Текст книги "Том 27. Поэзия чисел. Прекрасное и математика"
Автор книги: Антонио Дуран
Жанр:
Математика
сообщить о нарушении
Текущая страница: 2 (всего у книги 9 страниц)
Если бы Архимед умер в младенчестве, никто не вычислил бы площадь сегмента параболы, уравновесив ее с треугольником с помощью рычага, и это исторический факт, а не личное мнение. Рассуждения Архимеда уникальны, а сам его труд под названием «Метод», в котором ученый объяснил свои расчеты, дошел до наших дней благодаря удивительным обстоятельствам. Подобно множеству античных научных трудов и художественных произведений, работы Архимеда не раз могли бесследно затеряться. И некоторые его книги действительно оказались утеряны. Эта участь могла ожидать все или почти все труды Архимеда, которые на протяжении многих веков сохранялись в виде одной-двух рукописей. Ветер Истории переносил их с одного побережья Средиземного моря на другое, как сухую листву, в то время как совсем рядом гремели боевые барабаны, солдаты мародерствовали, а пожары уничтожали целые города.
«Метод» Архимеда и письменные источники
Древнейшие рукописи с трудами Архимеда, о которых нам известно, были созданы в Константинополе в Х-м или, что маловероятно, в IX веке. Должны были существовать и более древние рукописи, в том числе и написанные самим Архимедом в III веке до н. э., но все они утрачены.
Архимед наверняка создал все или большинство своих трудов в изоляции от других ученых, в родных Сиракузах. В этом городе он родился в 287 году до н. э., однако в юности учился в Александрии – центре эллинистической математики и науки вообще (Александрия имела этот статус начиная с момента основания Александром Македонским и до V века). Закончив обучение в Александрии, Архимед вернулся в Сиракузы, где прожил большую часть жизни. Если говорить современным языком, то научные труды Архимеда, дошедшие до наших дней, представляют собой монографии. Они были написаны в разные годы и попали из Сиракуз в Александрию и даже в Самос, где жил Конон, один из самых близких друзей Архимеда. В число этих монографий входит «Метод», представляющий для нас наибольший интерес. Это длинное письмо Архимеда к Эратосфену, который в то время был главой Александрийской библиотеки. В этом письме Архимед излагает свой метод совершения научных открытий.
Весьма вероятно, что все произведения Архимеда попали в Александрию разными путями, и ни при его жизни, ни в первые годы после его смерти не образовывали единое целое. По своему масштабу и размаху труды Архимеда значительно превосходят «Начала» Евклида. Большая часть «Начал» содержала элементарные рассуждения, и это заставляет предполагать, что было создано множество копий труда Евклида. А вот работы Архимеда имели более высокий уровень и были понятны лишь посвященным. Естественно, что они существовали лишь в нескольких копиях, которые, возможно, хранились в Александрийской библиотеке или в ее отделении в Серапеуме. В результате часть копий была утеряна, другая серьезно пострадала. Ущерб, нанесенный произведениям Архимеда, стал заметен уже спустя полвека после его смерти – об этом упоминали авторы, которые не смогли найти некоторые из теорем Архимеда. Однако из других источников известно, что еще в III–IV веках существовали произведения Архимеда, до наших дней не дошедшие, – возможно, они были утеряны при разрушении Серапеума в 391 году.
В первой трети VI столетия была предпринята попытка объединить труды Архимеда, упорядочить их и снабдить комментариями. Нельзя утверждать, что это была первая из подобных попыток, но упоминаний о более ранних собраниях сочинений Архимеда не сохранилось. Следующее действие этой истории развернулось в Константинополе, когда на смену Восточной Римской империи пришла Византийская империя, а императора Юстина, грубого и безграмотного служаку, сменил образованный Юстиниан, знаток богословия и права. Во время его правления, возможно, возродился интерес к античной математике. Это не привело к появлению видных математиков, однако в результате для потомков были сохранены некоторые важные труды, в том числе произведения Архимеда. Это стало своеобразным реквиемом по греческой науке: в 529 году Юстиниан издал указ о закрытии Академии Платона и других научных и философских центров, которые якобы проповедовали языческое учение.
Спустя три года император принял решение построить собор Святой Софии. Именно авторы проекта нового собора, Исидор Милетский и Анфимий Тралльский, помогли сберечь научное наследие греков, повелев найти и переписать все сохранившиеся к тому времени классические труды, а также составить их списки. Один из учеников Исидора Милетского и Анфимия Тралльского, Евтокий, составил сборник трудов Архимеда, которые смог найти, и прокомментировал три из них.
Два столетия спустя Византия вновь пережила период культурного, военного и религиозного расцвета. Именно тогда были составлены три рукописи на греческом языке, благодаря которым труды Архимеда, дошедшие до наших дней, стали известны ученым последнего тысячелетия. Эти три рукописи, по-видимому, появились в одном и том же городе, Константинополе, в IX–X веках, однако они имели очень разную судьбу. Из трех рукописей до наших дней дошла всего одна, и она не оставила сколько-нибудь заметного следа в истории. А вот две исчезнувшие оказали огромное влияние на европейскую математику XVII века, когда, говоря современным языком, Архимед был самым цитируемым математиком, хотя его работы насчитывали уже почти две тысячи лет. Обозначим эти три рукописи A, В и С. Рукописи А и В, вместе либо по отдельности, в XII веке попали из Константинополя на Сицилию, родину Архимеда.
Рукопись В, возможно, содержала труды по механике и оптике. Она исчезла в начале XIV века и о ней известно лишь то, что в XIII веке на ее основе некоторые труды Архимеда были переведены на латынь.
Рукопись А жила бурной жизнью и пропала в середине XVI века, однако после нее осталось довольно много потомков – копий, выполненных в середине XV – середине XVI века, которые дошли до наших дней. Четыре копии, сохранившиеся лучше остальных, находятся в Национальной библиотеке святого Марка в Венеции, еще две – в Национальной библиотеке Франции.
Разворот латинского перевода трудов Архимеда, выполненного Вильгельмом Мербеке.
На основе рукописи А и ее списков, а также латинского перевода рукописи В было подготовлено первое печатное издание трудов Архимеда на греческом и латыни. Эта книга была издана в Базеле в 1544 году. С ее появлением математики Возрождения и барокко наконец смогли познакомиться с большинством работ Архимеда. Однако в эту книгу не вошел «Метод», которого не было в рукописях А и В.
Рукопись С – единственная, местонахождение которой известно на сегодняшний день. Ее обнаружил эрудит Йохан Гейберг, преподаватель греческого языка в Кембриджском университете, в 1906 году. Этот документ представляет собой палимпсест – древнюю рукопись, сделанную поверх более ранних записей. В нашем случае поверх математического трактата был написан молитвенник для воскресных служб и других христианских праздников.
Рукопись С
Рукопись С имеет удивительную историю. Возможно, это была последняя из трех византийских рукописей с трудами Архимеда, и это единственная рукопись, местонахождение которой сегодня известно. Она оказала наименьшее влияние на математику, так как считалась утерянной до 1906 года, и с момента ее обнаружения прошло чуть больше ста лет.
Судя по особенностям письма, рукопись была составлена примерно в 975 году. Два с половиной столетия спустя кто-то решил, что поверх нее можно записать нечто более интересное, и полностью соскоблил ее текст, чтобы лист пергамента можно было использовать повторно. Рукопись Архимеда была дополнена листами из четырех других книг. Листы пергамента были перемешаны, обрезаны и переплетены снова, в результате новый текст был записан перпендикулярно старому. Переписчик записал христианские молитвы поверх сложнейших и тончайших рассуждений древнегреческого математика. С помощью ультрафиолетовых лучей ученые смогли прочесть послесловие, где указывалось, что палимпсест был завершен 13 апреля 1229 года.
Труды Архимеда были скрыты христианскими молитвами, но время взяло свое, и постепенно любопытство ученых привлек исходный текст рукописи. В середине XIX века немецкий исследователь Константин Тишендорф, посетив Константинополь, сообщил о том, что обнаружил палимпсест с математическими рассуждениями. Палимпсест постепенно начал раскрывать свои секреты. Тишендорф не постеснялся вырвать из рукописи один лист, – он и не предполагал, что держит в руках теоремы Архимеда. Этот лист, согласно завещанию Тишендорфа, в 1876 году был продан Кембриджскому университету, где хранится и сейчас.
Следующим исследователем, который обратил внимание на эту рукопись, был греческий палеограф Пападопулос Керамеус, который включил ее в каталог рукописей, опубликованный в 1899 году. Ему удалось прочесть несколько строк Архимеда, которые он привел в своем каталоге. Согласно Пападопулосу, рукопись содержала примечания XVI века (они не дошли до наших дней), где указывалось, что книга принадлежала Лавре Саввы Освященного в Палестине. Неизвестно, как и почему пергамент оказался в этом монастыре-крепости, затерянном в горах к югу от Вифлеема. Палимпсест неопределенное время находился в Палестине, после чего вернулся в Константинополь, где его обнаружил Тишендорф в 1840 году и вырвал из него один лист.
Несколько строк, опубликованных Пападопулосом Керамеусом, чрезвычайно заинтересовали Йохана Людвига Гейберга, который в 1880–1881 годах опубликовал прекрасное издание трудов Архимеда. В 1906 году Гейберг переехал в Константинополь, где изучил палимпсест и понял, что в нем было сокрыто несколько трудов Архимеда, два из которых, «Метод» и «Стомахион» (сохранилась лишь небольшая часть последнего), не содержались ни в одной из известных на то время рукописей с произведениями ученого. Еще один труд, «О плавающих телах», был известен только по средневековому переводу рукописи В на латынь. Несомненно, обнаружение рукописи С стало важнейшим событием нескольких последних столетий для понимания классической науки. На основе фотографий пергамента Гейберг подготовил новое издание трудов Архимеда, которое увидело свет в 1910–1915 годах (разумеется, в собрание был включен и «Метод»). Глубина и серьезность исследования Гейберга поражают, особенно если учесть, что в его распоряжении находились очень скудные технические средства, а прочесть оригинальный текст было непросто.
* * *
БОЛЬ В ЖИВОТЕ
Стомахион – греческое слово, которое означает «боль в животе», а также служит названием одного из трудов Архимеда и геометрической головоломки. В этой головоломке нужно составить квадраты и другие фигуры из 14 частей, на которые разделен исходный квадрат. Собрать эту головоломку сложно, поэтому она действительно может вызвать головную боль и даже боль в животе – именно таково происхождение ее названия и названия труда Архимеда, который известен только благодаря отрывку, переведенному на арабский, и двум страницам палимпсеста, которые дошли до нас в очень плохом состоянии. По результатам изучения рукописи С сегодня считается, что «Стомахион» Архимеда мог быть трактатом по комбинаторике. Это открытие, которое, впрочем, не подтверждено документально, учитывая недостаток материала и его плохое состояние, стало настоящим сюрпризом, ведь древнегреческие математики, и в частности Архимед, были очень далеки от комбинаторики.
Слева – начальное положение элементов «Стомахиона». Справа – один из 17152 вариантов, которыми можно составить исходный квадрат из элементов головоломки.
* * *
История рукописей Архимеда гласит, что «Метод» был неизвестен математикам практически с момента создания и до публикации Гейбергом в начале XX века. Следовательно, неизвестным оставался и метод расчета площади сегмента параболы, который мы описали в предыдущем разделе. У нас нет сведений ни об одном математике, который на протяжении двух тысячелетий с небольшим вычислил бы площадь параболы, уравновесив ее на одном рычаге с треугольником. Это доказывает, что если бы Архимед умер в младенчестве, этот способ вычисления площади сегмента параболы никогда не существовал бы именно в таком виде, а не в другом, более или менее похожем. Никому никогда не удалось повторить рассуждений Архимеда. Так что его метод, полный гармонии и красоты, можно по праву назвать результатом творчества.
Последние перипетии в истории палимпсеста Архимеда
Было бы непростительно закончить эту главу, не рассказав о последних перипетиях в истории рукописи С. После публикации Гейбергом палимпсест, скорее всего, был украден. Его местонахождение было неизвестно на протяжении почти всего XX века, пока он вновь не появился 28 октября 1998 года в Нью-Йорке на аукционе Christie’s. Рукопись была приобретена за сумму, превысившую два миллиона долларов, неизвестным американским коллекционером. Спустя несколько месяцев новый обладатель палимпсеста передал его Музею искусства Уолтера в Балтиморе для хранения и изучения.
Интернет-страница The Archimedes Palimpsest Project («Проект „Палимпсест Архимеда“») содержит подробную информацию о восстановлении древней рукописи.
Палимпсест был тщательно отреставрирован и изучен знатоками античной науки, реставраторами и специалистами по обработке изображений, которые использовали самые современные технологии. Это неудивительно, ведь в ходе своей одиссеи в XX веке рукопись пострадала больше, чем за предыдущие тысячелетия.
Несколько страниц исчезло, многие другие были серьезно повреждены плесенью, из-за чего их содержимое стало невозможно разобрать невооруженным глазом (эти повреждения особенно заметны, если сравнить современное состояние палимпсеста с фотографиями Гейберга), наконец, кто-то, посчитав, что это привлечет интерес к рукописи и повысит ее цену, изобразил на ней четыре миниатюры из жизни евангелистов – в результате поврежденными оказались еще несколько страниц.
Глава 2
Почему оценить красоту математики непросто
Как мы уже говорили в начале предыдущей главы, никто не удивится, если случайный прохожий, которого мы спросим об эстетической ценности математики, лишь скептически поднимет брови. Мы же считаем, что эта эстетическая ценность, безусловно, существует, и сомнения случайного прохожего означают лишь одно: оценить красоту математики непросто. Здесь и возникает вопрос, вынесенный в название главы.
Пять чувств и изобразительное искусство
Мы знаем, что красота математических рассуждений заключается в гармоничном сочетании идей, которые их образуют, подобно тому как красота здания складывается из гармоничного сочетания его архитектурных элементов. Однако большинству людей намного сложнее оценить красоту теоремы, чем красоту готического собора.
В чем же причина? По нашему мнению, ответ на этот вопрос лежит в области физиологии: людям сложно оценить эстетическую ценность математических рассуждений, так как нам не хватает отдельного чувства, позволяющего автоматически различить структуру идей, составляющих рассуждения, и оценить гармоничность их сочетания.
Прежде чем обсудить это утверждение, приведем несколько примеров, показывающих тесную связь между нашими чувствами и визуальным искусством.
Живопись
Начнем с живописи. Можно сказать, что красота картины заключается в гармоничном сочетании ее элементов: форм, цветов, композиции, пространства, света и даже текстуры. Из утилитарных соображений рассмотрим живопись с чисто формальной точки зрения, оставив в стороне ее этическую, моральную и другую ценность и функции. Об этом мы поговорим позже.
Как бы то ни было, все элементы картины, а также связи между ними воспринимаются зрением напрямую.
Рассмотрим наскальный рисунок. Он состоит из простых цветных пятен на стене пещеры. Зрение позволяет нам понять, что на рисунке изображены животные и люди на охоте. Мы с первого взгляда увидели всю структуру форм картины, и теперь наш мозг может решить, гармонична ли ее композиция.
Наскальный рисунок на плато Тассилин-Адджер на юго-востоке Алжира. Плато объявлено объектом всемирного наследия ЮНЕСКО, так как на нем было сделано множество ценных археологических находок.
Точно так же достаточно одного взгляда, чтобы оценить картину Яна ван Эйка «Портрет четы Арнольфини» – мозг автоматически получает информацию о цветах и может определить, кажется ли картина красивой.
Так же автоматически зрение воспринимает композицию фрески Рафаэля «Афинская школа» в Ватиканском дворце: персонажи картины, в числе которых можно увидеть Пифагора, Евклида, Птолемея и, разумеется, Платона и Аристотеля, рас положены симметричными группами. Мы мгновенно воспринимаем расположение персонажей под куполами, ограничивающими сцену, и глубину, созданную с помощью методов перспективы. Вся эта информация очень быстро передается органами зрения в мозг, и он может «решить», гармонично ли сочетание элементов композиции. Ничто не ускользает от нашего взора: ни пространство и свет, изображенные Веласкесом на картине «Менины», ни даже текстура мазков «Сеятеля» Ван Гога – здесь зрение словно заменяет тактильные ощущения.
«Портрет четы Арнольфини» – картина Яна ван Эйка, созданная в 1434 году, хранится в Лондонской национальной галерее.
«Афинская школа» – фреска, созданная Рафаэлем Санти в 1510–1511 годах для Ватиканского дворца.
Слева – «Менины», картина Веласкеса, написанная в 1656 году, сейчас хранится в музее Прадо. Справа – фрагмент картины «Сеятель», созданной Винсентом ван Гогом в 1888 году, в настоящее время хранится в частной коллекции.
Музыка
Похожие рассуждения будут справедливы для музыки и органов слуха. Здесь нужно рассмотреть последовательность музыкальных аккордов во времени, их кинетический характер. Философ Монро Бирдсли писал: «Музыка есть искусство, которое течет со временем: она колеблется, подпрыгивает, колышется, становится неспокойной, поднимается, запинается и беспрерывно движется». Эта временная упорядоченность музыки, которая отсутствует в живописи, также крайне важна в математике. Теорема, подобно симфонии, начинается, продолжается и заканчивается, и порядок расположения ее составных частей имеет огромное значение.
Последовательный характер музыки очень важен для ее восприятия: чтобы оценить эстетику мелодии, нужно обладать определенной звуковой памятью. При этом звуковая память человека не особенно развита по сравнению, например, с визуальной.
Как-то раз я услышал такую фразу: человек, слушающий квартет Брамса, подобен рыбе, смотрящей «Психоз» Хичкока. Наша кратковременная звуковая память не способна фиксировать сложные последовательности звуков, и еще меньше она подходит для распознавания подобных последовательностей с легким изменением ритма каждые несколько минут. Именно это чувствует рыба, которая смотрит на киноэкран: увидев эпизод фильма, уже спустя несколько минут или даже секунд она забывает его и не способна узнать персонажа, который на мгновение исчез с экрана. Мне кажется, что способность людей запоминать сложные мелодии также проявляется в распознавании абстрактных элементов грамотных математических рассуждений. Как следствие, ограниченные способности распознавания подобных шаблонов, которые столь часто встречаются в математике, всерьез мешают нам оценить их красоту.
Схожесть музыки и математики легла в основу множества эссе, которые уже написаны и наверняка появятся в будущем. Не будем забывать слова великого Лейбница: «Музыка есть тайное упражнение в арифметике ведущей счет, но не сознающей этого души». Далее мы ограничимся тем, что подчеркнем важное различие между музыкой и математикой. Когда мы наслаждаемся музыкой, органы слуха последовательно и автоматически передают мозгу мелодию, ритмические элементы, ее ритм, композицию и так далее. Располагая этой информацией, мозг определяет, можно ли считать элементы мелодии гармоничными, а музыку – красивой. Но какое из наших чувств автоматически передает мозгу последовательность математических идей, которые содержит великая теорема?
«Виолончелист». Снимок выполнен одним из пионеров фотографии Антоном Джулио Брагалья в 1913 году.
Пример из гастрономии
Все эти рассуждения справедливы и в более сложных ситуациях, когда участвуют несколько чувств, например в гастрономии, поэтому процесс сенсорного восприятия более сложен, но столь же эффективен. Так, в дегустации вина участвуют все чувства, начиная со слуха, который передает в мозг звук вина, льющегося в бокал (по этому звуку можно оценить содержание в вине глицерина и алкоголя); за ним следует зрение, которое передает тональность и насыщенность цвета; обоняние, транслирующее мозгу множество информации о запахах, в формировании которых участвуют различные сорта винограда, особенности изготовления вина, условия и продолжительность выдержки; букет, позволяющий оценить соотношение четырех основных вкусов; и даже осязание, которое передает внутреннюю гармонию различных компонентов вина. Все органы чувств сообщают мозгу информацию об органолептических свойствах вина, позволяющую оценить его с эстетической точки зрения.
В последнем примере нужно учесть некоторые минимальные начальные условия, без которых оценить эстетические свойства вина невозможно. Речь идет об отсутствии определенных религиозных и моральных ограничений – пусть и в меньшей степени, это соображение применимо для живописи и скульптуры: представьте себе знаменитый тайный зал дворца Габсбургов, где хранились изображения обнаженной натуры, или цензуру в нацистской Германии, запрещавшую полотна импрессионистов, экспрессионистов, авангардистов и других представителей «дегенеративного искусства». Необходимо обладать определенной культурой и развитой способностью оценивать и различать вкусы и запахи, а также обонятельной памятью, которая позволяет распознавать запах дегустируемого вина и сравнивать его с винами, попробованными ранее. И разумеется, важное условие – отсутствие атрофии органов чувств, возникающей при встрече с некоторыми определенными вкусами и запахами. Совсем нетрудно увидеть, что подобные начальные условия мешают нам наслаждаться математическими рассуждениями: это и антипатия, которую добрая часть населения испытывает к математике, и атрофия чувств, которую может вызвать подобная нелюбовь. Не будем говорить о причинах такого отношения к математике. Предлагаем читателю поразмыслить: рекламной индустрии удалось совершить чудо и превратить черный и сладкий освежающий напиток во «вкус жизни», просто повторив одну и ту же фразу несколько миллионов раз; то же самое, но со знаком «минус», произошло с математикой.
Литература
Наконец, рассмотрим пример, который намного ближе к математике, а именно литературу. В этом случае органы зрения (или слуха, если кто-то читает нам книгу вслух, либо осязания, если мы читаем книгу, набранную шрифтом Брайля) передают в мозг сюжетные повороты романа и строчки стихотворения. Но если мозг фиксирует живописные элементы картины или мелодию струнного квартета автоматически, то для восприятия литературы необходим определенный анализ. Причина в том, что эстетический объект, а именно литература, не имеет особенностей, доступных визуальному, аудиальному, обонятельному или осязательному восприятию, а состоит из смыслов, которые неощутимы органами чувств и являются результатом интенсивной работы разума. Эстетическая ценность романа или стихотворения не написана черным по белому – она сокрыта в тексте. Литература обладает эстетической, но не осязаемой ценностью.
Когда пяти чувств недостаточно
Представленные выше примеры подтверждают исходное утверждение: красоту математических рассуждений сложно оценить потому, что у нас нет подходящего чувства, которое позволило бы оценить композицию идей, в которой и заключена красота математики.
Математические рассуждения, подобно литературе, обладают неосязаемой эстетической ценностью: внешний вид, форма (в гегелевском смысле) математических рассуждений, которые мы способы ощутить с помощью органов чувств, не имеют отношения к их эстетической ценности – их содержимое и значение важнее. Математика, хотя и служит для описания и понимания реальности, целиком заключена в мозгу человека, и теорема – не более чем передача идей из одного мозга в другой, при этом в качестве посредника используется бумага или доска. Следовательно, нет ничего, что менее зависело бы от чувств, чем математика.
Поэтому неудивительно, что смысл математики можно понять только по результатам глубоких размышлений. Иными словами, математика – хранилище эстетической ценности, которую можно оценить не органами чувств, а в результате интеллектуального анализа. Именно поэтому оценить красоту математики сложнее, чем красоту картины, скульптуры или музыкальной композиции. Усилия, необходимые, чтобы разобраться в хитросплетении математических идей, составляющих теорему, очевидно, не всегда одинаковы. Существуют способы, позволяющие упростить эту задачу, и эти способы имеют отношение к органам чувств. Самый привычный из них – сделать математические рассуждения более понятными с помощью рисунков и геометрических фигур. В этом случае мы просто используем быстроту и легкость, с которыми зрение передает в мозг необходимую информацию.
Хотя зрение, слух и осязание делают формулировку теоремы или ее доказательство доступными для мозга, структура идей в этой формулировке или доказательстве необязательно будет заметной. Часто бывает, что она скрыта за логическими преобразованиями, которыми изобилуют доказательства теорем, раздроблена промежуточными действиями и доказательствами второстепенных утверждений, которые скрывают основные идеи и мешают оценить их гармонию. Мозг оценивает структуру идей, а в результате анализа элементов доказательства, его очистки от незначительных элементов и переупорядочивания этот процесс не протекает автоматически, и его итог может зависеть от уровня математической подготовки, приложенных усилий и так далее.
На этой фотографии 1920 года Альберт Эйнштейн, Пауль Эренфест, Поль Ланжевен, Хейке Камерлинг-Оннес и Пьер Вейс изображены за обсуждением у доски.
Органы чувств автоматически передают мозгу информацию о форме, цветах, композиции, пространстве, освещении и текстуре картины, о гармоничности и ритмичности музыкальной композиции, однако в математике этого не происходит: анализ, выполняемый в этом случае, требует усилий. И чем больше усилий необходимо, чтобы понять математические рассуждения, тем сложнее оценить их красоту. Однако, возможно, удовольствие, испытанное при виде их красоты, будет выше, ведь за сложностью могут скрываться блестящие, глубокие и даже гениальные математические идеи.
Понимание структуры идей, в зависимости от гармонии их составляющих, пробуждает эстетическое удовольствие, «душевное наслаждение», как сказано в словаре. Перефразируя описание эстетической ценности, которое привел философ Джордж Сантаяна в своей книге «Постижение красоты», можно сказать, что это объективированное удовольствие, интеллектуальное наслаждение, которое мы можем получить, если изучим и поймем некую теорему, является центральной эстетической категорией, свойством математических рассуждений, которое наделяет их красотой.
Органы чувств передают в мозг информацию о том, что происходит вне его, следовательно, без них невозможно насладиться красотой чего бы то ни было, будь то картина, симфония или пейзаж. Тем не менее удовольствие, которое вызывает красота, лежит не только в плоскости чувств, но и требует вмешательства разума.
«Довольствия, которые доставляет красота, – писал Фернандо Саватер, – наименее „зоологические“ из всех». Так, было бы неразумно полагать, что собака или горилла оценят эстетику готического собора или картины Веласкеса. Последователи Сантаяны утверждают, что существует тесная взаимосвязь между эстетическими ценностями и другими жизненно важными представлениями человека. Витгенштейн возвел эту взаимосвязь в абсолют, сформулировав уравнение: «Этика равна эстетике». В любом случае, именно этот союз красоты и разума делает математику вместилищем эстетической ценности.
Сплетение судеб
Как мы уже говорили в предисловии, цель этой книги – не развернуть сухое и скучное обсуждение эстетической ценности математики, а продемонстрировать на примерах некоторые основные принципы математической красоты. К этому мы сейчас и приступим.
Вы уже знаете, как сложно увидеть красоту, сокрытую в математических рассуждениях. Похожие сложности возникают в попытках оценить эстетику литературы. Однако литература описывает природу человека, что несколько упрощает ее восприятие: эмоции намного ближе, понятнее и поэтому интереснее нам, чем холодность прямоугольного треугольника или экзотичность простого числа. Однако математика также имеет эмоциональную составляющую, причем более интенсивную и важную, чем можно предположить. Об этом мы поговорим в следующей главе.
Мы, математики, должны уметь использовать эмоции в той же степени, что и писатели, и переводить на математический язык, пусть и с необходимыми оговорками, некоторые приемы из арсенала романистов. Расскажем об одном из таких приемов.
Одна из главных целей любого романа и, возможно, его основное достоинство заключается в том, чтобы показать богатство, разнообразие и сложность человеческой природы. В XX веке возник стилистический прием, позволяющий достичь этой цели, – это изображение человеческого муравейника, в который неизбежно превращается любой большой город, и плотной сети взаимоотношений между его жителями. Так родились романы с великим множеством персонажей, изображавшие сложность кишащего людьми мегаполиса; эти персонажи в романе, кажется, никак не пересекаются друг с другом, но постепенно скальпель автора рассекает реальность и обнаруживает плотную сеть удивительных взаимосвязей между героями. К жемчужинам этого стиля принадлежат «Манхэттен» (1925) американского писателя Джона Дос Пассоса и «Улей» (1951) испанского писателя Камило Хосе Села, лауреата Нобелевской премии по литературе, в котором описывается 296 воображаемых и 50 реальных персонажей, хотя большинство из них появляются на сцене лишь ненадолго.
В математике достаточно часто случается так, что различные законы и теоремы кажутся далекими друг от друга, однако в итоге между ними обнаруживается неразрывная связь. Математика представляет собой единое целое, и часто всего один взгляд под правильным углом или одна блестящая идея позволяют связать и объединить результаты, которые, на первый взгляд, никак не связаны между собой. Как и в романах «Манхэттен» и «Улей», демонстрация этого богатства скрытых взаимосвязей позволяет ярче выразить красоту математики. Хорхе Вагенсберг в своей книге «Интеллектуальное наслаждение» отмечает, что поиск общего принципа в различном – важнейший источник эстетического удовольствия: «Понять, что две вещи, по сути, различные, есть в конечном итоге одно и то же, – основа понимания и редкого интеллектуального наслаждения». Оставшуюся часть этой главы мы посвятим примеру, доказывающему истинность этого суждения.