355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Анатоль Абрагам » Время вспять, или Физик, физик, где ты был » Текст книги (страница 22)
Время вспять, или Физик, физик, где ты был
  • Текст добавлен: 3 октября 2016, 21:29

Текст книги "Время вспять, или Физик, физик, где ты был"


Автор книги: Анатоль Абрагам



сообщить о нарушении

Текущая страница: 22 (всего у книги 33 страниц)

Главное различие курсов в университете и в Коллеже заключается в том, что в университете слушатели меняются каждый год, а предмет, если и изменяется, как у лучших профессоров, то весьма мало, в то время как в Коллеже наоборот – публика мало меняется, а значит, должен меняться курс. У меня был накоплен большой материал о ядерном магнетизме и в первые годы в Коллеже я намного превышал норму устава, которая для кафедр с лабораторией, как моя, равна девяти лекциям и девяти семинарам под руководством профессора. (Много лет тому назад администратору пришлось напомнить одному профессору-«литератору», что «руководство семинаром» предполагает присутствие профессора на семинаре.) Профессору университета, который, может быть, считает, что это очень легкая нагрузка, я посоветовал бы попробовать в течение двадцати пяти лет читать каждый год новый курс искушенной и критически настроенной публике.

В первый год, полный юношеского азарта (ведь мне было всего сорок пять лет), я прочел двадцать семь лекций и провел пятнадцать семинаров, но постепенно угомонился и под конец приблизился к норме устава и ко всем моим коллегам. Надо было искать новые темы, т. е. новые для меня. С теперешней специализацией физики не ходят на лекции, предмет которых даже слегка отдален от их собственных интересов. Когда профессор Коллежа берется излагать тему, которая не совпадает с его собственными исследованиями, перед ним возникает щекотливая проблема: желательно, чтобы слушатели интересовались этой темой и даже сами работали бы над ней, потому что иначе они не придут на лекции; но нежелательно, чтобы они знали предмет гораздо лучше профессора, который тогда ежеминутно рискует потерять свое лицо.

Для новичка-профессора единственной возможностью заинтересовать слушателей-специалистов является тогда оригинальное изложение, к которому специалисты не привыкли. Иногда мне это удавалось. Конечно, очень важно, чтобы эта тема интересовала самого профессора. Из моих двадцати трех курсов не более половины были посвящены самому ядерному магнетизму, хотя все так или иначе имели дело со спинами. Двадцать три курса, а не двадцать пять, потому что профессор Коллежа может при желании воспользоваться «саббатическим» отпуском (впервые так названным в американских университетах, где он дается каждый седьмой год), т. е. освободиться на год от обязанности преподавать, обыкновенно, чтобы путешествовать, и я дважды брал такой отпуск.

Иногда выражается мнение, что для Коллежа обязанность преподавать – пережиток прошлого, который отнимает драгоценное время у научной работы, и который надо упразднить, как это делается в некоторых выдающихся исследовательских учреждениях. Я считал бы это опасной ошибкой: обязанность преподавать каждый год курс, способный заинтересовать научных работников, младших или старших, – лучшее противоядие от окостенения или просто безделья. Так легко ничего не делать тому, кто поднялся на известный уровень научной иерархии и «руководит» работой других! Минута правды наступает тогда, когда стоишь перед слушателями и замечаешь зевающие рты или отсутствующие взгляды, и нет обиды хуже этой. Все предыдущее сказано для того, чтобы объяснить, боюсь слишком длинно, почему мои лекции толкали меня к «горизонтальности».

Четвертой причиной является сама природа ядерного магнетизма, который сам по себе или через его применения соприкасается с невероятным числом других предметов: всей физикой конденсированного состояния, статистической механикой, физикой ядерной и элементарных частиц, сверхнизких температур, химией, биологией, а сегодня, благодаря ЯМР-изображению, с клинической медициной. Все это превращает специалиста по ядерному магнетизму в человека эпохи Возрождения, как я напыщенно назвал его в своей вступительной лекции.

*Поляризованные пучки и мишени

Самым наглядным примером симбиоза моей и чужой физики является проблема поляризованных пучков и мишеней. Я работал над этой темой в близком сотрудничестве с моим «подчиненным», физиком-ядерщиком Жаком Тирьоном, а позже с ЦЕРН'ом. В чем там дело? Как я уже объяснял, в ядерной физике обстреливают мишень пучком частиц из ускорителя и изучают столкновение между частицей пучка и частицей мишени. Игроки в бильярд знают, что, если придать шару кием вращение (по-английски спин), это изменит результат столкновения с другим шаром. Большое число атомных ядер, в том числе протоны и дейтроны, имеют внутренний спин, что аналогично вращению бильярдного шара вокруг оси, и результат столкновения одной из этих частиц с мишенью будет зависеть от ориентации спина по отношению к направлению пучка. Обыкновенно пучки частиц не поляризованы, т. е. направления их спинов беспорядочны, и в столкновении пучка с мишенью наблюдается усреднение по всем ориентациям спинов. Из-за этого теряется информация. Желательно оперировать с поляризованными пучками, где все спины имеют одну и ту же определенную ориентацию.

В начале шестидесятых годов я придумал оригинальный метод получения поляризованных пучков, основанный на использовании радиочастотных полей с учетом моей старой знакомой – сверхтонкой структуры атома. Эта структура, обусловленная связью между ядерным магнитным моментом и гораздо большим электронным, действует как рукоятка, которой можно перевернуть ядерный момент посредством электронного. Это если не тот же метод, то, по крайней мере, та же идея, как ДЯП солид-эффектом, где электронная поляризация передается ядерным спинам. В результате нашего сотрудничества ребята Тирьона успешно построили источник для поляризованных пучков.

Но чтобы успешно употреблять наш поляризованный источник для ядерных реакций, его надо было сочетать с другим устройством – поляризованной мишенью. В бильярдном столкновении довольно легко придать кием шару спин (в английском смысле слова), но не ясно, как обеспечить тем же спином шар, в который метишь. (Правила бильярдной игры об этом умалчивают.) В нашей лаборатории мы называли эту вторую, более трудную часть проблемы «принцессой Маргарет», следуя анекдоту, рассказанному нашим другом Арни.

Принципом поляризованной мишени мы овладели несколько лет тому назад: это был «солид-эффект». Оставалось решить нелегкую техническую задачу построения мишени операционной, как говорят военные. Эта мишень пропускала протоны малой энергии (от 10 до 20 МэВ) и, значит, была очень тонкой (толщиной 0,1 мм), была окружена радиочастотной катушкой для измерения протонной поляризации, находилась внутри миллиметрового резонатора и была охлаждена до 1 K в криостате, введенном в зазор магнита, который создавал поле в 2 Тесла. Без помощи нашего одаренного инженера-криогенщика Пьера Рубо, бывшего морского офицера, и его искусного помощника Кустама не знаю, справились ли бы мы с этой задачей. Наконец, мы добились успеха, и в 1962 году физики Тирьона осуществили первый в мире эксперимент по рассеянию поляризованного протонного пучка на поляризованной протонной мишени, построенный по моему методу.

Желая найти клиентов для наших «товаров», я предлагал нашу технику нескольким французским ядерщикам. Все казались заинтересованными, но все придумывали какие-то сложные хитроумные эксперименты, которые было бы трудно осуществить даже с обыкновенной мишенью без осложнений, связанных с поляризацией. Их поведение напоминало мне следующий анекдот. Акробат ходит по натянутому канату на высоте в двадцать метров, на плечах у него сидит ребенок, а на голове зажженная керосиновая лампа; в руках у него скрипка, на которой он играет Крейцерову сонату (рояль надо полагать, остается внизу). Критически настроенный зритель замечает: «Да, это не Ойстрах».

От ядерной физики низких энергий мы перешли к мишеням для физики высоких энергий, где мы близко сотрудничали с физиками ЦЕРН'а. Трудности здесь были диаметрально противоположными. Вместо очень тонких мишеней и всех трудностей, связанных с этим, наши новые клиенты желали располагать как можно большими мишенями. Они готовы были «купить» мишень объемом до литра, т. е. в миллион раз большим, чем у нашего прежнего творенья. В некоторых отношениях это было даже легче при наличии надлежащей аппаратуры, электронной, криогенной, магнитной и механической, из которой немалую часть предоставил нам ЦЕРН. Зато усложнением являлась необходимость увеличить в мишени долю «свободных» протонов, т. е. не связанных в ядрах других элементов. Наконец, требовалось увеличение скорости роста поляризации и скорости ее переворачивания. Это привело к поискам подходящих парамагнитных примесей с очень быстрой релаксацией, позволяющей им успешно справляться с обязанностями «царя Соломона».

В то же время развивалась и теория динамической поляризации. Оказалось, что ширина линий ЭПР парамагнитных примесей была слишком велика для применения упрощенной модели солид-эффекта, и пришлось вырабатывать более утонченные теории. Пионерами этой теории, слишком сложной, чтобы ее здесь объяснять, явились советские физики Провоторов и Буишвили, а позже многие другие (в частности, и на Западе), в том числе мои сотрудники Соломон и Гольдман, да и я сам. Кроме того, есть еще и другие эффекты, о которых я только упоминаю, как, например, «узкое горло», фононное, хорошо знакомое в ЭПР релаксации, которое еще сильнее усложняет теорию. В обширной монографии, написанной с Гольдманом и вышедшей в 1982 году (есть русский перевод), мы дали подробное и, признаюсь, довольно неудобоваримое изложение теории ДЯП.*

В течение пятнадцати лет физики высоких энергий, возглавляемые Оуэном Чемберленом, который был награжден Нобелевской премией в 1959 году за открытие антипротона, проявляли большой интерес к поляризованным мишеням. Даже Карло Руббиа, получивший Нобелевскую в 1984 году за открытие W и Z бозонов, сотрудничал с нами некоторое время. Завязалось активное сотрудничество между физиками низких температур и резонанса, с одной стороны, и физиками высоких энергий, с другой. Все разделяло их и, прежде всего, гигантский скачок энергии в 1015 раз. Несмотря на это различие, было организовано немало совместных конференций в Сакле, Беркли, Чикаго, Харуэлле, Брукхейвене, Женеве, Лозанне и т. д. На этих конференциях для нас, «резонаторов», проблемным был вопрос: «как поляризованные мишени осуществить», для них, физиков высоких энергий, проблемным был вопрос «зачем поляризованные мишени строить». Это было столкновение двух культур, столкновение легкой и тяжелой науки.

Чемберлен не раз высказывал мнение, что поляризованным мишеням суждено сделаться для физики высоких энергий орудием, подобным пузырьковой камере, изобретение которой принесло Дональду Глазеру Нобелевскую в 1960 году. Слыша такие речи и видя глубокий интерес физиков высоких энергий к поляризованным мишеням – изобретению, по-моему, гораздо более остроумному и изощренному, чем пузырьковая камера, – возбуждали у физиков высоких энергий, так ли уж удивительно, что и я порой мечтал о поездке в Стокгольм. В своих мечтах я охотно делил награду с моим соперником и хорошим другом профессором Карсоном Джефризом (Carson Jeffries) из Беркли, который другим путем тоже пришел к идее и реализации поляризованных мишеней. Более того, в этих несовершившихся мечтах я тайно рассчитывал на хорошо известное искусство физиков Беркли проталкивать своих, а значит, и Джефриза, на Нобелевскую, которую тогда уже нельзя было бы не разделить между нами.

(Здесь я открою маленькую скобку: когда ЦЕРН начал интересоваться поляризованными мишенями, там составилась партия обожателей Америки, которые ратовали за то, чтобы выписать поляризованные мишени из Беркли, вместо того чтобы пользоваться нашими. В докладе в ЦЕРН'е, где я агитировал за наши мишени, я рассказал следующий анекдот. Во время войны с японцами некоторые американские войска были переведены в Австралию. Невеста одного из солдат, сомневаясь в верности возлюбленного, написала ему: «Что там есть такого у этих австралийских девиц, чего нет у меня?» На что он ответил: «Ничего, дорогая, но уних это здесь».)

Ничего из этих мечтаний не вышло по одной простой причине: Чемберлен и коллеги, которые разделяли его мнение, ошибались. Из поляризованных мишеней вышло несколько результатов интересных, но отнюдь не фундаментальных, подобных тем, что были получены на пузырьковой камере. Сегодня эти мишени мало кого интересуют, кроме некоторых энтузиастов, которые еще ведут борьбу в арьергарде и публикуют странные, труднообъяснимые результаты. Во всяком случае, как я объяснил в главе «Ускорители и резонансы», общий интерес передвинулся от любых неподвижных мишеней, поляризованных или нет, на коллайдеры. В заключение скажу, что я создал для рынка прекрасное изделие, на которое, вопреки ожиданиям, оказался малый спрос.

Во всяком случае все это скобяное и водопроводное дело, связанное с поляризованными мишенями для высоких энергий, мне смертельно надоело даже до того, как выяснилось падение спроса на них. Для моей любимой дочки – динамической поляризации в твердых телах – я имел в виду других женихов, но об этом позже.

Что касается неуловимой Нобелевской, я любил рассказывать товарищам следующую историю. Мать часто у меня спрашивала: «Почему все получают Нобелевскую, а у тебя ее нет?» На что я отвечал: «Мама, я не Жан Поль Сартр. Когда я отказываюсь от Нобелевской, я это делаю так, чтобы никто об этом не слышал». Это, конечно, дважды выдумка: во-первых, тот, кто прочел написанное в этой книге о маме, поймет, что подобный вопрос от нее немыслим; во-вторых, отказ Сартра от Нобелевской премии, окруженный неслыханной рекламой, произошел через два года после кончины мамы.

Интересно заметить, что в 1933 году, когда Дирак был награжден Нобелевской премией, он хотел от нее отказаться, потому что ненавидел рекламу. Резерфорд уговорил его этого не делать, уверив, что отказ сделает еще большую рекламу. Сартра подобные соображения не смущали.

*Ядра без отдачи

Есть область физики, в которой лично я почти ничего не сделал, но которая меня очень заинтересовала, как только она появилась – испускание и поглощение излучения атомными ядрами без отдачи, или, как это названо по имени физика, открывшего это явление, – эффект Мёссбауэра. Вот в чем заключается его принцип. Атомное ядро А может перейти из возбужденного состояния | е > в основное состояние | g >, испуская гамма-квант с энергией Е. Ядро В, находящееся в основном состоянии | g >, может поглотить этот квант и перейти в возбужденное состояние | е >. Это – явление резонансного поглощения, широко известное в оптике. Но в случае ядерного излучения появляется затруднение. Во время эмиссии, чтобы выполнялся закон сохранения количества движения, на отдачу ядра А уходит энергия R за счет кванта гамма-луча, который уносит лишь энергию E′ = (E – R). Аналогичное рассуждение показывает, что для возбуждения ядра В потребуется энергия E″ = (E + R). Получается расхождение в 2R между энергией луча и той, которая требуется для возбуждения ядра В. Таким образом, резонансное поглощение может произойти только в том случае, если уровни достаточно широки и энергия гамма-квантов достаточно «размазана», чтобы покрыть расхождение 2R. В оптическом резонансе так оно и есть, но не в ядерном, где уровни энергии гораздо ýже.

Например, для ядра 57Fe его подробно изученный переход с энергией 14,4 кэВ имеет естественную ширину Д ≈ 4,6 10-9 эВ, в то время как энергия отдачи R к 2 10-3 эВ, т. е. на шесть порядков величины больше. Все это было известно до Мёссбауэра, и физики-ядерщики уже давно старались искусственно увеличить ширину перехода, сообщая ядрам кинетическую энергию порядка 2R. Это делалось увеличением температуры или источника, или поглотителя, или их обоих. Британский физик Филип Мун (Philip Moon) пытался даже передать ядрам источника кинетическую энергию 2R, помещая источник на окружности быстро вращающегося колеса, как будто метая гамма-частицу пращой.

В конце пятидесятых годов молодой немецкий физик Рудольф Мёссбауэр поставил опыт, в котором он понизил температуру источника (или поглотителя, не помню которого из них) радиоактивного изотопа 191Ir, вместо того чтобы ее повысить, как делали все, и к своему удивлению наблюдал, что поглощение вместо того, чтобы уменьшиться, как ожидалось, увеличилось. Его главная заслуга заключается в том, что он не только обнаружил, но и объяснил это замечательное явление.

На самом деле объяснение было известно и даже давно опубликовано, но не было замечено из-за необыкновенной слепоты всех тех, кто до сих пор занимался этим делом. Все рассуждения велись так, как будто радиоактивные атомы находятся в газе без взаимодействий. В твердом же теле, если энергия отдачи невелика по сравнению с энергией колебаний атомов в образце (что соответствует так называемой частоте Дебая), отдачу испытывает не атом, а весь образец, унося при этом энергию R′, которая пренебрежимо мала. Это верно и для поглотителя. Понижение температуры в эксперименте Мёссбауэра уменьшало вероятность испускания или поглощения фононов одновременно с отдачей ядра, что могло бы размазать необыкновенно узкое поглощение или испускание ядерного излучения.

Замечательно, что в 1939 году, за двадцать лет до открытия Мёссбауэра, Уиллис Лэмб (Willis Lamb) опубликовал полную теорию этого эффекта, правда для нейтронов, а не для гамма-квантов, но принцип там тот же. Что еще любопытней, это то, что Мун, тот, который метал гамма-кванты пращой, советовался с Пайерлсом в связи с этой проблемой и что тот рекомендовал ему почитать статью Лэмба. Что касается самого Лэмба, когда я однажды сказал ему в шутку: «Проморгали вы еще одну Нобелевскую» (первую он получил за несколько лет до того за открытие так называемого «лэмбовского сдвига», которое привело к возрождению квантовой электродинамики), он отозвался на эту дружескую шутку с горечью; очевидно, был не прочь получить вторую.

Два американских физика повторили эксперимент Мёссбауэра, подтвердили его результаты и опубликовали их в «Physical Review Letters», что, наконец, привлекло внимание всех к этому открытию, в том числе и мое. Замечательно, что вместо того, чтобы проделать опыт на каком-нибудь другом ядре, тем более, что на многих других эффект гораздо нагляднее, чем на 191Ir, они повторили опыт на том же ядре. Они просто не поверили результатам Мессбауэра и хотели показать их ошибочность.

Невероятная тонкость мёссбауэровских линий, как они теперь называются, привела к совершенно новому методу развертки. Хорошо известно, что из-за так называемого допплер-эффекта частота Ω источника, приближающегося к поглотителю со скоростью v, покажется поглотителю смещенной на Ω (v/с), где с – скорость света. Естественная ширина мёссбауэровской линии, скажем в 57Fe, 2Д и 10-9 эВ, и ее относительное значение, X = (2Δ/Ω), где Ω = 14,4 кэВ – энергия перехода, равно X ≈ 7 10-13! Из этого следует, что изменение относительной скорости источника и поглотителя, необходимое, чтобы пройти через линию, равно ν = сХ = 3 1010 7 10-13 ≈ 0,02 см с-1. На самом деле несовершенство решетки, спин-спиновые взаимодействия внутри образца и конечная толщина источника и поглотителя несколько расширяют линию: значение ее относительной ширины в 57Fe будет ближе к 2 10-12, чем к 7 • 10-13. Я привожу все эти подробности потому, что они потребуются немного позже.

Приведенные выше данные явно переводят изучение эффекта Мессбауэра в область легкой и даже ультралегкой науки. Как только я услышал об этом эффекте, я стал о нем размышлять, потому что он мне страшно понравился чисто с эстетической точки зрения, и я посвятил ему тринадцать лекций в моем первом курсе в Коллеже. Я записал лекции на французском языке. Несмотря на это, один американский издатель выпустил их отдельной книжкой. Говорят, что в нее иногда заглядывают до сих пор. Физики-ядерщики, которые пришли в большом числе на первую лекцию, скоро убедились, что эффект Мессбауэра не для них, а для физиков твердого тела.

В моей лаборатории Соломон из подручных материалов и приборов, одолженных в соседних лабораториях, смастерил за несколько дней аппарат, с помощью которого он смог наблюдать спектры некоторых соединений железа. Мое знакомство с теорией сверхтонкой структуры помогло ему в объяснении результатов. Независимо от других он обнаружил так называемый изомерный сдвиг, который, как я показал, аналогичен изотопическому сдвигу в оптических спектрах и объясняется разницей радиусов ядра в основном и в возбужденном состояниях. Я также показал, что знак квадрупольного момента ядра железа 57Fe в первом возбужденном состоянии, приводившийся в литературе, ошибочен.

Эта область физики, где собралась куча народу, довольно скоро надоела нам с Соломоном. Моим главным вкладом в эффект Мессбауэра я считаю то, что уговорил заняться им молодого одаренного французского физика Пьера Эмбера (Pierre Imbert), искавшего в ту пору тему. Сегодня его лаборатория одна из лучших в мире.

*Красное смещение

В заключение я хочу рассказать историю наблюдения с помощью эффекта Мессбауэра явления, называемого «красным смещением». Это сдвиг частоты электромагнитного излучения в гравитационном поле; он был предсказан Эйнштейном, так же как и отклонение луча света под действием гравитационного поля, которое наблюдалось впервые Эддингтоном во время солнечного затмения в 1919 году. Необыкновенная узость мёссбауэровских линий создала в первый раз возможность наблюдать воздействие гравитации на электромагнитное излучение в лаборатории. Принцип эксперимента очень прост. Представим себе источник и поглотитель гамма-лучей в земном гравитационном поле с ускорением g, первый выше второго на расстояние h. Наивно, но в общем законно можно сказать, что гамма-фотон «падает» с источника на поглотитель, что при «падении» его энергия увеличивается и что относительное значение этого увеличения, т. е. относительное значение смещения его частоты, равняется (gh/c2). В данном случае это не красное, а синее смещение; чтобы сделать его красным, достаточно поменять местами источник и поглотитель. Для высоты в двадцать метров красное смещение 2 10-15, т. е. приблизительно одна тысячная относительной ширины мёссбауэровской линии в 57Fe.

Возникает вопрос: возможно ли наблюдать (и измерять) смещение линии, равное одной тысячной ее ширины? Роберт Паунд первый опубликовал подробное обсуждение возможности подобного эксперимента, который он намеревался осуществить в своей лаборатории. Ввиду интереса, который возбуждает в широкой публике все, связанное с теорией относительности, этим предложением заинтересовалась пресса, и «Нью-Йорк Таймс» взяла у Паунда интервью, которое появилось на первой странице газеты. В среде физиков поднялся гвалт: «Не он-де один придумал этот эксперимент, и неприлично выскакивать вперед, да еще на страницах газеты, с тем, что пока еще является лишь неосуществленным проектом». Паунда эти нападки очень огорчили, но, как увидим ниже, он взял блестящий реванш.

Несколько месяцев спустя группа британских физиков из Харуэлла (того самого государственного атомного центра, где когда-то работал злополучный Фукс, и отношения с которым когда-то боялся испортить лорд Чаруэлл, допустив меня к профессуре в Оксфорде) опубликовала результаты первого измерения красного смещения. Им удалось наблюдать и измерить красное смещение в 57Fе; знак и порядок величины наблюдения соответствовали теории. За последние годы звезда Харуэлла слегка поблекла в глазах британской публики, и начальство центра сделало этому открытию, может быть, чрезмерную рекламу, организовав интервью участников по радио и их пресс-конференцию.

Вот когда произошло то, что я лично называю первым эффектом Джозефсона. Юный кембриджский студент Брайан Джозефсон (Brian Josephson), прочитав в прессе отчеты об успешном харуэллском эксперименте, был обуян сомнениями. Он открылся в оных своему наставнику (в Оксфорде и Кембридже их зовут tutors). Тот нашел его соображения правильными и посоветовал Джозефсону написать о них харуэллским физикам. Те, прочтя письмо, пришли в ужас, да и было от чего. Джозефсон доказывал очень простыми доводами, что различия температуры в один градус между источником и поглотителем было достаточно, чтобы произвести смещение порядка самого красного смещения. А несчастным даже в голову не приходило измерять систематически и тем более регулировать это различие. Ясно, что их измерениям была грош цена.*

Что было дальше, я рассказываю со слов Уолтера Маршалла (Walter Marshall), позже лорд Маршалл стал заведующим всей британской программой по атомной энергии. Харуэллские чины ринулись к телефону звонить Джозефсону в его Кембриджский колледж. Попросили к телефону доктора Джозефсона. «Нет у нас такого», – кратко ответил привратник колледжа. «Может быть, он не доктор?» – догадался один из чинов. – «Да, у нас есть студент Джозефсон». – «Попросите, пожалуйста, его к телефону». – «Студентов к телефону не зовем», – и повесил трубку. Чины и физики «затолкались» в две официальные машины и помчались в Кембридж (добрых сто километров от Харуэлла), где Джозефсон подтвердил им устно более подробно то, о чем он им уже писал. Краска на лицах была куда краснее смещения.

Все это время мой друг Паунд работал над своим экспериментом, но, очевидно, «тщательней», чем в Харуэлле. Наблюдая не воспроизводимость результатов своих измерений, он догадался о роли температуры и пришел другим путем к тому же заключению, что и Джозефсон. Он тщательно регулировал температуру и добился воспроизводимого результата, совпадавшего в пределах погрешностей опыта с предсказанием Эйнштейна. Его доклад на конференции стал триумфальным; никто другой не смог представить надежного результата.

Ну а Джозефсон? Он появился на конференции, посвященной эффекту Мёссбауэра, котоорую я организовал в Сакле в 1961 году, и где, покрыв себя славой в харуэллском сражении (или кораблекрушении), был одним из почетных гостей. Он был очень молод, выглядел совсем мальчиком и упорно молчал. Как всем известно, еще большая слава пришла к нему после открытия «настоящего» эффекта Джозефсона в области сверхпроводимости, за что он был награжден Нобелевской премией в 1973 году. И, как не всем известно, он с тех пор стал заниматься такими предметами, как парапсихология или так называемый телекинез (передвижение предметов мыслью), на горе своим поклонникам и на радость разным чудакам и жуликам.

На нашей Мёссбауэровской конференции присутствовал шведский физик Ивар Валлер (Ivar Waller), представитель Нобелевского комитета, постоянно ищущий по всему свету возможных лауреатов. Я ему объяснил, почему считаю таковым Мёссбауэра. Очевидно, не я один был такого мнения, потому что Мёссбауэр был награжден в том же году, тридцати двух лет от роду.

На каком-то собрании Жюль Герон говорил о трагедии получивших Нобелевскую слишком рано, а я не удержался и сказал: «Благодарим Бога за то, что он отвел от наших уст эту чашу». Но, несмотря на дурацкий характер его замечания, в нем есть крупица правды. Слишком часто юные Нобелевские лауреаты высыхают, охваченные вихрем почестей или власти, или, быть может, потому, что бросают свои прежние исследования и изнуряют себя в бесплодных поисках «второго» открытия такого же масштаба. Возможно, так оно было с Джозефсоном. Но не так это было с Мёссбауэром. Слава не вскружила ему головы. Хотя он не уклонялся от ответственности (он был одним из первых директоров ИЛЛ, т. е. международного Института Ланжвена – фон Лауэ, основанного на использовании исследовательского реактора, построенного в Гренобле Францией, Германией и Великобританией), он в течение многих лет работал усердно и умно над применениями …эффекта Мёссбауэра. (Теперь он занимается физикой нейтрино.)

Вернемся на минуту к его открытию. Открытие безусловно было достойно Нобелевской премии; за это ее и дают – за открытия. Почти тридцать лет спустя я все еще убежден, что оно заслуживало премии, чего не могу сказать о некоторых других открытиях, подобно награжденных. Но что придало открытию Мёссбауэра особую важность, так это существование радиоактивного изотопа 57Fe. Все в этом изотопе, от его изотопического изобилия до замечательных особенностей его распада, а также то, что это изотоп железа, сделало из него, как по заказу, отборное орудие для химии, металлургии, магнетизма, а с изучением гемоглобина и для биологии. Мессбауэр сделал свое открытие не на этом изотопе, и само его существование оказалось замечательно счастливой случайностью. Ну и что? Иногда говорят, что Нобелевская премия – это лотерея, в некоторой степени это так и есть. Но, как в любой лотерее, чтобы выиграть, нужен билет, а он далеко не у всех имеется. У Мессбауэра билет, безусловно, был.

Еще два воспоминания в связи с ИЛЛ. Однажды в Гренобле Мессбауэр организовал для меня осмотр института. Очевидно, желая доставить мне удовольствие, он собрал всех сотрудников, которые когда-либо занимались ЯМР, чтобы они мне рассказали о обо всем, что они делали в этой области. После визита он захотел узнать мои впечатления, на что я ответил словами (конечно, вымышленными) лорда Чемберлена, ответственного за нравственность лондонских театров: «Зачем мне ходить в театр, чтобы смотреть на адюльтер, мужеложство и кровосмешение, когда я все это могу найти дома». Я не уверен, что Мессбауэр понял, что именно я хотел этим выразить, так как он спешил на заседание.

Второе воспоминание тоже связано с ИЛЛ и с немцами, но без Мессбауэра. Я был одним из крестных отцов ИЛЛ, и вначале мы вели переговоры только с Германией; англичане вошли в ИЛЛ (как и в другие европейские предприятия, Общий рынок и ЦЕРН) с большим опозданием. Заседания были двуязычные, с синхронным переводом. Наш (КАЭ) административный директор нашел, что в организации, предлагаемой немцами, было слишком много начальников и слишком мало исполнителей. «Что это за мексиканская армия?» – спросил он (выражение, которое употребляется по-французски в этом смысле). «Welche Mexikanishe Wehrmacht? Warum Mexikanishe Wehrmacht?» – завопили немцы, услышав перевод.

*Магический кристалл

В области динамической ядерной поляризации (ДЯП) есть одна забавная вещица, которую я придумал во время пребывания в Оксфорде зимой 1962–1963 года. Вот что это такое. Если быстро вращать в магнитном поле кристалл, погруженный в жидкий гелий, через пару минут ядерная поляризация, скажем у протонов кристалла, увеличивается в сто раз или больше по сравнению с ее величиной при тепловом равновесии. Забавно, не правда ли? Почему? – «Элементарно, дорогой Ватсон»: кристалл легирован очень анизотропными парамагнитными примесями. Когда магнитное поле параллельно известной оси А кристалла, их ларморова частота Ω сравнима с частотой свободного электрона, т. е. на три порядка выше, чем у протона. Благодаря своей быстрой релаксации спины примесей быстро достигают своей равновесной поляризации, которая тоже на три порядка выше, чем у протонов. Вдоль другой оси В, ортогональной оси к А, ларморова частота примесей равняется нулю (в редкоземельной группе есть несколько таких парамагнитных ионов).


    Ваша оценка произведения:

Популярные книги за неделю