Текст книги "История и антиистория. Критика «новой хронологии» академика А.Т. Фоменко"
Автор книги: Анатолий Фоменко
Жанр:
История
сообщить о нарушении
Текущая страница: 25 (всего у книги 36 страниц)
По ирландскому дубу в 1982 году была создана абсолютная хронология, простирающаяся до 13 г. до н.э. и плавающая хронология от приблизительно 200 г. до н.э. до 5300 г. до н.э., которая к 1984 году была связана с абсолютной шкалой (Pilcher J.R. et al. 1984). К этому времени хронологию по германским деревьям удалось продлить до рекордной протяженности – до 10 тысяч лет от современности (Becker B. and Kromer B. 1986). Следует заметить, что две хронологии: одна из Германии, а другая из Северной Ирландии были перекрестно датированы, что позволило установить европейскую мастер-хронологию по дубу протяженностью до 5300 лет до н.э.!
При построении плавающих мастер-хронологий относительный возраст, извлекаемых из отложений деревьев, определяется с помощью радиоуглеродного метода. В представленном на рис. 2 примере разработки дендрохронологической шкалы (Becker B. and Kromer B. 1986) ряд “Main 9”(охватывающий промежуток времени с 7215 г. до н .э. до 7825 г. до н.э.) отмечает конец хорошо воспроизводящихся хронологий по дубу, оцененный с помощью радиоуглеродного метода в ~ 8800 “радиоуглеродных” лет от современности. На рисунке также представлены некоторые ископаемые дубы, более древние чем ряд “Main 9”. Эти дубы, относительный возраст которых оценен с помощью радиоуглеродного метода, начали расти в долинах Рейна приблизительно в 9200, Дуная – 8890, Мозеля – 8880, Майна – 8860 “радиоуглеродных” лет от современности. Видно, что дальнейшее расширение дендрошкалы может быть достигнуто с использованием уже деревьев сосны (климатические условия оказались более суровыми), захороненных в этих отложениях и покрывающих без разрывов последние более чем 10000 лет.
Рис. 2. Протяженность отдельных дендрохронологических шкал по деревьям дуба (темные блоки) и сосны (светлые блоки), извлеченных из аллювиальных отложений в долинах рек Рейна, Дуная и Майна: блоки большого размера – хорошо воспроизводящиеся мастер-хронологии по большому количеству образцов, блоки средних размеров – повторяющиеся хронологии по 3-8 деревьям, узкие блоки – индивидуальные деревья.
До окончательной увязки в течение нескольких лет хронология по дубу не была абсолютной и содержала три части: абсолютную мастер-хронологию (до 4000 г. до н.э.), плавающую мастер-хронологию (4000 – 7200 гг. до н.э.) и более раннюю часть (до 7200 г. до н.э.), указанную на рис. 2 как хронология “Main 9”. В 1993 г. эти части были увязаны воедино и как показано Беккером (Becker B. 1993), хронология последних 9900 лет воспроизводится минимум 15-25 перекрестно датированными образцами, что является достаточным для перекрестного датирования среди индивидуальных кривых мастер-хронологии. На рис. 3 приведена картина воспроизведения мастер-хронологии по дубу из соответствующих дендрохронологических рядов деревьев, взятых из долин Рейна, Майна и Дуная и исторических и доисторических стоянок на юге центральной части Европы. Установление этой хронологии требовало связывания тысяч современных, исторических и доисторических записей колец деревьев посредством перекрестного датирования. Эта работа Беккера ярко демонстрирует надежность хронологии, представляющую воспроизведение мастер-хронологии для голоцена. Веской проверкой абсолютной дендрохронологии является доказательство воспроизводимости перекрестным датированием независимо установленных хронологий годичных колец, что и было прослежено сравнением хронологии по дубу в Германии с ирландской хронологией также по дубу. Наиболее длинные хронологии по деревьям сосны и дуба приведены ниже:
Рис. 3. Схема воспроизведения дендрохронологии по дубу для Центральной Европы.
Табл. 1.
Проводится тщательный анализ, взаимное сравнение хронологий, учет возможных ошибок, коррекции и последующая синхронизация в общих интервалах на регулярно созываемых конференциях или рабочих группах с целью детализации и расширения временного интервала надежной калибровочной кривой для радиоуглеродного метода.
Используя перекрестное датирование, хронологии датированных годичных слоев были разработаны для сотен мест в Северной и Южной Америке, Европе, Австралии, Новой Зеландии, Арктике с помощью образцов как старых деревьев, так и деревьев, взятых из древних строений и археологических раскопок. Особое внимание обращается на точную состыковку древесно-кольцевых серий. Неполная датировка колец ведет к дискредитации дендрохронологического метода.
К настоящему времени почти вся территория бывшего Советского Союза, хотя и неравномерно, подверглась дендрохронологическому изучению более чем 20 исследовательскими группами. Наиболее изученными являются районы Сибири, Дальнего Востока и Средней Азии. По хвойным деревьям получены сотни дендрохронологических рядов, в основном по древесине с ныне живущих деревьев. Самыми длинными по живущим деревьям являются ряды: по арче туркестанской в Средней Азии – 1224 года (Мухамедшин К.Д. 1978) и 808 лет (Ловелиус Н.В. 1979), по лиственнице сибирской – 1010 лет на Полярном Урале (Шиятов С.Г. 1981), 867 лет в Западной Сибири (Шиятов С.Г. 1975), 677 лет на Алтае (Адаменко М.Ф. 1978). К сожалению, у нас слабо используется ископаемая древесина и древесина из исторических и археологических памятников для построения длительных дендрохронологических рядов. В восточных районах имеется очень много хорошо сохранившейся древесины, захороненной в торфяниках, речных и озерных отложениях, особенно в зоне распространения многолетнемерзлых грунтов. В субарктических и высокогорных районах древесина хвойных пород сохраняется на поверхности до 600-800 лет после ее отмирания. Нельзя не отметить и перспективность создания длительных дендрошкал (до ~ 6000 лет назад и более (Битвинскас Т.Т. и др. 1978) по ископаемым деревьям из песчано-гравийных карьеров пойменной террасы реки Вилия (Нерис) близ города Сморгонь (Белоруссия).
Дендрохронологические исследования с целью построения хронологии древесных колец наиболее эффективны на деревьях, чувствительных к климатическим изменениям. В то же время в ряде районов климатические условия таковы, что не позволяют визуально проследить картину чередования колец, т.е. годичные кольца мало отличаются друг от друга. Это характерно, например, для деревьев, которые растут в районах обильного выпадения осадков или на почвах с большим количеством подземных вод. Могут ли такие “расплывчатые кольца” давать информацию о прошлом, как это имеет место при анализе распределения ширины годичных слоев в образцах с четко выраженной структурой? Оказывается могут, и это характерно как для хвойных, так и для лиственных пород. Благодаря рентгеновскому анализу годичных колец удается исследовать изменения плотности древесины, которая отражает изменение окружающих условий в течение вегетационного периода. Заметим, что традиционные исследования ширины годичных слоев в отличие от рентгеновского анализа дают средние характеристики окружающих условий за промежуток времени, гораздо больший: до вегетационного периода и во время него. Рентгеновский метод анализа колец древесины теперь взят на вооружение многими дендрохронологическими лабораториями. Улучшенная денситометрическая аппаратура позволяет анализировать плотность древесины в очень узких кольцах, менее 30 микрон (Schweingruber F.H. 1993). В целом, во всех случаях шкалы по кольцам деревьев могут быть абсолютными, и это достигается путем перекрестного датирования живущих деревьев с образцами ископаемой древесины и археологического материала.
Не останавливаясь на анализе последних достижений дендрохронологии в различных областях, отметим, два примера приложений ее к археологии и в изучении человеческого общества, широко известные в научной литературе (Douglass A.E. 1940).
Еще в 20-х годах нашего столетия пытались выяснить вопрос о времени доисторических индейских поселений на юго-западе Соединенных Штатов (о возрасте которых ничего не было известно), используя перекрестную датировку остатков строений раннеисторических поселений. В результате экспедиционных работ и последующих почти десятилетних исследований была получена абсолютная хронология от современности до 1260 г. н.э. и еще относительная (“плавающая”) хронология протяженностью 585 лет от более древних юго-западных индейских поселений, которую затем удалось состыковать с абсолютной хронологией растущих в этом районе деревьев, и, таким образом, решить одну из археологических проблем. Позднее абсолютная дендрохронологическая шкала построек этого района была доведена до 11 г. н.э. А благодаря возможности составить единую хронологическую картину для хорошо сохранившегося индейского доисторического поселения Кит-Сил в северной Аризоне путем датировки 150 образцов древесины из этого поселения, была получена единая хронологическая картина развития общества от года к году.
Радиоуглеродная калибровочная кривая
Чтобы отвергнуть радиоуглеродный метод датировки А.Т. Фоменко, опять использует работу Олейникова А. (1971) и, кроме того, приводит ряд цитат о некоторых проблемах применения метода из работ Клейна Л.С. (1966) “Археология спорит с физикой”, опубликованных в журнале “Природа” № 2 и 3 в 1966 году, когда метод еще проходил проверку временем и далеко не все вопросы были решены. Естественно, что по мере совершенствования методики измерения активности стали прослеживаться некоторые расхождения между теоретическими предпосылками метода, основанными на законе радиоактивного распада радиоуглерода во времени в исследуемых образцах и экспериментальными результатами. Касаясь вопроса появившихся расхождений в датировках, А.Т. Фоменко также цитирует отдельные соображения Либби У.Ф. (1962, 1968) (автора указанного метода) из переведенных и опубликованных в популярных журналах “Наука и человечество” за 1962 год и “Курьер Юнеско” за 1968 год, о некоторых особенностях и возможностях метода и проблемах радиоуглеродного датирования различных образцов и не вникая в суть проблемы ставит под вопрос саму возможность применения метода для археологических и исторических исследований. Чтобы придать большую убедительность своим выводам, из книги Олейникова А. (1971) процитирован текст об изменении содержания углерода в атмосфере Земли за счет выбросов в нее образующегося при сжигании топлива углекислого газа, где автор книги ставится вопрос: “какое влияние оказывает этот источник атмосферного углерода на повышение содержания радиоактивного изотопа? Эти неясности наряду с некоторыми затруднениями технического характера породили сомнения в точности многих определений, выполненных углеродным методом” (Олейников А. 1971, cтр. 65). Чего здесь больше: непонимания предмета или что-то другое? О каком повышении концентрации радиоуглерода в атмосфере Земли может идти речь, если ее, как указано в этом случае, разбавляет углекислый газ, в котором радиоактивный углерод давно распался? Достаточно красноречивы общие выводы А.Т.Фоменко: “другими словами, радиоуглеродный метод широко был применен там, где (со вздохом облегчения) полученные результаты трудно (а практически невозможно) проверить другими независимыми методами” (Фоменко А.Т. 1993. А результат радиоуглеродной датировки, показавший, что нижележащий образец в пещерных слоях оказался моложе вышележащего, позволяет А.Т. Фоменко и вовсе поставить крест на радиоуглеродном методе: “мы (имеется ввиду А.Т. Фоменко - В.А.) считаем, что какие-либо комментарии здесь излишни: картина ясна”.
В то же время, метод, к моменту его ниспровержения А.Т. Фоменко, успешно развивался и совершенствовалась методика радиоуглеродного датирования, удалось определить причины изменения в концентрации радиоуглерода в атмосфере Земли в прошлом и стало возможным не только устанавливать и уточнять возраст различных археологических находок, но и широко использовать радиоуглеродный метод в изучении многих природных процессах, о чем имелась масса серьезных научных публикаций. Мне представляется, что такое варварское обхождение с научно-обоснованными методами, признанными во всем мире, и дающими ценнейшую научную информацию, сродни размерам вреда, приносимыми вандалами при разграблении археологических памятников, как на это указывает академик А.Т. Фоменко.
Кратко остановимся на особенностях радиоуглеродного метода и его возможностях в исследовании природных процессов и в датировании исторических и археологических предметов.
Космические лучи, непрерывно бомбардируя земную атмосферу, являются причиной образования радиоуглерода – радиоактивного изотопа углерода 14С. Окисляясь до 14СО2, он участвует в глобальном углеродном цикле как компонент СО2. Благодаря фотосинтезу, молекулы 14СО2 попадают в ткань растений. В растущих зеленых растениях уровень 14С остается примерно постоянным, из-за его непрерывного введения из атмосферы и его непрерывного распада. Обмен радиоуглерода с окружающей средой прекращается после смерти образца (или выхода его из обменных процессов), после чего 14С подвергается радиоактивному распаду, т.е. активность 14С в таком образце уменьшается по закону радиоактивного распада. Период полураспада 14С составляет 5730 лет. Таким образом, возраст исследуемого предмета, содержащего углерод, может быть определен путем измерения количества оставшегося 14С в образце, тем более, что активность 14С в живых материалах известна. Метод датирования органических остатков по 14С, открытый У.Ф. Либби и удостоенный в 1960 г. Нобелевской премии, прочно внедрился в практику археологических исследований. Измерения активности 14С в настоящее время широко проводятся в мире как с помощью классической b-распадной методики (сцинтилляционные и пропорциональные счетчики) (Дергачев В.А. и Векслер В.С. 1991), так и с помощью ускорительных масс-спектрометров (Purser K.H. 1992). Практический предел обоих методов составляет около 50 тысяч лет от современности. Конечно, отдельная радиоуглеродная датировка по точности уступает методу годичных колец. Лишь годичные кольца деревьев дают дату с точностью до года.
В настоящее время накоплен большой опыт систематической работы в определении возраста с помощью радиоуглеродного метода и установлены и объяснены физические эффекты, которые влияют на точность и могут давать искажения при радиоуглеродном датировании. Для того, чтобы возраст образца, определенный с помощью радиоуглеродного метода, перевести в календарный возраст, необходимо знать в довольно строгих пределах, во-первых, значение периода полураспада 14С; во-вторых, значение активности радиоуглерода в резервуарах углерода (в особенности, в атмосфере) и насколько эта резервуарная активность постоянна в пределах радиоуглеродной шкалы времени. Кроме того, необходимо исследовать, насколько полно и быстро происходит перемешивание радиоуглерода в резервуаре; насколько неизменны изотопные отношения углерода в образцах, исключая распад 14С, т.е. образцы относятся к закрытой системе или нет; насколько могут быть удалены загрязнения из образца, не изменяя активность 14С, а также учитывать коррекцию на изотопное фракционирование, т.е. тенденцию организмов преимущественно концентрировать более легкие изотопы 12С относительно 13С и 13С относительно 14С. И естественно, все измерения соответствующих уровней активности 14С должны быть выполнены с высокой степенью точности и воспроизводимости результатов измерений. Наиболее полно удается оценить и учесть возможные искажения возраста для древесных образцов.
В ранних работах использовалось значение периода полураспада 14С, равное 5568 ± 30 лет (Libby V.F. 1955), а позже после уточнения периода полураспада используют значение 5730 ± 40 лет (Godwin H. 1962). Различие между этими значениями составляет 3%, что легко учитывать при сопоставлении данных.
Естественный уровень концентрации 14С был нарушен в результате антропогенного воздействия: со второй половины прошлого века имеет место понижения уровня за счет сжигания ископаемого топлива (уголь, газ) (Suess H.E. 1955), не содержащего 14С; с конца 50-х годов нашего века началось резкое увеличение уровня 14С в земной атмосфере в результате наземных испытаний атомных устройств (Nydal R. 1968). В 1958 году было обнаружено в детальных измерениях (de Vries Hl. 1958), что и естественное содержание 14С может испытывать колебания на шкалах времени в несколько десятилетий с амплитудой до 2% над средним уровнем. В дальнейшем началось широкое исследование причин естественных вариаций концентрации 14С, связанных с солнечной активностью, напряженностью геомагнитного поля, вспышками сверхновых звезд (Suess H.E. 1965; Stuiver M. 1965; Константинов Б.П. и Кочаров Г.Е. 1965; Damon P.E. et al. 1966 и др.). Конечно, изменение концентрации 14С в земной атмосфере во времени затрудняет интерпретацию радиоуглеродных датировок. Требуется калибровка таких датировок, т.е. придание им исторического или календарного возраста. Это может быть сделано с помощью калибровочных кривых – графиков, описывающих соотношение в прошлом между календарными возрастами и измеренными радиоуглеродными датами. Заметим, что радиоуглерод датирует органическое вещество исследуемого материала, а не событие. В археологичесих исследованиях часто встречаются долгоживущие материалы, например, древесина может иметь возраст в сотни лет, и важно, из какого участка взят образец на датировку. Археолог должен тщательно привязать объект, из которого взят образец, к событию. При радиоуглеродном датировании для калибровки используют материалы, возраст которых установлен с помощью дендрохронологического метода. Трудами многих ученых были составлены повсеместно принятые теперь калибровочные кривые для радиоуглеродной датировки, основанные на датировке методом годичных колец дерева. Эта калибровка привела к некоторым фундаментальным новым датировкам в археологии. Так, благодаря калибровочной кривой установлено, что даты, полученные радиоуглеродным методом для археологических целей, омоложены начиная уже примерно с первых сотен лет до нашей эры, и омоложение тем большее, чем древнее исследуемый образец.
Время, прошедшее с момента прекращения обмена 14С с окружающими резервуарами – “радиоуглеродный возраст t”, определяют согласно формуле:
где A, A0 – соответственно активность 14С в образце на момент датирования и начальная активность в момент времени t0.
Определяемые радиоуглеродные даты выражают в годах от современности (BP – before present), которые определяются следующим образом: а) естественная удельная активность 14С устанавливается значением стандарта (NBS щавелевой кислоты), который соответствует активности древесины в 1950 году, определенной как 13,56 ± 0,07 распадов в минуту на грамм углерода; б) возраст выражается в годах от современности (BP) от “стандартного 1950 года” нашей эры (AD); в) возраст (в годах BP) рассчитывается, исходя из первоначально определенного значения периода полураспада радиоуглерода 5568 лет; г) активность 14С корректируется на изотопное фракционирование для изотопа 13С, равное – 25‰ (древесина, уголь); д) калиброванные даты обозначаются как “cal BC” (калиброванные до нашей эры) или “cal AD” (калиброванные даты нашей эры), иногда также используется обозначение “cal BP”, где cal BP = 1950 – cal AD = 1949 + cal BC. Таким образом, практически задача определения возраста сводится к тому, чтобы выделить углерод образца и эталона и перевести его в удобное для счета активности состояние.
Как указано выше, дендрохронологические календари получены для различных временных интервалов и даже перекрывают эпоху голоцена. Путем измерения содержания 14С в абсолютно датированных кольцах деревьев можно сконструировать калибровочную кривую, и, таким образом, учитывать отклонение возраста исследуемого археологического или исторического образца, полученного с помощью радиоуглеродного метода, от календарного. Первая калибровочная кривая, более или менее связывающая индивидуальные точки измерений содержания 14С в серии колец деревьев известного возраста, была опубликована в 1967 году (Suess H.E. 1967).
В 1970-х годах выяснилось, что полученные ранее результаты измерений активности 14С в различных образцах, в ряде случаев, отличаются противоречивостью и несопоставимостью. Учитывая большие потенциальные возможности радиоуглеродного метода для распространенных по всему земному шару корреляций событий в археологии, геологии, геохимии, геофизике и т.д., чрезвычайно важно было определить степень доверия для пользователей этим методом, независимо от того, в какой лаборатории произведен анализ или получены первые результаты. Все это настоятельно требовало проведения сравнительных анализов, получаемых различными лабораториями результатов измерений.
Надежность экспериментальных результатов по измерению активности 14С определяется точностью измерений и правильностью анализа получаемых результатов. Если точность выражается как стандартная ошибка измерения, которую может дать каждая конкретная лаборатория, то определение правильного значения измеряемой концентрации 14С связано с техникой подготовки образцов к измерениям, самим измерением, с точной фиксацией уровня лабораторных измерений этой концентрации 14С относительно международного стандарта, что и привело к необходимости широкомасштабного межлабораторного перекрестного сравнения, проверки качества и унификации радиоуглеродных измерений в каждой лаборатории. Такое сравнительное изучение, основанное на добровольном и анонимном участии в организованных, а затем ставших регулярными межлабораторных проверках было начато в 1979 году, а первые итоги подведены в 1982 году, повторное – с участием 50 радиоуглеродных лабораторий было начато в 1982-1983 гг., а затем стало правилом регулярное проведение межлабораторных проверок, результаты которых обсуждаются на регулярных международных конференциях по радиоуглероду, созываемых один раз в три года. Основные итоги первых перекрестных межлабораторных проверок радиоуглеродных лабораторий были опубликованы в 1990 году (Cross check 14С, 1990).
Участвовавшим в проверке лабораториям удалось получить оценки экспериментальной точности и правильности проводимых ими анализов на всех стадиях осуществления эксперимента: от подготовки образца к измерению до непосредственных результатов измерений. Был сделан объективный анализ, определен круг лабораторий, производящих измерения активности 14С с высокой точностью. Это дало возможность перейти к построению более детальных калибровочных кривых. В целом, развитие мастер-хронологий годичных колец тесно связано с развитием калибровки радиоуглеродной временной шкалы. С 1986 года все последующие генерации кривых были основаны на высокоточных измерениях (стандартное отклонение, как правило, не превышало ± 20 лет). В 1986 году была опубликована специальная калибровочная кривая, рекомендованная для калибровочных целей и основанная на измерениях активности 14С в блоках колец (по 20 лет) непрерывной серии дендрохронологических данных по остистой сосне и ирландскому дубу и покрывающую последние 9200 лет (Stuiver M. and Kra R.S. 1986). В 1993 году была опубликована вторая калибровочная кривая, включающая дополнительные данные измерений, и покрывающая полностью эпоху голоцена (Stuiver M. et al. 1993).
Фактическое состояние высокоточных измерений 14С в непрерывных сериях дендрохронологических данных для целей калибровки радиоуглеродной шкалы проанализировано в работе (van der Plicht J. 1996) и отражено на рис. 4. Цифры справа указывают на временное разрешение (число колец) конкретной серии измерений. Линия 1 определяет наиболее длинную во времени часть непрерывной калибровочной кривой, полученной в Белфастском университете по серии измерений в блоках древесины ирландских дубов по 20 колец, охватывающую временной интервал 1840 г. н.э. – 5210 г. до н.э. (а), расширенную данными измерений в блоках немецких дубов до 7980 г. до н.э. (б). Линией 2 показан временной интервал измерений, выполненных в университете в Сиэттле, в блоках по 10 колец деревьев из США (а) и германских дубов (б) за интервал времени с 1945 г. н.э. по 6000 г. до н.э. с вдвое лучшим разрешением, чем предыдущие. Линией 3 изображена калибровочная шкала из результатов исследований, полученных в университетах Сиэттла и Белфаста и представляющих скомбинированные в 20-летнюю серию высокоточных измерений из данных по американским деревьям в 10-летних блоках и 20-летних блоках ирландских деревьев: участок а покрывает временной интервал 1940 г. н.э. – 2490 г. до н.э., данные затем были сначала расширены на интервале 2510-4990 гг. до н.э. (б), а затем продлены до 6000 г. до н.э. (в). Интервал погодичных измерений концентрации 14С в каждом кольце американской ели с 1510 по 1954 гг. определен в университете в Сиэттле и показан линией 4. Интервал с 1935 г. до н.э. по 3900 г. до н.э. (линия 5) покрыт измерениями концентрации 14С в германских дубах с временным разрешением от 1 до 4 лет, выполненными в университетах Гронингена и Претории. Линиями 6 изображены дополнительные данные измерений содержания 14С в деревьях остистой сосны вне 5000 г. до н.э., полученные в Аризонском университете на интервале лет 5355-5815 гг. до н.э. (а) и 6090-6550 гг. до н.э. (б) и в Сиэттле – 6440-7160 гг. до н.э. (с). Линией 7 представлены калибровочные данные, полученные в Гейдельбергском университете из германских хронологий по дубу, протянутых до 7875 г. до н.э. Линия 8 представляет предварительную калибровочную кривую, основанную на хронологии по сосне, охватывающую измерения концентрации 14С на интервале 7981-9439 гг. до н.э., выполненные в Гейдельбергском университете.
Рис. 4. Калиброванные различными лабораториями интервалы радиоуглеродной временной шкалы по дендрохронологическим данным.
На основе этих экспериментальных данных, полученных радиоуглеродным датированием образцов древесины календарного возраста, установлена калибровочная кривая (Рис. 5). В области существования радиоуглеродной калибровочной кривой, эти результаты используются, чтобы трансформировать получаемые на практике радиоуглеродные возрасты в календарные даты. Как видно из рисунка, радиоуглеродные даты оказываются моложе календарных; при этом, омоложение на шкале примерно с 1000 г. до н.э. составляет сотни лет и увеличивается до более чем тысячи лет в конце калибровочной кривой.
Рис. 5. Радиоуглеродная калибровочная кривая (радиоуглеродный возраст, годы BP), полученная датированием колец деревьев (календарные годы, BC/AD). Прямая линия означает равенство “радиоуглеродного” возраста абсолютному возрасту образцов (14С годы = дендрогодам).
Прогресс в радиоуглеродном датировании и точности калибровки позволяет разрабатывать калиброванные радиоуглеродные хронологии археологических объектов в ряде регионов, и, в первую очередь, для исторических времен. По-видимому, необходимость такой хронологии для археологии Ближнего и Среднего Востока не вызывает сомнения. Известно, что абсолютное датирование в археологии Ближнего Востока в конечном счете основывается на качестве и надежности исторических календарей Египта, Месопотамии и др. Египетский исторический календарь является главным для археологического датирования во многих частях Ближнего Востока, заметное положение также занимает хронология Месопотамии. Интерпретация древних записей часто приводит к различиям мнений среди экспертов. Возможны различные интерпретации этих древних источников, а часто и нельзя получить ответа относительно их надежности. Радиоуглеродное датирование является независимым от исторического датирования и поэтому может быть законным образом использовано в проверке и возможной коррекции древних исторических хронологий, при условии, что разрешение и точность радиоуглеродных измерений являются достаточно высокими. Как показывают исследования (Hassan F.A. and Robinson S.W. 1987), применение высокоточной радиоуглеродной калибровки дает радиоуглеродные даты образцов, которые находятся в прекрасном согласии с историческими датами до нашей эры (рис. 6). Конечно, необходимо получать тщательно отобранные серии десятков или даже сотен новых высокоточных дат, чтобы сформировать базы для развития калиброванной радиоуглеродной хронологии археологии того или иного региона.
Рис. 6. Усредненные радиоуглеродные даты для исторических образцов из Египта, Нубии, Месопотамии и Палестины. Открытые символы – отдельные даты, полностью заполненные символы – не менее четырех дат, заполненные на четверть – две даты и т.д.
Графический подход является практическим, но строго математически не является корректным и не обеспечивает всей возможной информации. Недавно разработаны корректные процедуры калибровки, которые в настоящее время широко используют в форме программ, сделанных для персональных компьютеров. Наиболее популярными являются программы: CALIB (Stuiver M. and Reimer P.J. 1986) и CAL20 (van der Plicht J. 1996), разработанные, соответственно, в университетах Сиэттла и Гронингена. Обе программы рассчитывают вероятность распределения калиброванных дат, используя так называемый принцип Байеса в статистической теории, и дают эквивалентные результаты. В целом, достигается международный консенсус относительно стандартной калибровочной процедуры и выражения результатов.
Улучшения в точности радиоуглеродных измерений поднимает вопрос о пределах радиоуглеродного датирования. Как показано в работе (Niklaus Th.R. et al. 1992), при доверительном интервале 2σ, представляющем математическое определение корректного возраста, неопределенность в радиоуглеродном датировании может быть уменьшена на ту же самую величину, как могут быть улучшены измерения радиоуглеродного возраста. Смещение в этом соотношении составляет около 40 календарных лет и равно нижнему пределу для средней ширины доверительных интервалов 2s , которые могут быть рассмотрены как нижний предел точности радиоуглеродного датирования. Из калибровки, используя различные ошибки для калибровочной кривой, можно увидеть только незначительные различия в средней ширине доверительных интервалов 2σ, что приводит к тому, что достаточна фактическая точность (1σ – 12 лет) калибровочной кривой вплоть до 6000 лет до н.э.
Извилистая форма калибровочной кривой (из-за мелкого масштаба плохо просматриваемая на рис. 5) усложняет перевод 14С дат в календарные. Наиболее сложная форма калибровочной кривой имеет место в окрестности ~300, ~2400, ~4500, ~7500, и ~9500 BP, что приводит к тому, что одному 14С возрасту могут соответствовать две или более календарные даты. Для радиоуглеродных возрастов в окрестности указанных дат улучшения в точности радиоуглеродных измерений не приводят к более высокой точности в радиоуглеродном датировании. Только большая детальность исследуемого материала в таких случаях может позволить сузить рамки точности определения возраста. В то же время резкие участки калибровочной кривой, связанные с существенными изменениями концентрации 14С в земной атмосфере, и которая, как показывают результаты исследований (Дергачев В.А. 1966), изменяются циклически с периодом около 2400 лет, могут служить реперами как для подгонки плавающих хронологий по древесине к абсолютным датам, так и для получения надежных датировок по торфяникам, а также и для создания хронологий по ленточным отложениям глин в озерах. Кроме ленточных глин, имеющих слоистую структуры, имеют абсолютный счет и слои льда в полярных областях.