Текст книги "Диалог с компьютером"
Автор книги: Александр Журавлев
Жанр:
Программирование
сообщить о нарушении
Текущая страница: 5 (всего у книги 14 страниц)
Игрой на родокомфортном факторе в нашем языке выражаются тончайшие оттенки смысла, совершенно не переводимые на «безродовые» языки. Например, А. Вознесенский пишет:
Ты кричишь, что я твой изувер,
и, от ненависти хорошея,
изгибаешь, как дерзкая зверь,
голубой позвоночник и шею.
Обратите внимание, каким удивительным способом открывается в этом четверостишии, что «ты» – это женщина: только формой прилагательного дерзкая, неправильно согласованной с существительным мужского рода зверь. Неправильное словосочетание кажется тем не менее естественным, поскольку существительные такой формы могут иметь и женский род (например, дверь). Но оригинальное соединение разнородовых форм создает необычный эффект, перевести который на язык без грамматической категории рода никак нельзя.

Итак, пространство может быть и четырехмерным, а тогда геометрическая интерпретация отпадает и возможность вычисления расстояний между словами-точками становится проблематичной.
И еще одно, не менее убийственное для «семантического пространства» обстоятельство.
Оказывается, при измерении некоторых слов обнаруживается неожиданная картина – слово располагается не в одной точке шкалы, а сразу в двух противоположных точках. К примеру, слово регби по шкале «хорошее – плохое» получает среднюю оценку 2,9, то есть оценивается большинством информантов как бы «никаким». Но это вовсе не так. На самом деле примерно половина отвечающих единодушно считает, что регби – это что-то «хорошее» (видимо, им нравится эта игра), а другая половина столь же единодушно полагает, что это нечто «плохое» («это не игра, а свалка какая-то»). Но почти никто, заметьте, не посчитал регби «никаким». Значит, средняя оценка фиктивна, за усреднением она скрывает разнонаправленные тенденции. И таких слов множество: бокс, хоккей, пушка, огонь, суд, холостяк, женщина – это только несколько примеров слов «двойной оценки».
А вот слово дождь расположилось буквально на всей шкале, что и понятно: если вас спросят: «Дождь – это что-то хорошее или плохое?» – вы наверняка скажете – смотря какой, смотря где, смотря когда. У этого слова нет постоянного качественного ореола, он меняется в зависимости от ореолов слов-соседей.
Вот теперь и прикиньте, как можно расположить слова с двойными или меняющимися ореолами в любом пространстве – хоть трех-, хоть четырехмерном? Трудно что-нибудь придумать. Во всяком случае, «облака» таких слов вытягиваются почти на все пространство, как Млечный Путь.
Автоматический качественный классификатор
Создается впечатление, что в рассказе об осгудовском измерении значения получилось, как в известном анекдоте:
– Правда ли, что Том выиграл в лотерею «понтиак»?
– Да, правда. Только не Том, а Тим. И не «понтиак», а «кадиллак». И не в лотерею, а в карты. И не выиграл, а проиграл.
Но все-таки это не совсем так. Качественный ореол значения слова Ч. Осгуд действительно измерил, только геометрическое представление результатов измерений оказалось не совсем удачным. Во всяком случае, для компьютера.
Поэтому Н. Павлюк, обнаружив четвертую меру семантического пространства и убедившись в невозможности его графической интерпретации, стал искать новые пути семантических измерений. И поиски привели его к разработке простого (а значит, вполне доступного «пониманию» компьютера) и в то же время весьма эффективного способа автоматического оперирования с качественно-признаковыми ореолами слов.
Есть такая настольная игра. На игровом поле установлены разные отражатели, стенки, барьерчики, ловушки. Один или несколько шариков выскакивают на поле и движутся по нему, отражаясь от препятствий, застревая в ловушках. В конце концов шарики собираются в разных частях поля, в зависимости от чего играющими начисляются очки. Придуманный Н. Павлюком автоматический классификатор похож на эту игру. Посмотрите на рисунок.

Представьте себе, что в верхнюю воронку засыпаются слова, которые распределяются по трубам этого сортировочного устройства в зависимости от наличия тех или иных характеристик. Сначала они попадают на первый уровень, где «хорошие» слова направляются налево, «плохие» – направо, а «никакие» – прямо. Теперь каждая из трех групп попадает на второй уровень. Там снова происходит сортировка: «хорошие и сильные» – направо, «хорошие и слабые» – налево, «хорошие и никакие» – прямо. Поскольку каждая из трех групп первого уровня делится еще на три группы, то групп уже получается 9. Затем третий уровень, где каждая из 9 групп делится еще на 3 в зависимости от «активности» слов. Групп уже 27. Четвертый уровень делит слова по признакам «мужественное – женственное», и групп становится 81.
Если остановиться на этих четырех уровнях, то в «осгудовских представлениях» мы получим группировку слов в четырехмерном качественно-признаковом пространстве, то есть как бы разрежем облака тумана на четко разграниченные зоны.
А компьютеру только того и нужно. Теперь он легко разложит по полочкам наши зыбкие и неопределенные представления о качественных ореолах слов. Скажем, попадают в компьютерный классификатор слова автомобиль и лягушка. Компьютер проверяет их оценки по шкале «хорошее – плохое»: автомобиль – 1,9, лягушка – 4,2. Компьютеру ясно – автомобиль нужно направить в «хорошую» группу, а лягушку в «плохую». Далее проверяются оценки по шкале «сильное – слабое», и автомобиль попадает в «хорошую и сильную» группу, лягушка – в «плохую и слабую», так как по этой шкале автомобиль имеет оценку 1,8, а лягушка – 4,3. Затем, пройдя шкалы третьего и четвертого уровней («быстрое – медленное», «мужественное – женственное»), автомобиль оказывается в «хорошей, сильной, быстрой, мужественной» группе, лягушка – в «плохой, слабой, медленной, женственной».
Четыре уровня сортировки минимально необходимы, иначе качественный ореол не будет охвачен полностью. Но останавливаться на четвертом уровне не обязательно. Добавляя к автоматическому классификатору все новые и новые шкалы-уровни, мы обучаем компьютер все более тонким оттенкам качественно-ореольной семантики. Понятно, что с увеличением числа уровней сортировки будет увеличиваться число групп «на выходе» классификатора и группы будут все более дробными. А слова, в них попавшие, будут все теснее объединяться по качественно-ореольным характеристикам.
Четырехуровневый компьютерный классификатор исправно работает и формирует группы слов на удивление «осмысленно». Ничто не мешает подключить к нему новые шкалы и сортировать новые порции слов. Но вот беда: лингвисты уже 30 лет гадают, куда «приплыл» Ч. Осгуд – в Индию или в Америку, да все прикидывают, нужны ли нам такие измерения. А словаря качественных ореолов русских слов все нет. Классификатор есть, и работает хорошо, а классифицировать нечего. До сих пор всего несколько исследователей ведут измерения русских слов – это в основном А. Клименко, В. Петренко, А. Павлюк. Измерено несколько сотен слов, но главным образом по трем-четырем основным шкалам. А ведь нужно измерить десятки тысяч слов, да и шкал набрать побольше. Работа эта ведется, но столь малыми силами, что результатов придется ждать еще долго.
Многоуровневый классификатор будет иметь огромное число выходов. Так, при десяти уровнях количество классификационных групп приближается к 20 тысячам. Но это лишь теоретически возможные группы. На практике большое число выходов окажутся пустыми, то есть на этих выходах не будет не только групп, но и ни одного слова. А на других выходах классификатора соберутся группы, включающие множество слов. Кстати сказать, интересен и сам этот результат. Ведь если на каком-то выходе образовалась большая группа слов, значит, такая комбинация признаков очень важна для нас, а если выход пустой – это свидетельство несовместимости признаков или ненужности такой их комбинации.
Возникает еще вот какой вопрос: как быть со словами внутри групп, как разобраться в них компьютеру? Не окажутся ли они для него все на одно лицо? Ведь на первый взгляд кажется, что в группах слова перемешаны без какой-либо системы, как бы свалены в какую-то ячейку пространства «навалом». Это впечатление обманчиво. Во-первых, для более дробного деления групп компьютер всегда может подключать новые шкалы-уровни. Во-вторых, если некая группа слов не будет поддаваться такому способу дробления, а компьютеру все же нужно как-то упорядочить слова внутри ее, он всегда может обратиться к исходным данным – к средним оценкам слов по любому из нужных в данный момент признаков.
Например, если в четырехуровневом классификаторе слова корабль, автомобиль, самолет объединились в группу, оказавшись «хорошими, сильными, быстрыми, мужественными», то легко можно сравнить их между собой по какому-либо признаку, ранжируя их средние оценки. Скажем, по признаку «быстрое» они располагаются в зависимости от средних оценок так: самолет (1,8), автомобиль (2,2), корабль (2,4). Отсюда компьютер сделает вывод, что «нечто самое быстрое» среди этих слов – самолет, а «самое медленное» – корабль. По признаку «большое» расположение будет другим: корабль, самолет, автомобиль. Такое сравнение можно провести и по любому другому признаку, включенному в классификатор.
Качественный классификатор справляется и со словами, имеющими двойную оценку, и даже с «размытыми» по всей шкале – такие слова просто попадут одновременно на несколько выходов классификатора.
Например, слово регби по шкале «хорошее – плохое» имеет двойную оценку (и «хорошее» и «плохое»). Для классификатора не нужно вычислять среднюю оценку (все равно она будет фиктивной), вместо этого слову приписывается индекс (например, Д), который будет означать, что слово необходимо направить и на «хороший», и на «плохой» выходы. Попав на «хороший» выход, регби окажется в одной группе со словами игра, футбол, забава, спорт и т. п. На «плохом» выходе у того же слова окажутся другие соседи: грубость, драка, свалка, потасовка и т. п.
Слово женщина тоже имеет двойную оценку. Пройдя классификатор, «хорошая женщина» попадет в одну группу со словами мать, невеста, ласка, забота, любовь, нежность и т. п. Ну а «плохая женщина» будет окружена словами зависть, глупость, карга, выдра и т. п.
«Размытые» слова, такие, как дождь, попадут не на два, а на несколько выходов. «Слабый и хороший» дождь окажется в группе со словами лето, радуга, свежесть; «сильный и плохой» – со словами гроза, буря; «слабый и плохой» будет соседствовать со слякотью, осенью, моросью, гнилью; «сильный и хороший» – с урожаем, добром и т. д.
Как видим, классификатор работает гораздо лучше, чем пространство. Но особое его удобство заключается еще и в том, что он легко может быть объединен с понятийным классификатором, то есть с автоматизированной системой анализа понятийной семантики. Для этого нужно просто пропускать через качественный классификатор те группы слов, которые образовались после работы понятийного.
Опора на два семантических аспекта – на понятийное ядро и качественный ореол – позволяет компьютеру неплохо ориентироваться в семантике текста и вести вполне «человеческую» беседу, хотя на самом первом, «понятийном» этапе компьютеру придется основательно помогать.
Например, вы спрашиваете компьютер:
– Как можно добраться из Ленинграда в Таллин?
В этом вопросе компьютер, увы, ничего не поймет.
Ему тут просто не за что зацепиться. Глагол добираться слишком многозначен, его понятийное ядро размыто, неопределенно. Будем великодушными, снизойдем к непонятливости компьютера и переформулируем вопрос:
– На каком транспорте можно доехать от Ленинграда до Таллина?
Казалось бы, теперь все предельно ясно. Но это нам ясно. А компьютеру все еще не по силам разобраться в понятийной семантике вопроса. Слово транспорт объединяет слишком много самых разных понятийных групп. Скажем, городской транспорт – трамвай, троллейбус, метро – здесь не годится. Грузовой транспорт – тоже. А есть ведь еще транспорт как тип морского судна. Да и с Ленинградом и Таллином тоже все не просто. Компьютеру нужно знать, что это города, а не районы одного города, не разные страны или материки, что оба города расположены на берегах одного моря. И много еще чего нужно. Короче говоря, чтобы понять смысл даже такого простенького вопроса, необходимо сознавать ситуацию, чего компьютер сделать не в состоянии.
Допустим, мы как-то оградили нашего, мягко говоря, несообразительного собеседника от излишних семантических трудностей и задаем ему донельзя «разжеванный» вопрос:
– На каком пассажирском транспорте можно доехать от города Ленинграда до города Таллина?
Компьютер включает «понятийный классификатор», обнаруживает в группе «междугородный пассажирский транспорт» слова поезд, самолет, корабль, автобус, автомобиль и, наконец отвечает:
– Поездом, самолетом, на корабле, автобусе или на автомобиле.
Вы говорите:
– Только мне хотелось бы побыстрей.
Если бы компьютер обладал эмоциями, то здесь он бы облегченно вздохнул – кончилась непосильная для него работа с понятийными ядрами, он вырвался в область семантических ореолов, где чувствует себя гораздо более уверенно. Пробежав оценки этих ореолов по шкале «быстрое – медленное» и установив, что самое быстрое – самолет, а самое медленное – корабль, он уверенно отвечает:
– Быстрее всего, конечно, самолетом.
Вы сомневаетесь:
– Самолетом – это риск: вдруг дождь.
Компьютер не понял причины ваших колебаний, но
уловил «размытое» слово дождь и спешит получить уточнения:
– Дожди бывают разные. Вы имеете ввиду с грозой и бурей?
– Да, в бурю самолет не полетит.
– Конечно, дождь с грозой и бурей – это плохо. Но если слабый дождь, если свежесть, радуга – тогда все прекрасно.
Электронный собеседник взял реванш за тугодумие в начале беседы – он уже не только отвечает, но и сам спрашивает, рассуждает.
Вам понравилась его сообразительность, и вы пытаетесь установить, как далеко она простирается:
– А вам какой транспорт больше всего нравится?
Такой вопрос компьютеру нипочем. Увидев, что лучшая оценка по шкале «хорошее – плохое» у автомобиля, он безапелляционно заявляет:
– Я считаю, что лучше всего автомобиль.
Беседа наладилась, и вы позволяете себе попривередничать:
– Но мне хотелось бы отдохнуть в дороге, чтобы было тихо и спокойно.
До сих пор компьютер беседовал, обходясь основными качественными уровнями (были использованы факторы активности, силы и оценки). Теперь этой информации не хватает. Он ищет подходящие признаки и, обнаружив в вашей реплике слово тихо останавливается на шкале «громкое – тихое». На ней самым «громким» оказывается самолет, а самым «тихим» корабль, поэтому компьютер, поразмыслив, резонно советует:
В таком случае, самолетом лететь не следует, отправляйтесь на корабле.
– А как насчет безопасности путешествия?
Компьютер подключает шкалу «безопасное – устрашающее»:
– В общем-то все эти виды транспорта достаточно надежны, но если вы особенно осторожны, то ехать автомобилем я вам не посоветую, ну а корабль – это самое безопасное.
Хотя компьютер оказался упрямым и настоял-таки на своем первоначальном «замысле» – отправить вас в плавание на корабле, ясно, что разговор вели вы, заранее предвидя реплики машины. Но все же заметим, что выбор видов транспорта не был запрограммирован в ответах компьютера, он «сам» находил решения, исходя из запросов собеседника.
Понятно, что трафареты ответов машины составлены человеком и заложены в ее память. Но заполнял пустые места трафаретов компьютер самостоятельно: опираясь на анализ качественно-признаковых ореолов слов, он высказывал собственное мнение, давал оценки и советы. Иначе говоря, довольно убедительно имитировал понимание смысла вопросов и ответов, и особенно способным проявил себя не в постижении их логики (чего, казалось бы, следовало ожидать от бездушной машины в первую очередь), а как раз в овладении человеческими – эмоциональными, оценочными, личностными"– сторонами речи.
Анализ и синтез фоносемантики

Как измерить впечатление от звука!
«Семантический дифференциал» одно время был очень популярным измерительным инструментом не только среди лингвистов, но и среди литературоведов, психологов, искусствоведов, среди всех, кто изучает человеческое восприятие, эмоции, мышление. Чего только с его помощью не мерили – литературных героев и целые литературные произведения, живопись (реалистическую и абстрактную), разные эмблемы, значки, знаки... И никто (странно, но это так), никто не догадался измерить звуки речи!
Далекий от филологии человек здесь, пожалуй, удивится восклицательному знаку. Подумаешь – звуки речи. Мало ли что еще «не догадались» измерить с помощью этого самого семантического дифференциала – шнурки от ботинок, например.
Но филолог... О, филолога здесь как током пронзит. Еще бы! Ведь это самый древний и, пожалуй, самый важный филологический (да и не только филологический) спор – значимы ли звуки речи, содержательны ли они сами по себе, вне слова, или это только безликий строительный материал слов, полностью безразличный, как говорят, «произвольный» по отношению к семантике?
В первой главе мы уже беседовали об ореоле звуковой содержательности, и можно ручаться, что некоторые читатели безусловно соглашались с приведенными там примерами: для них фитюлька и тютелька действительно звучат как что-то маленькое, а хмырь – как что-то темное. Но столь же уверенно можно утверждать, что у целого ряда других читателей наши примеры не только не встретили понимания, а, наоборот, вызвали возражения: «Слово фитюлька обозначает что-то маленькое, неважное, несерьезное, вот автору и кажется, что звуки там какие-то «маленькие». На самом деле звуки сами по себе ничего обозначать не могут».
Вот так всегда и было еще со времен Гераклита, Демокрита и Платона, так продолжается и до сих пор: одни считают, что звуковая форма слова – только оболочка, в которую можно заключить любое содержание, другие полагают, что это кожа слова, часть его плоти, его сути, часть его содержания.
С первого взгляда спор может показаться схоластическим: считать ли звуки речи содержательными или нет, какая, собственно, разница. Но дело в том, что отношения между звучанием и значением слова – это одно из проявлений взаимодействий между формой и содержанием в языке. А диалектика взаимоотношений содержания и формы исключительно важна в жизни любого явления, в том числе, безусловно, и языка. Многие философские и филологические проблемы, связанные с возникновением, развитием и функционированием языка, получают различные решения в зависимости от того, признается звуковая форма языковых единиц содержательной или нет. Вот и спорили философы, языковеды, литературоведы, психологи на протяжении веков. Но веских и однозначных доказательств не могла привести ни одна сторона. В XX веке спор стал постепенно затухать и почти уже забылся, как вдруг вспыхнул с новой силой, получив пищу с совершенно неожиданной стороны – от кибернетики.
По некотором размышлении становится ясно, как это произошло. Выстроилась такая цепочка. Кибернетика упорно ищет пути овладения языковым содержанием, что пока ей плохо удается. А звучание – это форма языковых единиц, которая выражена материально, которая ощутима, измерима и потому несравненно легче доступна кибернетизации, чем содержание. Если же форма сама оказывается содержательной и является частью языкового содержания, то вот вам искомый путь к изучению, к постижению самого этого содержания.
Нет-нет, кибернетики не обольщались кажущейся легкостью пути. Понятное дело, заманчиво было бы найти такой способ манипуляций со звуковой формой слова, чтобы в результате постичь его содержание. Но чудес не бывает. Форма и содержание – вещи разные, они не могут заменить друг друга, не могут и полностью совпадать. Соответствовать друг другу – да, но не совпадать! Да и соответствовать-то не однозначно, не жестко, а сложно, диалектически. Содержание и форма стремятся к взаимному соответствию, могут его обрести, но подвижное содержание может вырваться из формы, перестать ей соответствовать или даже прийти в противоречие с ней. Да и языковая форма – не застывшая чугунная отливка, она тоже может измениться и нарушить гармонию.
Все это так. Но если есть хоть малейшая надежда «зацепиться» через форму за любой, пусть даже и не главный, аспект языкового содержания, кибернетики этой возможности не должны упускать. Слишком важна цель, чтобы отказываться от любых способов приближения к ней. Потому кибернетики и заинтересовались такой даже для лингвистов экзотической проблемой, как содержательность звуков речи.
И тут как нельзя кстати пришелся «семантический дифференциал». Он оказался как будто специально созданным для измерения звуковой содержательности. Здесь он сработал даже лучше, чем при измерении качественного ореола слов.
Первым увидел возможность измерения содержательности звуков речи психолог и математик Ю. Орлов. И не случайно: он сразу, раньше многих лингвистов, осознал важность «семантического дифференциала» для изучения языкового значения, правильно оценил силу и возможности этой необычной методики. Потому и решил попробовать ее на звуках речи. Под его руководством и автор начинал захватывающую и странную экспериментальную работу со звуками.
Странность экспериментов действительно бросалась в глаза. Представьте себе: информантам дают отдельные звуки речи – О, К, Д, Р, Ы, А, Ф и т. д. – и просят поставить им оценки по признаковым шкалам. Конечно, информанты недоумевают – как это «большой» звук? или «светлый»? или «тяжелый»? Не может быть у звуков таких характеристик! А экспериментатор продолжает удивлять: «Долго не размышляйте, ставьте отметки наугад». Некоторые информанты хитро улыбаются: «Знаем, мол, мы вас, экспериментаторов. Небось какие-нибудь наши качества выявляете, а звуки здесь ни при чем. Но нас не проведешь, мы вам сейчас наставим этих отметок кое-как, а вы потом разбирайтесь».
Как-то после одного из экспериментов я услышал в коридоре разговор информантов:
– Ну и придумают же какую-то чушь – «безопасные» звуки! Я ему от фонаря этих оценок наставил.
– А я тоже с потолка написал. Каков вопрос – таков ответ.
И не передать тому, кто этого не испытал, какой охватывает трепет, когда после утомительного суммирования многих и многих ответов выстраиваются средние оценки, указывающие на непреложные закономерности: поставленные «наугад», «от фонаря», «с потолка» цифры, усреднясь, показывают, что О – для большинства «светлый» звук, а Ы – «темный», Р – «устрашающий», а И – «безопасный», К – «быстрый», а Ш – «медленный», и так все звуки по многим шкалам-признакам, причем все это измерено, зафиксировано в числе!
В горячке увлеченности мы днем проводили эксперименты, а по ночам считали вручную. К ЭВМ тогда еще было не пробиться, о микрокалькуляторах никто и не помышлял, выручал только старенький арифмометр «Феликс». Юрий Михайлович даже выполнял вручную факторный анализ. Математики, знающие, что и для ЭВМ эта работа не из мелких, оценят сказанное.
Пространство, как и у Ч. Осгуда, получилось трехмерным, и меры те же – оценка, сила и активность. Расположив в семантическом кубе измеренные звуки, мы впервые получили русское фонетико-семантическое пространство. Оказалось, что все звуки русской речи обладают, в большей или меньшей степени, явно выраженной содержательностью, которую можно вполне строго измерить. Сомнения отпали – звуки речи содержательны!

Получив ошеломившие нас самих результаты, мы написали статью и направили ее в столичный лингвистический журнал. Как наивны мы были у себя в провинциальном Балашове, когда плавали на веслах по тогда еще тихому, безмоторному Хопру и горячо обсуждали возможные громоподобные последствия нашей публикации. Статью, как легко догадаться, не приняли. Тогда было огорчительно, а теперь понятно, что и не могли принять – слишком дискуссионна проблематика, необычен подход, непонятен метод, невероятны результаты. Редколлегии и рецензентам трудно работать с таким материалом. Ведь новое – значит не известное никому, в том числе и рецензентам. Правда, в то же время к той же цели шли, хотя и разными путями, другие исследователи – В. Галунов, В. Левицкий, И. Горелов, С. Воронин. Но их статьи, видимо, тоже отклонялись рецензентами, а сами они в редколлегии, увы, не входили.
Это теперь по фоносемантике защищаются диссертации, публикуются статьи и книги. Она поднялась до ранга самостоятельной теории, и практические приложения ее значительны и разнообразны. Есть и компьютерное приложение, а именно – имитация фоносемантических ореолов языковых значений.
И вот ведь как получилось: потаенный, подсознательный семантический ореол, в самом существовании которого сомневаются не только обычные носители языка, но даже многие профессионалы-лингвисты, оказался наиболее доступным компьютеру. Имея в своей памяти только средние оценки звуков по определенному набору шкал да сведения о том, как часто встречается каждый звук в русской речи, компьютер сам вычисляет фоносемантический ореол любого слова и вообще любого звукосочетания.
Если вдуматься – ничего странного в этом нет. Ведь компьютеру переданы (в доступной ему числовой форме) суждения носителей языка о содержательности звуков речи. И теперь машина стала представителем всех этих информантов, сама стала как бы усредненным или коллективным носителем языка со свойственными человеку суждениями о фоносемантике.
Правда, дальше компьютер уже действует сам, переходя от содержательности отдельных звуков к содержательности звукосочетаний и слов. Конечно, и здесь должен действовать принцип «доверяй, но проверяй». Прежде чем доверить самому компьютеру высказывать суждения о столь тонком явлении, как фоносемантический ореол слова, результаты компьютерных расчетов многократно проверялись, сравнивались с человеческими оценками и суждениями.
Заметим, кстати, что сделать это тоже непросто. С компьютером нет проблем – он значений слов не понимает и вычисляет только содержательность их звучания. А как быть с человеком? Ведь если попросить информантов оценить содержательность звучания слов, то они этого просто не смогут сделать, как бы ни старались. Люди четко осознают в первую очередь понятийную и отчасти качественно-признаковую семантику, потому на эти аспекты значений слов в основном и реагируют, а совсем не на смутную, скрытую, подсознательную фоносемантику. Это лишь дополнительный, третьестепенный аспект значения слова, почти незаметный на ярком фоне главных семантических аспектов.
Действительно, если человек описывает открывающийся перед ним вид, то прежде всего он будет называть предметы, а не воздух. И хотя воздух тоже здесь присутствует, он нужен, важен, без него нельзя, все же он «за кадром», он незаметен, внимание на нем не фиксируется. Можно специально обратить внимание созерцателя на воздух, и тогда он его сможет охарактеризовать, только все равно эта характеристика будет менее яркой и полной, чем характеристика четко осознаваемых предметов.
Так и со словами: предложите оценить по любой признаковой шкале любое слово – едва ли кто-нибудь станет оценивать его звучание, оцениваться будет качественно-признаковый ореол. Даже если вы специально попросите оценить именно звуковую форму слова, то понятийный и качественно-признаковый аспекты все-таки неизбежно «перетянут» на себя внимание информантов, а фоносемантика так и не будет измерена.
Как «отключить» человека от всех других аспектов значения слова, кроме фоносемантического? Как уравнять в этом плане человека и компьютер, чтобы проверить данные компьютера человеческим восприятием?
Кажется, у этой задачи нет решения, но все же оно есть. И не такое уж сложное, хотя и хитроумное. Нужно, чтобы у слов просто-напросто не было ни понятийного ядра, ни признакового ореола, а был бы только фоносемантический ореол. Только где взять такую лексику? «Безъядерные» слова, как мы видели в первой главе, еще можно найти, но чтобы без качественного ореола, это уж едва ли.
А почему бы не построить специально, почему бы не сконструировать звукосочетания, похожие на слова, но лишенные всех аспектов значения, кроме фоносемантического? Какие-нибудь лимень, букоф, вробар, урщух, незич, фрыш и т. п. Звуковая форма у них есть, значит, есть и фоносемантика. А «плоти» под формой нет. Как будто мундир надет на манекен. Вот это нам как раз и нужно.
Дальше все просто. Компьютер рассчитывает по всем шкалам теоретическое, «ожидаемое» воздействие звуковой формы этих «слов» на информантов, а настоящие информанты оценивают те же «слова» по тем же шкалам. Сходство результатов – критерий правильности компьютерных расчетов, а следовательно, правильности компьютерного моделирования фоносемантики.
С помощью примерки на десятках таких манекенов постепенно вырабатывался наиболее эффективный способ расчета суммарной фонетической содержательности звуковой формы слов, то есть компьютер постепенно учился все лучше и лучше «понимать» фоносемантику, все точнее имитировать человеческое восприятие этого аспекта значения слова.
Вычислитель, собеседник, советчик
В основном техника компьютерных расчетов сводится к вычислению оценки, усредненной по всем средним оценкам составляющих слово звуков. Но есть и кое-какие тонкости.
Прежде всего: в какой форме задавать слова компьютеру? Мы всё говорим – звуки, звучание, звуковая форма слова... Но компьютер звучащей речи пока не воспринимает. Общаться с ним приходится письменно. А буквенная и звуковая формы слова – это не одно и то же. Мы пишем яблоко, но произносим на месте буквы я два звука ( i– йот, звук, близкий к й, плюс звук а), а на месте о вообще что-то непонятное – какой-то призвук, нечто среднее между а, о и ы. Пишем окно, а произносим почти акно, пишем солнце, а произносим сонце (опять-таки с непонятным звуком в конце), пишем любовь,, а произносим льубофь и т. д. и т. п. Как быть?
Для филолога неразличение звука и буквы – это смертный грех, даже вообразить себе такое немыслимо. Однако для обычного носителя русского языка между звуком и буквой нет такой уж непреодолимой пропасти. Например, в сознании (или подсознании) каждого грамотного человека звук и буква сливаются в единый психический образ. А формирует этот образ, фиксирует его, делает его более четким и определенным отнюдь не звук, а как раз буква. И сами отдельные звуки человек начинает осознавать только тогда, когда выучивает буквы. Неграмотный никаких звуков в слове не выделит. В лучшем случае выделит слоги. Спросите его, из каких звуков состоит слово мама, и он скажет: ма-ма. И только зная буквы, обычный носитель языка может указать звуки слова, но и тут будет постоянно сбиваться на буквы – они для него более реальны, более наглядны, определенны. Он обычно удивляется, если ему сказать, что в начале слова юг звучит вовсе не ю, а i+у. Запись jyк для него странна и непривычна. Спросите любого русского, какой звук звучит в конце слова любовь, и большинство скажет – вь, хотя совершенно явственно произносится фь.








