355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Антонио Дуран » Том 27. Поэзия чисел. Прекрасное и математика » Текст книги (страница 4)
Том 27. Поэзия чисел. Прекрасное и математика
  • Текст добавлен: 15 октября 2016, 00:00

Текст книги "Том 27. Поэзия чисел. Прекрасное и математика"


Автор книги: Антонио Дуран


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 4 (всего у книги 9 страниц)

Подробный анализ этих двух случаев позволяет сделать вывод: всякий раз, когда прямая, соответствующая иррациональному числу а, пересекает криволинейный треугольник первого вида (при А1 < B1  см. рисунок выше), разность между а и p2/q2 будет строго меньше, чем 1/(√5·q22). Всякий раз, когда прямая, соответствующая иррациональному числу а, пересекает криволинейный треугольник второго вида (при A1 > B1 см. следующий рисунок), разность между а и р3/q3 будет строго меньше, чем 1/(√5·q23). В любом случае пересечения прямой, соответствующей иррациональному числу а, и сторон криволинейных треугольников определят бесконечное множество дробей p/q таких, что |а – р/q| < 1/(√5·q2). Иными словами, последовательность криволинейных треугольников, порожденных окружностями Форда, есть геометрическое представление теоремы Гурвица.


Хулита, или диофантово уравнение p2 + q2 + r2 = 3pqr

В нашей истории есть и третий персонаж – диофантово уравнение р2 + q2 + r2 = 3·р·q·r, – которого я сравнил с Хулитой, еще одной героиней романа «Улей».

Диофантово уравнение – это всего лишь алгебраическое уравнение, как правило, от нескольких переменных, однако нас интересуют лишь те его решения, которые являются целыми числами (или рациональными, что в некоторых случаях одно и то же). Эти уравнения получили свое название в честь древнегреческого математика Диофанта Александрийского. О нем мы знаем немного больше того, что сказано в его эпитафии: «Прах Диофанта гробница покоит; дивись ей и камень Мудрым искусством его скажет усопшего век. Волей богов шестую часть жизни он прожил ребенком. И половину шестой встретил с пушком на щеках. Только минула седьмая, с подругой он обручился. С нею, пять лет проведя, сына дождался мудрец; Только полжизни отцовской возлюбленный сын его прожил. Отнят он был у отца ранней могилой своей. Дважды два года родитель оплакивал тяжкое горе. Тут и увидел предел жизни печальной своей»[7]7
  Перевод С. Н. Боброва. – Примеч. ред.


[Закрыть]
. Решив эту задачу, получим, что Диофант прожил 84 года. Предположительно, он жил в II–III веках.

Нам известно, что Диофант был автором нескольких трудов, важнейший из них – «Арифметика». Из тринадцати книг «Арифметики» сохранилось шесть книг на древнегреческом и еще четыре – в переводе на арабский.


Обложка «Арифметики» Диофанта, изданной в 1621 году с комментариями французского математика Баше де Меризиака.

* * *

ДИОФАНТОВО УРАВНЕНИЕ

Задача, описанная на этой странице, приводится во второй книге «Арифметики» под номером 15. Диофант нашел ее решение следующим образом. Он обозначил через р и q квадраты двух последовательных чисел, так как ему было известно, что их произведение, увеличенное на их сумму, также является квадратом. В самом деле, если р = m2, q = (m + 1)2, то:

p·qp + q = m2·(m + 1)2 + m2 + (m + 1)2 = m4 + 2·m3 + 4·m2 + 2·m + 1 = (mm + 1)2.

В частности, Диофант использовал р = 4 и q = 9. Таким образом, p·+ p + обязательно будет квадратом: 4·9 + 4 + 9 = 72. Две остальные величины будут таковы: 4·n + 4 + n = 5·+ 4 и 9·n + 9 + n = 10·n + 9. Таким образом, нужно найти число n такое, что и 10·n + 9, и 5·n + 4 будут квадратами. Далее Диофант ввел еще две вспомогательные переменные, r и k, определяемые уравнениями r = 10·n + 9 и k2 = 5·n + 4. Имеем

r2k2 = 10·n + 9–5·n – 4 = 5·n + 5,

что можно записать как (r + k)·(rk) = 5·(n + 1). Таким образом, = 5 и rk = n + 1. Выразив r и k из этих равенств, получим: r = (n/2) + 3 и k = 2 – (n/2). Подставив значение r в уравнение r2 = 10·n + 9 и упростив полученное выражение, получим уравнение второй степени (n2/4) = 7·n = 0. Его решением будет n = 28.

* * *

Приведем пример уравнений, которые рассматривает Диофант в своей «Арифметике»: «Найти три таких числа, что произведение любых двух из них, увеличенное на их сумму, будет квадратом». Если мы обозначим искомые числа через р, q и n, тo p·q + p + q, p·n + p = n и q·n + q + n должны быть квадратами. Диофант привел решение р = 4, q = 9 и n = 28. В самом деле, р·qq = 49 = 72, р·nр + n = 289 = 172, q·n + qn = 144 = 122 (см. врезку). Такие уравнения были известны древним грекам задолго до Диофанта. Первое из них, несомненно, выглядело так: найти натуральные числа m и n такие, что m2 = 2·n2. Как вы уже знаете, Пифагор доказал, что это уравнение не имеет решений: если бы они существовали, то √2 было бы рациональным числом.

Другое диофантово уравнение, также изученное до Диофанта, имело отношение к теореме Пифагора: требовалось найти все натуральные числа р, q, r, которые были бы решениями уравнения р2 + q2 = r2. Согласно теореме Пифагора, точнее обратной ей теореме, такие числа р, q, r являются сторонами прямоугольного треугольника. Тройки чисел, удовлетворяющих этому уравнению, стали называться пифагоровыми тройками. В книге X «Начал» Евклида приведено общее решение этой задачи: для произвольных натуральных чисел m, n и k

p = k·(m2n2), = 2·k·m·n и rk·(m2 + n2)

образуют пифагорову тройку, и все пифагоровы тройки имеют подобный вид. Например, приняв m = 3, n = 1 и k = 4, имеем р = 32, q = 24 и r = 40, которые действительно удовлетворяют равенству р2 + q2 = r2.

Среди уравнений, рассмотренных Диофантом в «Арифметике», было уравнение, описывающее пифагоровы тройки. Диофант также решил уравнение р2 + q2 = r2, добавив к нему множество дополнительных условий. Например, он решил задачу о нахождении сторон прямоугольного треугольника, периметр которого является кубом, а сумма площади и гипотенузы – квадратом. Диофант нашел следующее решение этой задачи: длина гипотенузы r равнялась 629/50, длины катетов р и q – 2 и 621/50. Периметр треугольника равнялся 2 + 621/50 + 629/50 = 1350/50 = 27 = 33, сумма площади и гипотенузы – (621/50)·2/2 + 629/50 = 1250/50 = 25 = 52 (см. врезку на предыдущей странице).

* * *

ЕЩЕ ОДНО ДИ0ФАНТ0В0 УРАВНЕНИЕ

Последняя задача, описанная на этой странице, приведена в «Арифметике» Диофанта в книге VI под номером 17. Диофант нашел ее решение следующим образом. Он ввел новую переменную n – площадь треугольника. Тогда (р·q)/2 = n, то есть р·q = 2·n. Далее Диофант принял р = 2 и q = n. Сумма площади и длины гипотенузы треугольника равняется n + r, периметр треугольника – 2 + n + r. Так как число nr должно быть квадратом, нужно найти такой квадрат, который при увеличении на 2 был бы кубом. Тогда Диофант обозначил длину стороны квадрата через m + 1, длину стороны куба – через m – 1. Теперь нужно найти число m такое, что (m + 1)2 + 2 = (-1)3. Иными словами, m2 + 2·m + 3 = m3 – 3·m2 + 3·m – 1, или, что аналогично, 4·m2 + 4 = m3 + m. Отсюда следует, что 4·(m2 + 1) = m·(m2 + 1), следовательно, m = 4. Таким образом, имеем + r = 52 = 25. Так как треугольник со сторонами р, и r должен быть прямоугольным, имеем: 4 + n2r2. Подставив в это уравнение n = 25 – r, получим 4 + (25 – r)2 = r2. Раскрыв скобки и упростив полученное выражение, имеем: 629 – 50·r = 0. Иными словами, r равно 629/50, следовательно, n и q равны 621/50.

Заметьте, что Диофант решил в целых числах кубическое уравнение х2 + 2 = у3 – его корнями являются х = 5, у = 3. Это уравнение имеет единственное решение в целых числах (именно его нашел Диофант) и бесконечно много дробных решений.

* * *

В 1621 году, спустя почти полтора тысячелетия после того, как Диофант написал свою «Арифметику», шесть сохранившихся книг этого труда были отпечатаны на языке оригинала и в переводе на латынь. Автором этого издания с комментариями стал француз Баше де Меризиак.

«Арифметика» Диофанта – одна из немногих книг, вошедших в историю благодаря одному из своих читателей. Речь о французском адвокате Пьере Ферма. Ферма также был математиком-любителем, однако его «любительские» заслуги намного выше профессиональных достижений многих математиков.

В XVII веке теория чисел еще не была частью роскошного района математики. После удивительного расцвета, достигнутого во времена Диофанта, интерес математиков к теории чисел ослабевал на протяжении полутора тысяч лет, и тут на сцену вышел Ферма и вернул теории чисел прежнюю славу, применив самый действенный способ, какой только известен математикам: он сформулировал несколько интересных задач. Достаточно прочесть его примечания и комментарии на полях «Арифметики» Диофанта. Самуэль Ферма, сын математика, составил сборник этих примечаний и комментариев, дополнил ими издание Баше де Меризиака и опубликовал этот вариант «Арифметики» Диофанта в 1670 году.


Обложка «Арифметики» Диофанта с комментариями Пьера Ферма, изданной его сыном в 1670 году.

В этой книге редко встретишь задачу, предложенную Диофантом или комментарий де Меризиака, для которых Ферма не сформулировал бы дополнение, обобщение или интересную задачу по той же теме. Известнейшую из них Ферма записал на полях книги II рядом с задачей 8: «Представить данный квадрат в виде суммы двух квадратов». Иными словами, в этой задаче Диофант объяснял свой алгоритм нахождения пифагоровых троек: р2 + q2 = r2.

Ферма слегка изменил это уравнение и рассмотрел решения в целых числах для уравнения р3 + q3 = r3. Удивительно, но ему не удалось найти ни одного решения за исключением так называемых тривиальных, то есть 0, 1 и —1. Увидев, что уравнение не имеет решений, Ферма задался вопросом: что будет, если показатель степени будет равен не 3, а 4? Каковы целочисленные решения уравнения р4 + q4 = r4? Для этого уравнения ему также не удалось найти решений. «А что, если этих решений просто нет?» – должно быть, спросил себя Ферма после многочисленных неудачных попыток. Тогда он подошел к проблеме с другой стороны и попытался доказать, что уравнение с показателем степени, равным 4, не имеет целочисленных решений. Применив собственный оригинальный метод, Ферма нашел искомое доказательство. Также возможно, что, немного изменив свой метод, он смог доказать, что уравнение третьей степени также не имеет решений. Но достоверно это неизвестно, ведь Ферма не был профессиональным математиком и не затруднял себя публикацией полученных им результатов, не говоря уже об описании использованных методов и приемов. О том, как он размышлял, известно немного, и часто даже это немногое – лишь плод догадок.

Воодушевленный полученными результатами, Ферма, вероятно, счел, что сможет доказать отсутствие решений (за исключением тривиальных) уравнения рn + qn = rn для любого > 2. Как же он поступил? Он записал на полях «Арифметики» Диофанта такие слова: «Невозможно разложить куб на два куба, биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я нашел этому поистине чудесное доказательство, но поля книги слишком узки для него». Благодаря этому простому комментарию юрист Ферма вошел в историю: целый легион математиков, словно обезумев, принялся за поиски «чудесного доказательства» Ферма.

Однако теорема Ферма оказалась весьма крепким орешком – за два последующих столетия ее удалось доказать лишь для нескольких п: простых n = 3 (Эйлер, 1770), n = 5 (Лежандр и Дирихле, 1825) и n = 7 (Ламе, 1839), а также для составных n = 6, 10 и 14. Полное доказательство теоремы Ферма привел английский математик Эндрю Уайлс лишь в 1994 году. Оно занимает несколько сотен страниц, и в нем используются сложнейшие математические понятия и методы XX столетия.

Уравнение Маркова

Диофантово уравнение, которое мы рассмотрим ниже, названо в честь русского математика Андрея Андреевича Маркова (1856–1922). Оно записывается так:

p2 + q2 + r2 = 3·p·q·r.

Натуральные числа, которые являются решениями этого уравнения (точнее, натуральные числа р, для которых существуют q и r такие, что р, q, r удовлетворяют уравнению), упорядоченные по возрастанию, называются числами Маркова. О них известно немало, но далеко не все. Так, известно, что чисел Маркова бесконечно много и что первые 16 членов ряда таковы:

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, 1597 и 2897.

Существует простой метод, позволяющий получить новые числа Маркова на основе уже известных. Нетрудно показать, что если p1, q1 и r1 удовлетворяют уравнению Маркова и мы запишем р2 = 3·q1·r1 – р1, q2 = 3·p1·r1 – q1, и r2 = 3·p1·q1 – r1, то тройка p2, q1 и r1 также будет удовлетворять уравнению Маркова. Это же будет справедливо для троек р1, р2 и r1, а также p1, q1, r2.

Марков доказал, что все целые положительные решения уравнения Маркова можно получить с помощью этого простого метода, приняв в качестве начальных значений p1 = 1, q1 = 1 и r1 = 1.

Живительно, что уравнение Маркова имеет великое множество решений. Но если его немного изменить, оно не будет иметь ни одного решения: к примеру, уравнение р2 + q + r2 = 2·р·q·r не имеет целых положительных решений. В действительности, как доказал Гурвиц, ни одно уравнение вида р2 + q + r2 = k·р·q·r не имеет целых положительных решений, за исключением случаев, когда k равно 3 (имеем уравнение Маркова), 1 или 0.

Решения уравнения Маркова р, q и r при р = 1 образуют первую связь с теоремой Гурвица о рациональном приближении. В самом деле, эти решения имеют вид р = 1, q = f2n-1 и = f2n+1, где fk  – соответствующее число Фибоначчи. Первыми двумя числами Фибоначчи являются f1 = 1 и f2 = 1, каждое последующее число Фибоначчи определяется как сумма двух предыдущих. Имеем: f3 = 1 + 1 = 2, f4 = 3, f5 = 5, f6 = 8, f7 = 13, f8 = 21, f9 = 34 и так далее. Числа Фибоначчи встречаются в природе столь же часто, что и золотое сечение, с которым они тесно связаны: если рассмотреть отношение двух последовательных чисел Фибоначчи, fn+1/fn, то полученные дроби 2/1, 3/2, 5/3, 8/5, 13/8…, будут всё больше и больше приближаться к золотому числу. Приближение вновь будет описываться теоремой Гурвица:

Это соотношение устанавливает неразрывную связь между числами Маркова и рациональным приближением. Очевидно, что эта связь намного прочнее.

Как мы уже отмечали, из-за золотого сечения рациональное приближение, описываемое теоремой Гурвица, нельзя улучшить. Это справедливо для золотого числа Ф и всех иррациональных чисел, эквивалентных ему с точки зрения рационального приближения. Иными словами, речь идет об иррациональных числах вида (m·Ф + n)/(р·Ф + q), где m, n, р, q – произвольные целые числа, которые удовлетворяют условию m·q – n·р = ± 1.


Математик Андрей Андреевич Марков совершил важные открытия в теории чисел и теории вероятностей.

Оставим в стороне золотое сечение и все иррациональные числа, эквивалентные ему. Гурвиц доказал, что его теорема допускает более точную оценку, так как константу 1/√5 можно заменить другой, меньшей константой 1/√8: для произвольного иррационального числа а, за исключением золотого числа и эквивалентных ему, существует бесконечное множество дробей p/q таких, что

Это приближение нельзя улучшить: если принять а = √2, то его рациональное приближение не может быть точнее, чем допускает константа 1/√8, умноженная на число, обратное квадрату знаменателя.

Однако если мы оставим в стороне √2 и все эквивалентные ему, то сможем еще больше улучшить рациональное приближение, заменив константу 1/√8 другой, меньшей константой 5/√221. Для любого иррационального числа а, за исключением золотого числа, квадратного корня из 2 и эквивалентных им, существует бесконечно много дробей вида p/q таких, что

Читатель уже наверняка догадался, что теперь существует еще одно иррациональное число, для которого нельзя улучшить это рациональное приближение. Это число – √221. Если исключить его из рассмотрения, то можно получить новое, еще более точное рациональное приближение – 13/√1517, для которого, в свою очередь, также существует «нежелательное» иррациональное число. Так мы постепенно придем к предельному значению 1/3: для любого иррационального числа а, за исключением полученного списка иррациональных чисел и эквивалентных им, существует бесконечно много дробей вида p/q таких, что

В романе и в реальности, отзвуком которой он является, переплетаются судьбы персонажей, и из тесной паутины взаимоотношений рождается свет, озаряющий тайные стороны человеческой природы.

Подобно тому, как Мартин Марко живет в страхе, опасаясь политических репрессий режима Франко, Хулиту душат нормы национально-католической морали. В то время как для Марко возможен только один выход – сдаться, Хулита и ее жених смогли найти выход из ситуации, преодолеть все препятствия и начали встречаться в доме свиданий. Села великолепно передает все моральные противоречия, с которыми сталкиваются его герои. С одной стороны, донья Виситасьон Леклерк, мать Хулиты и сестра доньи Росы, воплощает лицемерную мораль, которая была столь по душе католическим сановникам того времени. Так, донья Виситасьон из сострадания жертвует деньги на крещение «китайских младенцев», за что, предположительно, Господь дарует ей Царствие Небесное после смерти. С другой стороны, Села рисует образ отца Хулиты, дона Роке Моисеса, бездельника, который удачно женился по расчету. Несколько сцен позволяют понять, какой была национал-католическая мораль времен Франко. В одном из эпизодов Хулита и ее отец встречаются на лестнице апартаментов доньи Селии: Хулита возвращается со свидания, а ее отец идет на встречу с одной из своих любовниц.

Подобно тому, как различные грани человеческой природы в романе передаются сплетением судеб его героев, которые кажутся далекими, так и в математике на первый взгляд не связанные между собой результаты скрывают тайные истины. Именно этим свойством обладают числа Маркова и числовые константы, которые упоминаются в теореме Гурвица, по мере того как мы уточняем рациональное приближение (это золотое число, квадратный корень из 2 и последующие иррациональные числа, для которых нельзя получить более точное рациональное приближение).

Ниже приведены первые четыре числа Маркова, то есть решения диофантова уравнения р2 + q2 + r2 = 3·р·q·r, упорядоченные по возрастанию: 1, 2, 5, 13.

Далее перечислены четыре первые константы, полученные при поиске всё более точных рациональных приближений по теореме Гурвица:

1/√5, 1/√8, 5/√221, 13/√1517.

Подобно тому как жизни Мартина Марко, доньи Росы и Хулиты на страницах «Улья» оказываются неразрывно связанными, так и числа Маркова связаны с рациональными приближениями иррациональных чисел, поскольку именно они определяют различные константы, возникающие при поиске рациональных приближений по теореме Гурвица.

Обратите внимание, что два приведенных выше списка чисел в действительности ничем не отличаются. Чтобы показать это, нужен ключ, который позволит преобразовать числа из первого списка в числа второго списка. Этот ключ нашел немецкий математик Оскар Перрон в 1921 году: 

Подставим в эту формулу m = 1, первое число Маркова, и получим 1/√(9·1 – 4) = 1/√5 – константу, которая фигурирует в теореме Гурвица о рациональном приближении. Подставим в формулу m = 2, второе число Маркова, и получим 2/√(9·4 – 4) = 2/√32 = 1√8 – константу, которая фигурирует в теореме Гурвица, если исключить из рассмотрения золотое число. Если мы подставим в эту формулу m = 5 или 13, то есть третье и четвертое число Маркова соответственно, получим 5/√221 и 13/√1517 – два следующих числа, отсылающих и к теореме Гурвица. Аналогичные действия можно выполнить и для следующих чисел Маркова. С другой стороны, если m, р и q являются решениями уравнения Маркова m2 + p2 + q2 = 3·m·p·q, то исключением, которое будет препятствовать уменьшению константы m/√(9·m2 – 4) в теореме Гурвица, будет число

и все эквивалентные ему иррациональные числа.

Как видите, в стране чисел, как в большом городе, жизненные пути персонажей пересекаются. Математика больше напоминает улей, чем сухую логическую структуру.

Было бы непростительно не закончить эту главу словами Камило Хосе Селы:

«Утро мало-помалу надвигается, червем проползая по сердцам мужчин и женщин большого города, ласково стучась в только что раскрывшиеся глаза, в эти глаза, которым никогда не увидеть новых горизонтов, новых пейзажей, новых декораций… Но утро, это вечно повторяющееся утро все же не отказывает себе в удовольствии позабавиться, изменяя облик города – этой могилы, этой ярмарки удачи, этого улья…»

Глава 3
Абстрактное и эмоциональное: математика и человеческая природа

Повторим наш мысленный эксперимент, в котором мы обращались к случайному прохожему. На этот раз зададим ему два вопроса. Сначала мы попросим его сгруппировать попарно следующие слова: «литература»/«математика» и «страсть»/«расчетливость». Затем попросим нашего собеседника рассказать о том, как, по его мнению, связаны математика и человеческая природа.

Отвечая на первый вопрос, большинство свяжет литературу со страстью, а математику – с расчетливостью. Нет никаких сомнений и в том, что прохожий скажет: математика и человеческая природа очень далеки друг от друга. Возможно, этот же ответ дадут и многие математики. Математика известна как совокупность абстракций, которые почти или никак не связаны с чувствами. Однако математика – продукт нашего разума в самом чистом виде, и в этом с ней не сравнится почти никакое другое творение человека. Логическая структура нашего разума – важнейшая характеристика человеческого состояния: именно наш мозг в немалой степени определяет то, какие мы есть.

Поэтому неудивительно, что внешность может быть обманчива.

Прежде всего напомним, что благоразумие, согласно толковому словарю, это «рассудительность, обдуманность в поступках», в то время как «страсть» – это «сильно выраженное чувство, воодушевленность» и «крайнее увлечение, пристрастие к чему-либо». Многие не связывают страсть с математикой, но она подобна полю битвы, на котором разгораются сражения между благоразумием и страстью. Мы, математики, знаем, что математика – это неустойчивое равновесие между благоразумием и страстью, тончайшая смесь трезвого расчета и крайнего увлечения, сильное, опьяняющее чувство. Поэтому в поисках доказательства математик руководствуется точным расчетом, который является неотъемлемой чертой строжайшего логического мышления. Однако в моменты, когда математик стремится совершить открытие или сражается с задачей, его охватывает возбуждение.

Предметом описания литературы и одновременно ее источником знаний служит человеческая природа, непреходящая борьба страстей и здравого смысла. Поэтому неудивительно, что большинство связывает литературу и страсть. Однако я осмелюсь заявить, что в этой борьбе между благоразумием и страстями математика играет далеко не последнюю роль. Математика может оказаться удивительно полезной: она способна помочь нам лучше познать себя и глубже понять человеческую природу.


Математика и ее контекст

Это звучит странно, и наш воображаемый прохожий усомнится в том, что математика может помочь людям познать себя. Наверняка многие ученые, которым известны тайны этой науки, также не понимают, как математика способна осветить дно глубокого колодца, которому подобна природа человека. Чтобы возразить скептикам, отмечу, что математике действительно под силу нечто подобное, если рассмотреть ее в нужном контексте. К примеру, под контекстом теоремы мы понимаем загадки истории, сопровождавшие автора или авторов этой теоремы: тех, кто выдвинул теорему, доказал или опроверг ее, или тех, кто безуспешно пытался найти ее доказательство.

Контекст математики в некотором смысле подобен обстоятельствам, без которых, по мнению Хосе Ортеги-и-Гассета, невозможно понять «я». Контекст математики имеет много общего с ее историей, однако эти понятия всё же различаются.

Уточним фразу, которая показалась неправдоподобной нашему прохожему и в которой усомнился недоверчивый математик. Математика действительно помогает нам познать себя: в столкновении абстрактного мира математики и мира эмоций, где обитают первооткрыватели и изобретатели, рождается свет, который достигает самых темных уголков человеческой натуры.

Именно поэтому математический контекст позволяет нам лучше оценить красоту математики. Как мы уже объясняли в главе 2, главное различие между литературой и математикой с эстетической точки зрения заключается в том, что предметом их рассмотрения являются разные объекты. Литература изучает чувства, эмоциональную составляющую человеческой природы, а математика рассматривает числа, фигуры и абстракции. Чувства и эмоции нам хорошо знакомы, благодаря этому мы можем понять эстетическую ценность романа, в то время как холодность и абстрактность математических объектов затрудняют их восприятие. Именно поэтому важно учитывать эмоциональный контекст, которого не лишена математика: он позволяет очеловечить математику и предрасполагает к эстетическому наслаждению.

Однако, как мы отмечали в предисловии, цель этой книги – не засыпать читателя аргументами и доводами, а привести примеры, на основе которых он сделает собственные выводы. В этой главе мы расскажем о том, как противопоставление абстрактного характера математики и эмоций тех, кто ее создал, помогает насладиться красотой науки и лучше понять человеческую природу. В качестве примера мы выбрали бесспорно красивые математические объекты – фракталы, а эмоциональный контекст предоставят события из жизни математика Феликса Хаусдорфа (1868–1942), предсказавшего существование фракталов.

* * *

ДРЕВНЕЙШАЯ ИЗ НАУК

Не будем подробно описывать обстоятельства, которые связывают математику с наиболее эмоциональной частью человеческой природы и восходят к моменту зарождения науки. Момент зарождения математики ознаменован созданием чисел. Не будем забывать, что числа ожидают нас «на кончиках пальцев», они словно являются частью нашего тела. Также не будем забывать, какую огромную роль сыграли наши руки в том, кто мы есть сейчас. Истоки человеческой истории окутаны мраком, поэтому сложно оценить, чему люди научились раньше: считать на пальцах, рисовать на стенах пещер, хоронить умерших или создавать божеств. Для всех этих действий, в том числе для счета, характерны неустанная борьба страстей и здравого смысла. Всё это позволяет назвать математику древнейшей из наук. Как видите, эмоциональный контекст пронизывает ее до самых корней, восходящих к древнейшей истории homo sapiens как вида.

* * *

Фракталы и размерность Хаусдорфа

Фрактал можно назвать множеством, аномальным с точки зрения наших органов чувств. Однако его аномальность относится к особенностям нашего восприятия. В основе этой аномальности лежит понятие размерности пространства, и это понятие существенно расширил немецкий математик Феликс Хаусдорф в 1919 году.


Открытия немецкого математика Феликса Хаусдорфа впоследствии позволили сформировать современную теорию фракталов.

Хаусдорф счел классическое определение размерности объектов очень узким как с математической, так и с философской точки зрения, а классификацию тел согласно их размерности – примитивной. Он сказал, что будет несколько затруднительно и, возможно, даже некорректно считать, что объект имеет размерность 1, если он имеет только длину (например, нить или пружина), размерность 2 – если он имеет длину и ширину (лист бумаги или поверхность сферы), и размерность 3, если, помимо длины и ширины, он имеет высоту (сфера или коробка для обуви). Чтобы расширить классическое понятие размерности, Хаусдорф предложил новое определение, более сложное и общее с математической точки зрения.

Величина, введенная Хаусдорфом, позволяет намного точнее определить размерность объекта. Вопреки тому, что нам подсказывают органы чувств, существуют объекты, размерность которых выражается дробями, например 1/2, иррациональными числами, в частности √5, и даже еще более необычными числами. Прошло больше 50 лет с момента, когда Хаусдорф ввел новое понятие размерности, прежде чемБенуа Мандельброт (1924–2010), французский математик польского происхождения, определил фракталы как множества, имеющие дробную размерность Хаусдорфа.


Бенуа Мандельброт, математик, который ввел термин «фрактал». На этой фотографии он изображен на конференции в Варшаве в 2005 году.

Чтобы объяснить понятие размерности Хаусдорфа в общем виде (именно это определение привел сам Хаусдорф), потребуются серьезные знания математики. Тем не менее существует альтернативное определение, не до конца точное, но позволяющее читателю оценить смысл этого понятия. Это альтернативное определение размерности ввели русские математики Лев Понтрягин и Лев Шнирельман. Удивительно, что Понтрягин был слепым – он лишился зрения в 14 лет в результате несчастного случая.

Представьте, что дана плоская фигура, вписанная в квадрат, для которой мы хотим рассчитать размерность Хаусдорфа. Разделим сторону квадрата на несколько равных частей, например на 10. Квадрат окажется разделен на 100 мелких квадратов. Теперь посчитаем, сколько этих квадратов нужно для того, чтобы покрыть рассматриваемую фигуру, и адекватно сравним их число с числом частей, на которые мы разделили сторону квадрата (в нашем случае на 10).

Ключ к задаче – в том, что мы вкладываем в слова «адекватно сравним». Проясним смысл этих слов на простом примере. Пусть рассматриваемой фигурой будет квадрат целиком. Для того чтобы покрыть его, потребуются все квадраты, на которые мы разделили исходный квадрат. Таким образом, если мы разделим сторону квадрата на n равных частей, получим n·n = n2 мелких квадратов. Обратите внимание на число 2 в показателе степени n2 – именно это число и будет размерностью квадрата.

Теперь рассмотрим диагональ квадрата. Разделим сторону квадрата на 4 части. Сколько мелких квадратов понадобится для того, чтобы покрыть его диагональ? Немного подумав, читатель увидит, что для этого потребуется четыре мелких квадрата, так как именно столько квадратов лежит на диагонали большого квадрата. Если мы разделим сторону квадрата на n частей, нам потребуется n квадратов, чтобы покрыть диагональ. Однако n можно записать как n1, то есть n, возведенное в степень 1. Эта степень 1 и будет размерностью диагонали квадрата. Таким образом, любой отрезок будет иметь размерность 1.

Теперь обозначим через F плоскую фигуру, заключенную внутри квадрата, для которой мы хотим определить размерность Хаусдорфа. Разделив сторону квадрата на n частей, подсчитаем, сколько мелких квадратов потребуется, чтобы покрыть фигуру F. Обозначим их число через пр. «Адекватное» сравнение числа nF с числом частей n, на которые мы разделили сторону квадрата, означает определение степени n, соответствующей этому числу nF. Так, в примере с квадратом nn2 соответствующей степенью будет 2. В примере с диагональю квадрата n = n1 соответствующей степенью будет 1. Если мы обозначим этот показатель степени через d, то n, nF и d будут связаны следующим тношением: nF = nd . Применив логарифмы, выразим d через и n: d – это логарифм nF разделенный на логарифм n:


    Ваша оценка произведения:

Популярные книги за неделю