Текст книги "Жизнь животных, Том III, Пресмыкающиеся. Земноводные. Рыбы"
Автор книги: Альфред Эдмунд Брем
Жанр:
Биология
сообщить о нарушении
Текущая страница: 61 (всего у книги 64 страниц)
Рекомендованная литература: Ч. Дарвин. АВТОБИОГРАФИЯ. М., 1957
История биологии с древнейших времен до наших дней. М., Наука, 1972
Стр. 360, вставка 44
Сейчас – тип Губки
Губки настолько своеобразны, что долгое время не знали, куда их отнести – к растениям или животным. Вплоть до ХУШ века они вместе с другими прикрепленными морскими сидячими формами (оболочниками, актиниями и т.д.) относились к особому разделу зоофитов, т.е. животных-растений. Однако уже со второй половины ХУШ века была точно определена их принадлежность к животному царству, но их стали считать колониальными одноклеточными. Лишь работы, начало которым положил русский ученый И. И. Мечников, достоверно была определена их принадлежность к многоклеточным.
Илья Ильич Мечников
(15. 05. 1845, село Ивановка Купянского уезда Харьковской губернии – 16. 06. 1916, Париж)
Зоолог, натуралист, микробиолог, создатель теории фагоцитоза, лауреат Нобелевской премии
Родился Мечников 15 мая 1845 г. в
имении под Харьковом куда отец Мечникова – гвардейский офицер – перебрался из Санкт-Петербурга. в г. Харькове окончил гимназию и университет – естественное отделение физико-математического факультета и здесь же в возрасте 18 лет написал на кафедре физиологии медицинского факультета у проф. Щелкова свою первую научную работу «О сократимости стебля у вортицеллы». В 19 лет юноша заканчивает университет и, благодаря хлопотам знаменитого хирурга Николая Ивановича Пирогова получает двухгодичную стипендию и отправляется в Неаполь на стажировку. Там под влиянием известного зоолога Александра Онуфриевича Ковалевского он становится убежденным дарвинистом и, стремясь доказать на основе теории эволюции родство всех видов животных, совместно с Ковалевским разрабатывает начала новой науки – сравнительной эмбриологии. Открытия Мечникова и Ковалевского в этой области отмечены первой Бэровской премией.
В 22 года Мечников защищает диссертацию «История развития моллюска Sepiola» и становится магистром зоологии Одесского (Новороссийского) университета, однако вскоре, неполадив с начальством, перебирается в Петербург. Но и тут его неуживчивый характер дает себя знать – забаллотированный в медико-хирургическую академию, Мечников возвращается в Одессу, успев, однако, защитить докторскую диссертацию и в 24 года принимает кафедру зоологии Одесского университа. Здесь он вновь вступает в серьезный конфликт с профессорско-преподавательским составом (на сей раз – по политическим мотивам) и уходит в отставку, а в 1885 году руководит созданием второй в мире (после парижской) и первой в России пастеровской станции и организованной при ней бактериологической лаборатории г. Одессы. Он вступает в переписку с Луи Пастером и в 1887 году по приглашению Пастера переезжает в Пастеровский институт в Париже, где заведует отделением научных изысканий. Здесь он и работал до самой смерти, удостоившись признания таких крупных ученых, как Луи Пастер, Чарльз Дарвин, Иван Михайлович Сеченов. Однако же Россию Мечников не забывал – так, когда в начале 90-х в России стала распространяться холера, он, бывший в то время в Киеве, принял участие в борьбе с этой болезнью. Неоднократно участвовал он и в экспедициях в Калмыцкие степи, где были распространены природные очаги чумы.
При жизни Мечников удостоен звания почетного члена Кембриджского университета, Лондонского королевского общества, Парижской медицинской академии, Российской академии наук и Военно-медицинской академии, лауреата Нобелевской премии (в 1908 году за труд "Иммунитет при заразных болезнях").
Среди его научных достижений разработка теории фагоцитоза (клеточного иммунитета), открытия совместно с Ковалевским общих для всех животных эмбриональных стадий и зародышевых листков, борьба с чумой и туберкулезом, опыты по самозаражению холерой в доказательство своей теории, начала геронтологии (науки о старости).
Рекомендуемая литература:
С.А. Блинкин. Мечников. М., Просвещение, 1972.
Стр. 361, вставка 45
Сейчас губки делятся на 3 класса – известковых, стеклянных или шестилучевых и обыкновенных губок. Роговые губки сейчас относятся к обыкновенным. Всего в современной фауне насчитывается ок. 5 000 видов губок.
Стр. 361, вставка 46
Мелкие депигментрированные образования, по преимуществу глубоководные, редко превышающие 7 см в высоту.
Стр. 362, вставка 47
Сейчас стеклянных губок выделяют в отдельный класс
Стр. 362, вставка 48
Иначе – обыкновенные губки
Стр. 363, вставка 49
Сейчас искусственные плантации губок созданы в Адриатическом море, а также у берегов Флориды и Японии. Для этого используют (как и во времена Брема) способность губок к восстановлению из фрагментов – губки разрезают на кусочки и культивируют в подходящих местах на дне, иногда – в специально огороженных бассейнах.
Стр. 364, вставка 50
Рекордсменом является морской ерши Асбестоплумак, достигающий максимальных глубин океана – 10 000-11 000 м.
Стр. 364, вставка 51
Иначе – морской апельсин
Стр. 364, вставка 52
Иначе Cliona
У нас этих губок-сверлильщиков можно встретить в Черном море. Она часто поражает устричные раковины – такие раковины можно встретить на берегу после шторма. Для того, чтобы предотвратить заражение устриц на искусственных плантациях вместо подстилки используют обломки кирпичей, на которых клиона не селится – она поражает только известковые материалы.
Стр. 365, вставка 53
Сейчас – класс стеклянных или шестилучевых губок Hyalospongiae, особая группа по преимуществу глубоководных губок
Стр. 365, вставка 54
Сейчас – подцарство царства животных – простейшие или одноклеточные
Стр. 366, вставка 55
Основное различие между животными и растительными организмами на этой стадии – тип питания. Животные одноклеточные – гетеротрофы, т.е. потребляют уже готовые органические вещества. Среди них много паразитических форм. Одноклеточные растительные организмы – авторофы – синтезируют сложные органические вещества на основе углекислого газа и воды, как побочный продукт, выделяя кислород. Этот процесс носит название фотосинтеза (источник энергии – солнечный свет) либо хемосинтеза (источник энергии – химические реакции). Кроме того между животными и растительными клетками наблюдается ряд принципиальных отличий на уровне клеточных структур.
Стр. 366, вставка 56
Некоторые современные систематики подразделяют царство одноклеточных на 5 типов (в том числе и тип инфузорий), каждый из которых в свою очередь, состоит из нескольких классов. Некоторые сохраняют за инфузориями ранг класса. В любом случае это обширная группа, включающая наиболее сложно устроенных простейших и насчитывающая ок. 6 000 видов.
Стр. 366, вставка 57
Энтони ван Левенгук
(Аntone van Leeuwenhoek)(24.10.1632, Делфт – 26.8.1723, Делфт)
Голландский естествоиспытатель, создатель микроскопа, первооткрыватель микромира, основатель микробиологии
Казалось, вся жизнь этого юноши, родившегося в семье уважаемых пивоваров определена заранее. Действительно, проучившись в школе до 15лет, юный Антони уезжает в Амстердам, где поступает на работу в лавку – служит там бухгалтером и кассиром, учится торговому делу. На 21 году жизни он возвращается в Делфт, открывает собственную мануфактуру и ведет жизнь почтенного семейного бюргера. Но у этого практичного, «делового» человека было увлечение, прославившее его в веках.
Когда Левенгук впервые изготовил увеличительное стекло, точно не известно. Однако случилось это еще в молодые годы ученого-самоучки. Голландия славилась своими мастерами и увеличительные стекла там в новинку не были. Новым было применение, которое нашел Левенгук собственноручно изготовленным приборам, которые он назвал «микроскопами». Впрочем, в нынешнем понимании, эти приборы скорее напоминали очень сильную лупу с 100-300-кратным увеличением, причем крохотную – величиной с горошину. Вставленные в собственноручно же сделанные Левенгуком оправы, эти лупы требовали известного навыка в обращении, однако с их помощью мастер увидел удивительные вещи.
Пытаясь обнаружить причину «острого» вкуса перца, Левенгук решил посмотреть под своим микроскопом каплю перечного настоя. И, к собственному удивлению, увидел, что настой двухнедельной давности кишит крохотными организмами, которые наблюдатель назвал «анимакулями». Так Левенгук стал первым человеком, увидевшим микробов!
В 1673 году его друг, знаменитый голландский врач Ренье Грааф направил в Лондонское Королевское общество (самый авторитетный научный центр того времени) первое сообщение («письмо») Левенгука о его изобретении и открытии. Эта переписка поддерживалась Левенгуком на протяжении 50 последующих лет. Писал он и отдельным знаменитым ученым – Христиану Гюйгенсу, Роберту Гуку, Готфриду Лейбницу, Роберту Бойлю и др. В этих письмах (на латыни – признанном языке науки), помимо обширных описаний распрей с соседями, собственного здоровья и здоровья домочадцев, финансовых неурядиц и городских сплетен, содержались сообщения о поразительных открытиях: анимакули обнаружились везде – в гнилой воде канав, в почве и даже… на соскребе с зубов естествоиспытателя. Результаты его изысканий были настолько удивительны, что Королевское общество поручило Н. Грю тщательно проверить сообщения Левенгука. Проверка подтвердила их достоверность и 8 февраля 1680 г. Левенгук был избран действительным и равноправным членом Лондонского Королевского общества и оставался верным его корреспондентом до конца жизни. Эти письма сначала печатались в научных журналах, а потом, в 1695 г., были изданы на латинском языке отдельной большой книгой под названием "Тайны природы, открытые Антонием Левенгуком при помощи микроскопов".
А в мае 1698 г. посетивший Голландию Петр 1 выразил желание ознакомиться с исследованиями знаменитого ученого-самоучки.
В рисунках, приложенных к сообщениям Левенгука, можно узнать различные формы бактерий – бациллы, кокки, спириллы, нитчатые бактерии. Именно он обнаружил, что при нагревании, бактерии погибают, открыл и описал красные кровяные тельца – эритроциты, впервые обнаружил в семенной жидкости сперматозоиды и описал их строение, впервые описал мир «в капле воды» – бактерий, простейших, микроскопических ракообразных, одноклеточных водорослей, обнаружил инфузорий и описал их ресничный аппарат, исследовал простейших-паразитов, выявил различия в строении однодольных и двудольных растений и высказал ряд точных предположений о распространении и воспроизводстве мельчайших организмов.
До конца своей жизни Левенгук изучал микроорганизмы, положив начало новой науке – микробиологии. Литература:
История биологии с древнейших времен до наших дней. М., «Наука», 1972.
Стр. 367, вставка 58
Нельзя считать некоторых «большими» животными, чем другие, тем не менее, чем проще организовано существо, тем меньше у него выражены специфические признаки, впоследствии получившие развитие в процессе эволюции.
Действительно, некоторые одноклеточные жгутиковые (как, например, эвглена зеленая) являются как бы промежуточными организмами, проявляющими в равной доле свойства животных (активное передвижение, гетеротрофное питание) и растений (автотрофное питание на свету). Есть переходная форма между одноклеточными и многоклеточными – обитающий в морях Трихоплакс, обнаруженный в 1883 году и являющийся по мнению И. И. Мечникова переходной формой от одноклеточных к многоклеточным. предсказано Мечниковым еще в 1886 году. Существует и форма, которую условно можно назвать переходной от неживого к живому – вирусы, которые еще не были обнаружены во времена Брема.
Д. И. Ивановский и вирусы
Дмитрий Иосифович Ивановский родился в 1864 году в Петербургской губернии. Окончив с отличием гимназию, в августе 1883 года он поступает в Петербургский университет на физико-математический факультет. Как нуждающийся студент Ивановский был освобожден от уплаты за обучение и получал стипендию.
Под влиянием выдающихся деятелей науки, преподававших в то время в университете (И.М.Сеченов, А.М.Бутлеров, В.В.Докучаев, А.Н.Бекетов, А.С.Фамицин и другие), формировалось мировоззрение будущего ученого. Будучи студентом, Ивановский с увлечением работал в научном биологическом кружке, проводил опыты по анатомии и физиологии растений, тщательно выполняя эксперименты. Поэтому А.Н.Бекетов, возглавлявший тогда общество естествоиспытателей, и профессор А.С.Фамицин предложили в 1887 году студентам Д.И.Ивановскому и В.В.Половцеву поехать на Украину и в Бессарабию для изучения заболевания табака, наносившего огромный ущерб сельскому хозяйству юга России. Листья табака покрывались сложным абстрактным рисунком, участки которого растекались, как чернила на промокашке, и распространялись с растения на растение.
Итоги этой поездки были доложены Ивановским в 1888 году на заседании Санкт-Петербургского общества естествоиспытателей. Здесь Ивановский и Половцев первыми в мире высказали предположение, что болезнь табака, описанная в 1886 году A.D.Mayer в Голландии под названием мозаичной, представляет не одно, а два совершенно различных заболевания одного и того же растения. Одно из них – рябуха, возбудителем которой является грибок, а другое – неизвестного происхождения.
На основе опыта крестьян, собственных наблюдений и изучения больных растений Ивановский и Половцев пришли к заключению, что рябуха поражает растения, высаженные на старых плантациях табака, и дали рекомендации по введению севооборота и повышению культуры земледелия.
Дальнейшие исследования мозаичной болезни табака Ивановский продолжает в Никитском ботаническом саду (под Ялтой) и в ботанической лаборатории Академии наук.
Конец XIX века ознаменовался крупными достижениями в микробиологии, и, естественно, Ивановский решил узнать, не вызывает ли табачную мозаику какая-нибудь бактерия. Он просмотрел под оптическим микроскопом (электронных тогда еще не было) множество больных листьев, но тщетно – никаких признаков бактерий обнаружить не удалось. "А может быть, они такие маленькие, что их нельзя увидеть?" – подумал ученый. Если это так, то они должны пройти через фильтры, которые задерживают на своей поверхности обычные бактерии. Подобные фильтры в то время уже имелись.
Мелко растертый лист больного табака Ивановский помещал в жидкость, которую затем фильтровал. Бактерии при этом задерживались фильтром, а прошедшая фильтрацию жидкость должна была быть стерильной и не способной заразить здоровое растение при попадании на него. Но она заражала! Здесь сказывается различие в размерах. Вирусы мельче бактерий приблизительно в 100 раз, поэтому они свободно проходили сквозь все фильтры и заражали здоровые растения, попадая на них вместе с отфильтрованной жидкостью. Бактерии к тому же отличаются способностью размножаться в искусственно созданных питательных средах, а открытые Ивановским вирусы этого не делали. Возбудитель мозаичной болезни называется Ивановским то "фильтрующимися" бактериями, то микроорганизмами. И это понятно, так как сразу сформулировать существование особого мира вирусов было весьма трудно. Термин вирус (от латинского virus – яд) появился позже.
Вот таким образом Ивановский открыл вирусы – новую форму существования жизни. Случилось это в 1892 году. Своими дальнейшими исследованиями он заложил основы ряда научных направлений в вирусологии.
Использовав тот же метод фильтрации, которым Ивановский открыл возбудителя мозаичной болезни табака, F.Lofler и P.Frosch в 1898 году установили фильтруемость возбудителя страшной болезни животных – ящура. Далее открытия вирусов сыпались как из рога изобилия: 1901 год – вирус желтой лихорадки, 1907 – натуральной оспы, 1909 – полиомиелита…
Первая половина ХХ столетия поистине оказалась эрой великих вирусологических открытий. Особо пристально изучались возбудители острых лихорадочных заболеваний. Разрабатывалась методика борьбы с ними и меры предупреждения этих болезней. Стремление ученых как можно скорее обнаружить и выделить вирус при любом неизвестном и особо тяжелом заболевании вполне понятно и оправдано, так как первый шаг в борьбе с болезнью – это выяснение ее причины.
Что же такое вирусы?
Вирусы не способны к самостоятельному существованию и развиваются в клетках различных живых организмов. Известно около 500 форм животных вирусов, более 300 – растительных, 50 вирусов, паразитирующих в бактериях.
Вирусы устроены довольно просто. Самые простые состоят из нуклеиновых кислот и белков. Генетический аппарат вирусов представлен различными формами нуклеиновых кислот, такого разнообразия нет у других форм жизни. Как известно, у растений и животных генетический аппарат состоит из двухнитчатой ДНК, а РНК, выполняющая роль переносчика информации, всегда однонитчатая. У вирусов же природа будто бы опробовала все возможные варианты нуклеиновых кислот: одно– и двухнитчатая РНК, одно– и двухнитчатая ДНК. При этом ДНК может быть либо линейной, либо замкнутой в кольцо.
ДНК или РНК составляют сердцевину вируса, окруженную защитной белковой оболочкой – капсидом. Полностью сформированная вирусная частица называется вирионом. Некоторые вирусы (герпеса или гриппа) имеют также липопротеидную оболочку, образующуюся из плазматической мембраны клетки-хозяина. Вирусы, в отличие от всех остальных организмов, не имеют клеточного строения.
Оболочка вируса часто может быть построена из повторяющихся идентичных субъединиц – капсомеров. Из них образуются структуры с высокой степенью симметрии. Эти структуры и способны кристаллизоваться, что и обнаружил Д.И. Ивановский. Это свойство вирусов использовали для изучения их строения методами кристаллографии, основанными на применении рентгеновских лучей, и электронной микроскопии.
Предок всего живого?
В последнее время принята гипотеза клеточного происхождения вирусов, согласно которой они произошли из «беглой» нуклеиновой кислоты. Иными словами, нуклеиновая кислота приобрела способность к реплицированию независимо от клетки, из которой она «сбежала». Однако нельзя забывать, что репликация такой нуклеиновой кислоты происходит за счет использования материала этой или других клеток. Следовательно, вирусы нельзя рассматривать как примитивных предшественников клеточных организмов.
Происхождение жизни
В общем, в вопросе происхождения жизни наука мало подвинулась со времен Бюффона. Существует предположение, что жизнь самопроизвольно образовалась из некоего первичного бульона – взвеси, в которой плавали молекулы метана, аммиака, водорода и воды. Эти соединения, вступая в реакцию под влиянием грозовых разрядов или ультрафиолета (от которого земля не была защищена плотной атмосферой) образовывали более сложные соединения, которые сами начали связывать молекулы в более крупные структуры. Такие первичные структуры ученые назвали коацерватами. Эти структуры могли поглощать другие молекулы, увеличиваясь в размерах (питаться), достигая определенных размеров делиться на несколько частей (размножаться) и защищать себя от условий внешней среды. Соответствует ли эта гипотеза истине неизвестно – хотя синтезировать их «первичного бульона» относительно сложные органические соединения ученые смогли, настоящий живой организм получить так и не удалось. Самопроизвольного зарождения сложных живых организмов в растворах, естественно, не бывает.
Стр. 367, вставка 59
Иначе – брюхоресничные
Стр. 368, вставка 60
Трудно сказать, можно ли действительно «напугать» инфузорию. Тем не менее, при раздражении «кивающая» сувойка действительно резко сокращает стебелек, а одновременно с этим сокращается и само тело инфузории.
Стр. 368, вставка 61
Некоторые исследователи сейчас выделяют их в подотряд
Трубач меняет форму (которая действительно напоминает трубу) при раздражении – он резко сокращается и сворачивается в шар.
Интересно, что
Некоторые трубачи характеризуются яркой окраской – как, например, голубой трубач, или зеленый трубач. Голубой цвет вызван наличием в цитоплазме зерен голубого пигмента, зеленый – наличием микроскопических симбиотических водорослей.
Стр. 368, вставка 61
Иначе говоря, 1-1.5 мм. Это единственные свободноживущие инфузории, которые видны простым глазом.
Стр.368, вставка 62
На самом деле балантидиум – достаточно редкий паразитарный организм, вызывающий тяжелое заболевание колит. Никакого вреда человеку не приносят обитающие в кишечнике некоторые паразитические амебы.
Стр. 369, вставка 63
Сейчас жгутиконосцы – подтип типа Саркомастигофор. Инфузории относятся к другой группе, а жгутиконосцев полагают скорее родственниками амеб (корненожек)
Стр. 369, вставка 64
Ночестветки (Ноктилуки) относятся к панцирным жгутиконосцам, но как раз панцирь у них отсутствует. Эти крупные одноклеточные имеют шаровидное тело до 2 мм в диаметре и не способны в отличие от других панцирных к фотосинтезу. Ночесветка ведет планктонный образ жизни и при механическом раздражении ярко вспыхивает. Именно благодаря ей в летнюю ночь можно наблюдать свечение моря. Свечение является результатом окисления жировых включений. Ночестветка – гетеротроф, питающийся «по животному типу».
Стр. 369, вставка 65
Корненожки относятся к типу Cаркомастигофор, классу корненожек (Rhizopoda)
Стр. 370, вставка 66
Лучевики или радиолярии сейчас относятся к типу Саркомастигофор классу лучевиков (радиолярий)
Стр. 370, вставка 66а
Интересно, что
У большинства радиолярий скелет слагается из оксида кремния, но в одном из отрядов он состоит из сульфата стронция
Стр. 370, вставка 67
Сейчас их насчитывают до 8 тыс. видов
Стр. 370, вставка 68
Сейчас солнечники относятся к типу Саркомастигофор классу солнечников
Стр. 370, вставка 69
На самом деле тело солнечника представляет собой такой же кремниевый скелет, как у радиолярий, но менее «тонкой работы».
Стр. 270, вставка 70
Камерники (фораминиферы) и Амебы принадлежат сейчас к одному классу корненожек типа Саркомастигофор
Интересно, что
У некоторых фораминифер раковины представляют собой скопление инородных включений (песчинок), которые животные заглатывают, у некоторых – известковые выделения наружного слоя цитоплазмы. Размеры раковин могут варьировать от нескольких микрон до 5-6 см. Многокамерные раковины бывают не у всех фораминифер, но однокамерные фораминиферы встречаются реже.
Стр.371, вставка 71
Сейчас полагают, что каждая фораминифера, заключенная в раковину, представляет собой единый, хотя и многоядерный, организм.
Стр. 371, вставка 72
Амебы (Amoeba) сейчас представители класса Корненожек типа Саркомастигофор. Брем описывает раковинную корненожку из другого отряда (к которому сейчас амеб не относят). Амеба протей, напротив, относится к свободноживущим «настоящим» амебам.
Миксомицеты сейчас относятся к другой группе животных.
Оглавление