь, остается неизменной, когда мы прибавляем к ней обычное число. Иными словами, если N – бесконечно большая величина, то выполняется достаточно необычное равенство: N + 1 = N. А бесконечно малое число w – это число, не равное нулю, однако сколько бы мы ни складывали его с самим собой, полученная сумма не будет больше 1, 1/2 или любого другого положительного числа. Чтобы получить 1 из бесконечно малого числа w, потребуется бесконечно большое число N: N·w = 1.

«Будет непросто найти в истории математики другой труд, который оставлял бы у читателя такое впечатление о гениальности его автора, как этот», – писал Эрнест Уильям Хобсон о «Введении в анализ бесконечно малых». Возможно, с Хобсоном согласится любой, кто прочел книгу Эйлера. Такое восприятие вызвано тем, что «Введение в анализ бесконечно малых» обладает огромной способностью вызывать эмоции. Гениальный Эйлер создал текст, преисполненный красоты, который оказывает неизгладимое впечатление на всех, кто его читает.

Как мы уже говорили, Эйлер в своей книге работает с бесконечно малыми величинами интуитивно понятным образом – именно в этом и заключается его гениальность. Бесконечно малые величины опасны, и небрежная работа с ними может закончиться катастрофой. Для греков бесконечность была сродни ужасному чудовищу, от которого следовало спасаться бегством. Эйлер не сбежал: напротив, он приблизился к чудовищу, потрепал его за холку и надел на него ярмо, чтобы вспахать доселе бесплодную землю. В руках Эйлера бесконечность оказалась удивительно податливой. А учитывая, какой страх внушала она всем математикам, эта податливость потрясает до дрожи. Именно в этой способности потрясать до дрожи и заключается эстетическая ценность труда Эйлера. Немецкий философ Теодор Адорно утверждал, что эстетическая ценность объекта заключается именно в его способности вызывать потрясение и в некотором роде испуг. Эта идея прозвучала на знаменитой конференции под названием «Красота занятий математикой», которую для всех желающих провел Серж Ланг в парижском Дворце открытий в начале 1980-х. Ланг говорил о «дрожи в позвоночнике», которую вызывают красивейшие математические рассуждения.

Философ Иммануил Кант (1724–1804) был представителем нового поколения. Он родился и прожил почти всю жизнь в Кёнигсберге (ныне Калининград). Эйлер тоже имел отношение к Кёнигсбергу, хотя никогда не жил в этом городе: он родился в Базеле, занимался математикой в Санкт-Петербурге и Берлине. Однако именно Эйлер решил знаменитую задачу о семи мостах Кёнигсберга. В XVIII веке в городе было семь мостов, соединявших его части с островами на реке Прегель. Жители Кёнигсберга хотели узнать, можно ли обойти все мосты, не проходя ни по одному из них дважды. Эйлер путем простых, но очень наглядных рассуждений, которые позднее дали начало теории графов, показал, что искомого пути не существует.


Портрет Иммануила Канта (1724–1804), одного из ведущих философов в истории человечества.

Учитывая, какое определение Кант дает возвышенному, не будет преувеличением сказать, что источником его вдохновения могли стать рассуждения о бесконечно малых величинах, принадлежавшие Эйлеру или любому другому математику XVIII столетия, хотя Эйлер выразил силу бесконечно малых лучше остальных. «Возвышенно то, – писал Кант в «Критике способности суждения», – в сравнении с чем все остальное мало… Возвышенно то, одна возможность мыслить которое доказывает способность души, превосходящую любой масштаб чувств. Представляя возвышенное в природе, душа ощущает себя взволнованной, тогда как при эстетическом суждении о прекрасном она находится в состоянии спокойного созерцания. Эту взволнованность можно (особенно в ее первые минуты) сравнить с потрясением, то есть быстро сменяющимся отталкиванием и притяжением одного и того же объекта»[12]12
  Перевод М. И. ЛевинойПримеч. ред.


[Закрыть]
.

Характеристики «в сравнении с чем все остальное мало» и «превосходит любой масштаб чувств», которые использует Кант в своем толковании возвышенного, есть не что иное, как выражение противоречащей здравому смыслу формулы N + 1 = N, описывающей свойство бесконечно больших величин. Эту формулу Эйлер не раз использовал в своем «Введении в анализ бесконечно малых». И это «волнение души» возникает в сердце математика тогда, когда он видит формулу N + 1 = N или замечает в знаменателе дроби величину, которая спустя две строки исчезает, обращаясь в ноль.

С другой стороны, кантовское «волнение» – это чувство, которое мы испытываем, когда видим, каких результатов добился Эйлер, применив удивительные свойства бесконечно малых величин. Читая рассуждения Эйлера, мы неизменно чувствуем «потрясение, то есть быстро сменяющееся отталкивание и притяжение одного и того же объекта», точнее, главных героев его книги – бесконечно малых величин.


Очарование географических открытий

Рассуждения Эйлера известны тем, что не отличаются особой логической строгостью. Поэтому в XIX веке математики решили заменить бесконечно большие и бесконечно малые величины понятием предела. Математические выкладки Эйлера не слишком точны. Однако это лишь первое впечатление: сегодня нам известно, что анализ, в котором используются бесконечно малые, столь же строг, как и современные рассуждения, в которых используются пределы. Строго говоря, логический фундамент анализа XVIII века сформировал Абрахам Робинсон в 1966 году. На основе теории моделей он показал, что вещественные числа можно расширить множеством бесконечно малых, с которыми производятся стандартные арифметические операции. Созданный им раздел математики получил название «нестандартный анализ».


Математик Абрахам Робинсон (1918–1974), автор нестандартного анализа.

Не думаю, что Эйлеру не давала спать избыточная или недостаточная строгость его рассуждений. Самого Эйлера, как и Декарта, Ньютона и Лейбница, волновали открытия, а не доказательства. Это особенно ярко звучит в предисловии к «Введению в анализ бесконечно малых», где постоянно встречаются слова «вникнуть в суть», «решить», «изобрести», а вот «показать» или «доказать» не упоминаются вовсе.

«Введение в анализ бесконечно малых» построено так, что новые идеи предстают перед нами подобно тому, как перед глазами изумленных первооткрывателей эпохи Возрождения представали чудеса природы. Эта книга не имеет ничего общего со скучнейшими логическими рассуждениями, которыми изобилуют современные работы по математике. Чтение «Введения в анализ бесконечно малых» подобно исследованию неизвестных уголков Земли. Эта книга напоминает мне заметки Антонио Пигафетта о кругосветном путешествии Магеллана и рассказы Хуана Себастьяна Элькано, который возглавил экспедицию после смерти Магеллана. Эйлер не умалчивает о бесплодных, но наглядных попытках решить те или иные задачи, подобно тому, как Пигафетта повествует о тщетных попытках Магеллана найти путь из Атлантического океана в Тихий.

«Введение в анализ бесконечно малых» – это рассказ о первом путешествии в мир бесконечно малых величин. Эйлеру удалось вызвать у читателей то же головокружительное чувство, которое мы испытываем, читая о первом кругосветном путешествии. Это еще одна причина познакомиться с «Введением в анализ бесконечно малых» – возможно, эта книга лучше других поможет понять гениальность математического творчества и почувствовать математическую красоту.

Глава 5
История и красота

В конце введения к своей знаменитой «Истории искусства» Эрнст Гомбрих отстаивает такую точку зрения: историю искусства следует знать потому, что она помогает понять, почему художники действовали так, а не иначе, или стремились произвести определенный эффект. Знание истории искусства, пишет Гомбрих, позволяет нам улавливать тончайшие различия и ценить эстетику произведений искусства. Иными словами, должный культурный багаж помогает увидеть красоту того или иного жанра, а знание истории искусства – неотъемлемая часть этого багажа. Гомбриха можно назвать сторонником контекстуализма, в рамках которого считается, что произведение искусства следует рассматривать в контексте – историческом, социальном, религиозном, культурном и других, в отличие от изоляционизма, утверждающего, что произведение искусства должно быть самодостаточным. Чем больше знаний контекста требуется, чтобы оценить его, тем менее полным оно является, поэтому изоляционисты, следуя Клайву Беллу, отказывались изучать контекст произведений.

Рассмотрим аргумент контекстуалиста Гомбриха применительно к математике.


От Венеры Виллендорфской – к ready-made Дюшана

Прежде чем перейти к дискуссии о математике, совершим небольшой экскурс в мир изобразительных искусств. Попытаемся широкими мазками описать, как история искусства помогает оценить красоту скульптуры.

Начнем с рассказа о Венере Виллендорфской. Нет никаких сомнений в том, что красота и очарование этой скульптуры не в последнюю очередь обусловлены ее древностью: ее возраст оценивается в 25 000 лет. Поскольку мы знаем историю искусства, нам известно, что это одна из древнейших скульптур, дошедших до наших дней, что делает ее особенно ценной. Можно спорить о том, является эта добавленная ценность эстетической или нет, но нет никаких сомнений в том, что это историческая ценность, и знание истории Венеры помогает оценить ее с эстетической точки зрения.


Венера Виллендорфская была обнаружена в 1908 году археологом Йозефом Сомбати в австрийском местечке Виллендорф. Скульптура хранится в венском Музее естествознания.

 (фотография: Матиас Кабель)

Знание истории искусства позволяет понять, какими были цели и задачи скульптора, какие техники он использовал, каково значение созданного им произведения и так далее. Таким образом, история искусства расширяет культурный багаж, благодаря которому нам легче оценить произведение с эстетической точки зрения.

Быть может, чтобы верно оценить греческую скульптуру, нужно знать, каким было культурное наследие древних греков и чему они научились, например, у египтян? Дать ответ на эти вопросы помогает история искусства, благодаря которой мы можем представить вклад греков в мировую культуру, оценить гармонию и совершенство, достигнутые ими в изображении человеческого тела.

История искусства также позволяет понять, почему в Средние века изображение человека претерпело столь значительные изменения, чем объяснялась эта инфантилизация романской скульптуры по сравнению с классической греко-римской, кажущееся падение качества изображения, несовершенство скульптур. История искусства позволяет нам лучше оценить романскую скульптуру как единое целое, раскрыв новое, религиозное измерение, которое оказало огромное влияние на традиции изображения человеческого тела. Под влиянием всемогущей католической церкви, контролировавшей все сферы жизни средневекового общества, все человеческое было подчинено божественному началу. Как следствие, символическое изображение этой покорности стало играть столь же важную роль, какую в античном мире играло натуралистическое изображение человеческого тела.


Эта иллюстрация позволяет оценить, чему древнегреческие скульпторы научились у египтян: слева – египетский скульптурный ансамбль, известный как триада Микерина, справа – греческие скульптуры, изображающие Клеобиса и Битона.


Фрагмент одной из скульптур в галерее романского аббатства в Мильштадте, Австрия, построенного в X веке.

Та же самая история искусства объясняет, почему скульпторы вернулись к классическому канону и почему фигуры мужчины и женщины вновь стали привлекать основное внимание художников. История искусства также помогает выделить различия между классической скульптурой и скульптурой более поздних периодов, вплоть до романтического неоклассицизма.


Давид работы Микеланджело (1501–1504) и Венера работы Антонио Пановы (1804–1812).

И наконец, чтобы лучше оценить красоту новых форм, которые с возвращением к классическому реализму начали проявляться в скульптуре, необходимо знать, какие новые цели ставили перед собой художники. История искусства показывает, как скульпторы уходили от холодного совершенства и создавали произведения, более впечатляющие зрителя. Как можно понять ускорение развития искусства в последние 150 лет, если не знать его историю? Можно ли оценить эстетику скульптуры «Поцелуй» Константина Бранкузи – варианта одноименной работы его учителя, Огюста Родена, не зная истории, которая объясняет этот возврат к палеолитическим истокам (см. иллюстрацию на следующей странице)?


«Поцелуй» Огюста Родена (1889) и скульптура с одноименным названием авторства Константина Бранкузи, созданная в 1908 году.

Можно ли оценить красоту некоторых произведений последнего столетия, например знаменитого «Фонтана» Дюшана, не понимая эстетической ценности выхода за пределы дозволенного?


«Фонтан» (1917) – самый известный «реди-мейд» Марселя Дюшана. Как вы можете видеть на фотографии, скульптура не подписана именем Дюшана. Художник, доводя абсурдную идею до конца, подписался именем немецкого производителя унитазов – R. Mutt.

* * *

ДЮШАН И «РЕДИ-МЕЙДЫ»

Марсель Дюшан своими «реди-мейдами» («готовыми вещами») выразил следующую идею: любой предмет может стать произведением искусства, если так решил художник. Это был революционный жест, удар в самое сердце искусства. Дюшан, который интересовался математикой, физикой и в особенности шахматами, посвятил много времени поискам ответа на вопрос, тесно связанный с эстетической ценностью математики: можно ли создать в уме произведения искусства, не основанные на результатах зрительного восприятия?


Марсель Дюшан в образе Розы Селяви. Фотография Мана Рэя, 1921 год.

* * *

От вавилонян – к теории множеств

История математики поможет понять эстетическую ценность математических рассуждений подобно тому, как история искусства помогает понять эстетику скульптуры. Учитывая, что оценить красоту математики намного сложнее (и об этом мы уже говорили), роль истории в решении этой задачи также намного важнее, чем при эстетическом восприятии любого направления искусства.

Рассмотрим, например, высказывание: любой треугольник, вписанный в полуокружность, – прямоугольный. Диоген Лаэртский, основываясь на вторичных источниках, приписывает авторство этой теоремы Фалесу, который в благодарность за ее открытие принес в жертву буйвола. По мнению Диогена, Фалес был и автором доказательства этой теоремы, однако Аполлодор, опираясь на, возможно, более авторитетные источники, считает автором этой теоремы Пифагора.

Эту на первый взгляд простую теорему можно доказать несколькими способами. Однако истинный ключ к ней дает история математики: теорема Фалеса стала одной из первых сопровождавшихся рассуждениями, целью которых было подтвердить правильность теоремы в общем случае. Иными словами, теорема сопровождалась доказательством в его классическом понимании. Доказательство – не более чем логическое рассечение утверждения на ряд универсальных и очевидных истин. Чтобы понять всю важность этого первого в истории доказательства, теорему Фалеса нужно сравнить с математическими рассуждениями древних египтян или жителей Месопотамии, то есть вновь обратиться к истории математики. Если мы будем знать контекст той эпохи, теорема Фалеса уже не покажется нам столь примитивной. Мы даже сможем почувствовать, насколько концептуально близкими были греки к некоторому примитивизму, который мы находим в математических рассуждениях египтян или вавилонян. Будет уместно привести фразу, которую Харди как-то сказал Литлвуду: «Греческие математики не были одаренными школьниками – они принадлежали к другому университету». Подобно Венере Виллендорфской, теорема Фалеса имеет историческую ценность, и знание этой ценности позволяет оценить ее с эстетической точки зрения.

Существуют и другие причины, по которым следует уделить внимание истории теоремы. Эти причины имеют отношение к математике в эмоциональном контексте – я имею в виду эпизод с принесением в жертву буйвола. Хотя Диоген Лаэртский приписывает это жертвоприношение Фалесу, большинство классических историков считают, что гекатомбу принес Пифагор, открыв свою знаменитую теорему. Как гласит словарь, гекатомба – это «жертвоприношение из 100 быков в Древней Греции».

Гекатомба Пифагора была более скромной, в жертву определенно не было принесено сто быков – тем не менее различные авторы, среди которых Вергилий, Цицерон, Плутарх, Диоген Лаэртский и другие, упоминают об этом жертвоприношении, хотя и расходятся во мнении, кто именно его совершил: Пифагор или Фалес. Эти жертвы были наполнены множеством скрытых смыслов, связанных с основными жизненными потребностями людей, их неизбывным страхом или самыми сокровенными заботами и опасениями. Не будем забывать, что гекатомбы изначально обладали религиозным, магическим и мистическим значением. Они приносились, чтобы избежать бедствий и отвести проклятие богов, выиграть войну или положить конец голоду или болезням.

И тот факт, что гекатомба подробно описывается в связи с простой геометрической теоремой, должен навести читателя на определенные мысли. Кто-то скажет, что гекатомбы, приписываемые Пифагору или Фалесу, не имеют достаточных исторических доказательств, вполне возможно, что они являются всего лишь легендой. Но в этом случае следует задуматься еще больше: почему Витрувий, Цицерон, Плутарх, Диоген Лаэртский и многие другие авторы, серьезные и занятые люди, потрудились придумать или передать потомкам легенду (к тому же довольно кровавую), чтобы восславить нечто столь незначительное, как открытие математической теоремы? Почему они связали результат интеллектуального труда, давший начало всей древнегреческой математике, это исключительно абстрактное явление с таким эмоциональным событием, как жертвоприношение?

Как и в случае с греческой скульптурой, понять развитие греческой математики, ее путь от первых теорем до тех высот, которых она достигла позднее, нам поможет история. Путь, пройденный древнегреческой математикой, можно оценить в полной мере, если сравнить теорему, о которой мы рассказали выше, с решением задачи о вычислении площади сегмента параболы, которое привел Архимед (об этой задаче мы рассказали в главе 1).

Чтобы определить эстетическую ценность чего-либо, что кажется менее красивым, чем древнегреческая синтетическая геометрия, например позиционной системы счисления или элементарных методов алгебры, как и для того, чтобы оценить романскую скульптуру, будет полезно узнать, что в этих случаях эстетика заключена в символическом потенциале простоты. Если хорошо подумать, то мы поймем, что зачастую простота есть не более чем продукт нашего образования: наша система счисления кажется нам простой, потому что мы изучали ее в начальной школе.

Но для древних греков, которым была практически неизвестна алгебра, наша система счисления показалась бы крайне сложной. Как можно оценить концептуальную сложность системы счисления или алгебры, не зная, сколь медленным и трудным был исторический процесс ее появления и развития? Может быть, мы оценим греков по достоинству, если будем знать, какую важную роль они сыграли в XVII веке, при создании намного более сложных разделов математики, в частности аналитической геометрии и, позднее, дифференциального и интегрального исчисления?

Даже для того чтобы оценить эстетику анализа бесконечно малых, необходимо знать его историю. Нужно знать, что для его создания потребовалось совершить несколько шагов вперед относительно древнегреческой математики, знать, каким был вклад анализа бесконечно малых в научную революцию, которая произошла в Европе в XVI–XVII веках и благодаря которой наука достигла таких успехов. Наконец, нужно знать, какое влияние анализ бесконечно малых оказал на развитие не только математики, но и физики.

Гомбрих в своей «Истории искусства» писал, что современное искусство, как и любое другое, возникло в ответ на вставшие перед ним проблемы. Так, революционные процессы, столь радикально изменившие искусство начиная с середины XIX века, были запущены тогда, когда художники задались вопросом: почему они ограничивались максимально точным изображением того, что видели перед собой, будь то пейзаж или группа людей? Тогда же возник вопрос о том, какова истинная функция художника. Кто он – безмолвный свидетель, который должен точно передавать то, что он видит, подобно фотокамере, или действующее лицо произведения, отражающее в картине прошлый эмоциональный опыт? Используя творческую свободу художника в качестве одного из главных аргументов, искусство склонялось в пользу второй точки зрения. В результате возник новый мир, который часто критиковали, порой не ценили и не понимали. Друг друга последовательно сменяли импрессионизм, экспрессионизм, абстракционизм, авангард, экспериментальное искусство и так далее.

Для эстетической оценки этого нового искусства, сложного, иногда странного и даже сумасбродного и как никогда изменчивого, история искусства почти так же важна, как способность видеть.


    Ваша оценка произведения:

Популярные книги за неделю