355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Кульский » КВ-приемник мирового уровня? Это очень просто! » Текст книги (страница 20)
КВ-приемник мирового уровня? Это очень просто!
  • Текст добавлен: 5 июля 2017, 00:00

Текст книги "КВ-приемник мирового уровня? Это очень просто!"


Автор книги: Александр Кульский



сообщить о нарушении

Текущая страница: 20 (всего у книги 23 страниц)

Информация к размышлению

Современный высококачественный радиоприемник НЕ МОЖЕТ БЫТЬ собран на одной плате, если поставлена цель получить от него высокие характеристики! Поскольку взаимные связи высокочастотных цепей и помехи, возникающие уже по этой причине, при работе различных каскадов, будут принципиально снижать качество приемника. Поэтому в данной конструкции использован принцип построения отдельных функциональных узлов приемника в виде отдельных плат. С последующим их объединением в ОДНОЙ секционированной, изготовленной из листовой латуни экранированной конструкции – т. н. ОБЕЧАЙКЕ. Чертеж которой будет приведен после описания принципиальной электрической схемы.


А. Селектор диапазонов

Принципиальная электрическая схема селектора диапазонов приведена на рис. 28.2. Заметим, что резистор, включенный параллельно антенному разъему, предотвращает накопление статического электрического заряда на гальванически изолированной от земли антенне. Тип резистора – С2-29В. Конденсатор СА обеспечивает защиту приемника при высокой статической ЭДС, в случае подключения к нему наружной антенны. В случае использования только собственной штыревой антенны, в качестве этого конденсатора желательно применить высококачественный конденсатор с малой утечкой типа К76-4-1 мкФ.


Б. Аттенюатор, широкополосный УВЧ и преобразователь первой промежуточной частоты

Принципиальная электрическая схема этого узла представлена на рис. 28.3.


Выделенный селектором диапазонов сигнал, вместе с большим количеством посторонних сигналов через конденсатор С1 поступает на вход регулируемого высокочастотного аттенюатора, в качестве которого используется р-i-n-диод типа КА509Б, с катода которого через С4 подается на вход фильтра, который «прозрачен» для любой из принимаемых частот, но вносит значительное затухание для любой помехи, частота которой равна значению ПЧ1, т. е. 55,5 МГц. Цепь R2, С11 служит для согласования импедансов (т. е. комплексных высокочастотных сопротивлений, учитывающих как активную, так и реактивную составляющую проводимости) фильтра-пробки и широкополосного УВЧ.

Полоса пропускания этого УВЧ линейна до частоты 35 МГц, после чего его АЧХ (амплитудно-частотная характеристика) имеет плавно спадающий характер. С выхода УВЧ сигнал подается на вход кольцевого балансного смесителя, собранного на диодах Шоттки. Это высоколинейный смеситель, помехоустойчивость которого значительно выше, чем у обычно применяемых в бытовой радиотехнике смесителей. Кроме того, он отличается малыми шумами преобразования. В составе этого смесителя имеются (на входе и выходе) два широкополосных трансформатора ВЧ, соответственно, Тр2 и Тр3, представляющие собой ШПТЛ – широкополосные трансформаторные линии. Как и ШПТЛ Тр1, они выполнены на ферритовых кольцах типа М.0.16 ВТ-8 (параметры колец: D = 10 мм, d = 6 мм, h = 2 мм). Могут быть также использованы кольца соответствующего типоразмера на основе материала 50 ВЧ2.

С выхода смесителя (на второй вход которого подается сигнал с выхода ГПД), полученный в результате преобразования частоты сигнал, через трансформатор Тр2 подается на вход ДИПЛЕКСОРА (т. е. специального высокочастотного фильтра), реализованного по Г-образной схеме. Его характеристика оптимизирована для частоты 55,5 МГц, которая единственная из всех иных поступающих на вход ДИПЛЕКСОРА частот, проходит его без затухания. Таким образом, на выходе конденсатора С20 присутствует, уже предварительно отфильтрованный, сигнал первой промежуточной частоты – 55,5 МГц.


В. Узкополосный малошумящий УПЧ1 и преобразователь второй промежуточной частоты

Принципиальная электрическая схема УПЧ1 приведена на рис. 28.4.


Основой, можно сказать, «сердцем» этого УПЧ является высокоселективный, сложный кварцевый фильтр пассивного типа, имеющий заводское обозначение ФП2П-4-1-В, или подобный ему. Его паспортные характеристики приведены в табл. 28.3.


Сигнал ПЧ1 (см. рис. 28.4) поступает на вход согласующего усилителя, выполненного на транзисторе Т, включенного по схеме с общим затвором. Нагрузкой этого транзистора является узкополосный кварцевый фильтр, включенный так, как показано на принципиальной схеме. Выделенный этим фильтром сигнал первой промежуточной частоты, подается на затвор полевого транзистора VT3. Этот транзистор представляет собой высоколинейный прибор, оптимальный для высокоимпедансного резонансного усилителя. В цепи стока VT3 включен-колебательный контур L3, С12, настроенный на частоту 55,5 МГц.

С его выхода, через конденсатор С15 сигнал поступает на вход второго смесителя-преобразователя, также выполненного по схеме кольцевого балансного смесителя на диодах Шоттки. На второй вход этого преобразователя частоты поступает высокочастотный сигнал с выхода кварцованного гетеродина, частота которого составляет 54,045 МГц. Получаемая, в результате смешения, вторая промежуточная частота, равная 1,455 МГц, подается на вход ДИПЛЕКСОРА, параметры которого подобраны таким образом, что для приведенной выше частоты его затухание минимально.

Транзистор Т2 является первым каскадом системы, вырабатывающей сигнал управления для АРУ-1. В качестве нагрузки в нем применен колебательный контур, настроенный на частоту 55,5 МГц.


Г. Генератор плавного диапазона (ГПД)

Принципиальная электрическая схема генератора плавного диапазона (ГПД) приведена на рис. 28.5.


С целью получения как можно большей ЧИСТОТЫ спектра сигнала гетеродина, кроме того, высокой стабильности его частоты (или малой кратковременной нестабильности), и, наконец, отказавшись от использования в составе этого ГПД в качестве элемента настройки конденсатора переменной емкости, была принята как ранее указывалось следующая идеология его построения.

Прежде всего, гетеродин реализован на основе сложной, многокаскадной схемы. Собственно перестраиваемый по частоте задающий генератор собран на малошумящем СВЧ (сверхвысокочастотном) транзисторе типа КТ382А.

Основная задача задающего генератора – обеспечить устойчивую генерацию высококачественного, спектрально чистого высокочастотного сигнала. Но для этого амплитуда сигнала на выходе собственно 3Г (задающего генератора) должна быть МАЛОЙ. А режим работы транзистора должен быть выбран в наиболее линейной области его вольт-амперных характеристик.

Вот почему в схеме, представленной на рис. 28.5 амплитуда высокочастотного сигнала на коллекторе транзистора КТ382А не превышает 0,15—0,2 вольта! Поэтому необходимо наличие дополнительного широкополосного ВЧ усилителя, который, сохраняя высокую спектральную чистоту сигнала, увеличил бы его амплитуду до 1,8–2,5 вольт. Поскольку именно такой уровень высокочастотного напряжения требуется для оптимальной работы кольцевого балансного смесителя на диодах Шоттки.

Относительно выбора принципиальной электрической схемы оконечного усилителя для ГПД вопроса не возникает. Поскольку все необходимые для этого параметры имеет (уже примененный нами ранее в качестве УВЧ) высоко линейный широкополосный усилитель на ШПТЛ. Он и реализован на транзисторе VT5. Однако, такой каскад имеет 50-омный вход, следовательно, подавать на него сигнал непосредственно с выхода ЗГ не представляется возможным. Необходима развязывающая схема, достаточно высокий входной импеданс которой не нагружал бы существенно ЗГ. Именно такой развязывающий каскад и выполнен на полевом транзисторе VT2, включенном по схеме с общим затвором. В то же время его выходной импеданс оптимально согласован с оконечным каскадом.

Дополнительным преимуществом подобного подхода является возможность очень легко осуществить подстройку амплитуды выходного сигнала ГПД. В случае если его необходимо почему-либо увеличить, для этого достаточно, абсолютно не вмешиваясь в режим работы ЗГ, просто немного изменить номинал резистора R25. Если уменьшить его величину с 10 Ом, как показано на схеме, до 5,6 Ом, то амплитуда выходного сигнала возрастет, примерно, в 1,5 раза! А если увеличить до 13 Ом, то выходной сигнал уменьшится на 25–30 %.

Как очевидно из принципиальной электрической схемы, регулируемым частотнозадающим параметром описываемого ГПД является емкость варикапов VD1 и VD2. Известно, что колебательный контур, перестраиваемый варикапом, имеет определенный, достаточно существенный недостаток. Он заключается в том, что переменное напряжение, поступающее на контур, изменяет величину емкости варикапа таким же образом, как и подводимое для настройки управляющее напряжение. Вследствие этого, во-первых, емкость варикапа изменяется в такт с изменением переменного (высокочастотного) напряжения. И, во-вторых, происходит сдвиг среднего значения емкости в связи с тем, что положительная и отрицательная полуволны вызывают РАЗЛИЧНОЕ изменение мгновенного значения емкости!

Вот почему из-за изменения мгновенного значения емкости варикапа, переменное напряжение ВЧ может принять форму, заметно отличающуюся от желанной синусоиды. Помимо прочего, это приводит как к ухудшению стабильности работы гетеродина, так и к резкому возрастанию его фазовых шумов. Полезно также всегда помнить, что нелинейные эффекты в контурах, содержащих варикапы, начинаются с того момента, когда амплитуда приложенного к ним высокочастотного напряжения составляет ОДНУ ТРЕТЬ от величины постоянного напряжения, подаваемого на этот компонент.

Метод борьбы с подобным недостатком имеется. Он заключается в том, что вместо одного варикапа в составе задающего колебательного контура применены ДВА. Они включены по ВЧ-сигналу последовательно и в противофазе, а по постоянному напряжению– параллельно. Что и реализовано в принципиальной электрической схеме рассматриваемого ГПД. В этом случае на каждый компонент пары приходится только ПОЛОВИНА величины общей амплитуды переменного напряжения сигнала. Это уже само по себе улучшает соотношение величин переменного и постоянного управляющего напряжений, одновременно прикладываемых к варикапу.

Но самое основное заключается в том, что благодаря незначительному и противоположно направленному изменению емкости, когда используются два встречно включенных компонента пары, мгновенное значение обшей емкости контура, фактически, остается постоянным. Следует заметить, что в данном ГПД применены высококачественные варикапы типа КВ-121А. Эти компоненты поставляются заводом-изготовителем также и в виде предварительно подобранных по параметрам пар и четверок. В этом случае компенсация вообще получается полной. Но, как показала практика, даже в случае применения предварительно НЕ подобранных в пары компонентов, качество выходного сигнала ГПД остается очень высоким.

Другой вопрос заключается в том, что для обеспечения нормального функционирования ГПД, основанных на использовании варикапов, стабильность и качество подаваемого на них постоянного управляющего напряжения должно быть ОЧЕНЬ высоким. Так, в радиоприемниках с преобразованием «вверх» стабильность этого напряжения должна поддерживаться с точностью не хуже 0,2 милливольта (или 0,0002 вольта)! Мало того, поскольку, тем или иным образом, в состав задающего колебательного контура 3Г ГПД входят проходная, входная и переходная емкости транзистора (а они существенно меняются при колебаниях питающего ЗГ постоянного напряжения), это означает, запитывать каскады ГПД следует также от высокостабильного источника напряжения.

Практика подтвердила не раз, что наиболее рационально питать каскады ГПД от индвидуального высокостабильного источника напряжения. Что и сделано в описываемом ГПД. Непосредственно на плате ГПД расположен прецизионный стабилизированный источник питания, построенный по компенсационной схеме на транзисторах VT6, VT7 и микросборке типа 198НТ1А. Принцип работы подобных стабилизаторов будет рассмотрен ниже, а пока вернемся к особенностям принципиальной схемы ГПД.

Для того, чтобы в максимальной степени повысить качественные показатели работы генератора плавного диапазона (ГПД), следует учесть еще некоторые обстоятельства. Например, то, что катушка индуктивности (в данном случае L2) частотнозадающей цепи гетеродина НЕ ДОЛЖНА коммутироваться непосредственно. Это важное требование, как правило, в бытовой радиотехнике полностью игнорируется по экономическим причинам. Между тем, невыполнение этого требования резко снижает даже чисто радиотехнические параметры гетеродинов. Не говоря уже о снижении надежности. В данной конструкции подобный факт учтен самым тщательным образом. Это послужило одной из причин того, что в составе данного ГПД имеются ДВА разных ЗГ. Один из них включен, когда осуществляется прием на поддиапазонах 1–4. А второй – когда прием производится на поддиапазонах 5–8.

При этом с помощью герконовых реле типа РЭС-44 осуществляется подача питающих напряжений и съем сигнала ВЧ с того из двух ЗГ, который обеспечивает подключение выбранного для прослушивания участка частотного спектра. Оконечный ВЧ-усилитель оптимален для всего диапазона, а потому напряжение питания подается на него в течение всего времени работы радиоприемника. Дальше предоставляю слово Аматору.

«Аматор»: У нас на очереди УПЧ2.


Д. Усилитель второй промежуточной частоты и его цепь АРУ-2

Принципиальная электрическая схема усилителя второй промежуточной частоты УПЧ2 и его цепи АРУ-2 представлена на рис. 28.6.


С выхода ДИПЛЕКСОРА второго преобразователя частоты, сигнал подается на конденсатор С1. А с него на Г-образный аттенюатор, образованный резистором R1 и фоторезистором, входящим в состав оптрона АОР124А (ЗОР124А). Далее, через конденсатор С4 сигнал поступает на первый затвор двухзатворного полевого МДП-транзистора КП306А. Потенциал второго затвора с помощью резисторов R2 и R3 отрегулирован таким образом, чтобы обеспечить работу транзистора на квадратичном участке переходной вольт-амперной характеристики.

В качестве нагрузки транзистора VT1 применен колебательный контур С6, L1 настроенный на частоту 1,455 МГц, т. е. на ПЧ2. Двухзатворные полевые МДП-транзисторы указанного типа оптимальны для построения высококачественных резонансных усилителей ввиду того, что практически не оказывают шунтирующего действия на эти контура. Следовательно, не происходит ухудшения добротности контуров.

Далее, выделенный первым каскадом сигнал с частотой 1,455 МГц поступает, на аналогичный второй каскад, также настроенный на частоту 1,455 МГц. А затем и на третий. Выходной сигнал которого должен подаваться на амплитудный детектор для выделения составляющей низкой частоты.

Одновременно с этим, сигнал с выхода У ПЧ2 через конденсатор С23 подается на вход балансного амплитудного детектора, собранного на диодах VD1—VD6. Выходы этого детектора поданы на дифференциальный УПТ (усилитель постоянного тока), собранный на ОУ (операционном усилителе) типа КР140УД1408А. В случае, если сигнал на входе УПЧ2 отсутствует, на выходе этого УПТ уровень постоянного УПРАВЛЯЮЩЕГО напряжения равен нулю. А значит и на входе ИТУН (источника тока, управляемого напряжением), потенциал равен нулю. При этом ток через светоизлучающий диод, входящий в состав оптрона, не протекает. Следовательно, фоторезистор имеет максимальное сопротивление. В этом случае на затвор транзистора VT1 поступает, практически, ВСЯ амплитуда входного сигнала. Но, выделенный резонансными контурами и усиленный сигнал второй ПЧ (1,455 МГц), поступив на вход балансного амплитудного детектора, после соответствующего выпрямления, разбалансирует дифференциальный усилитель, на выходе которого теперь появится некоторый постоянный потенциал Uупр.

Величина этого потенциала находится в прямой зависимости от амплитуды сигнала ПЧ2 на выходе УПЧ2. При подаче на вход ИТУН, потенциал управляющего сигнала вызовет появление в цепи нагрузки ИТУН некоторого значения постоянного тока, протекающего по нагрузке. Которой в данном случае является цепь, состоящая из R21 и светодиода оптрона. В результате, излучаемый этим светодиодом поток фотонов, попав на поверхность фоторезистора, резко уменьшит его сопротивление.

В этом случае изменяется соотношение сопротивлений в Г-образном аттенюаторе и сигнал, поступающий на затвор VT1 – уменьшается. Таким образом, цепь АРУ-2 оказывается замкнутой, а система авторегулирования – функционирующей. Естественно, подобная цепь АРУ является очень эффективной и хорошо поддающейся регулированию и настройке по следующим причинам:

а) отношение проводимости максимально освещенного (для данного оптрона) фоторезистора к его минимальной, т. е. «темновой» проводимости, составляет величину порядка нескольких тысяч;

б) автоматическая регулировка усиления подобного типа НЕ ЗАТРАГИВАЕТ режимов работы усилительных каскадов УПТ2 по постоянному току. А значит, не ухудшает их линейных, шумовых и резонансных характеристик;

в) легко поддается регулированию, первоначальная отладка собственно УПЧ2 и АРУ-2 может осуществляться раздельно.


Е. Генератор кварцованный (второй гетеродин)

Схема кварцованного генератора каких-либо особенностей не содержит и представлена на рис. 28.7. Содержит задающий генератор (ЗГ) на транзисторе КТ326Б, стабилизированного кварцевым резонатором на частоту 54,045 МГц. А также оконечный высокоимпедансный усилитель на однозатворном полевом МДП-транзисторе КП305Д и р-n-р-транзисторе типа КТ337. В качестве нагрузки оконечного биполярного транзистора включен колебательный контур С13, L4, настроенный на частоту кварца.



Ж. Принципиальная электрическая схема цепи АРУ-1

На рис. 28.8. представлена принципиальная электрическая схема цепи АРУ-1. С выхода резонансного усилителя, собранного на Т2 (см. рис. 28.4.), через конденсатор С10, сигнал ПЧ1 (55,5 МГц) подается на вход балансного амплитудного детектора, собранного на диодах VD1—VD6. Для точной регулировки баланса служит подстроечный резистор R7 типа СП5-16ВА-0,25. С выходов этого детектора как опорный, так и продетектированный сигналы подаются на соответствующие входы высокоточного ИЗМЕРИТЕЛЬНОГО УПТ, построенного на микросхемах D3—D5.

Выбор подобной принципиальной схемы этого усилителя постоянного тока (УПТ), мотивируется целым рядом факторов. Во-первых, подобные усилители сочетают в себе значительное количество технических показателей, которые делают их наиболее предпочтительными для применения в системах АРУ приемников высокого класса. Это, прежде всего, высокая точность и постоянство однажды установленных режимов. Кроме того, именно ИНСТРУМЕНТАЛЬНЫЕ УСИЛИТЕЛИ дают возможность легко и в широких пределах (притом без помощи паяльника) регулировать коэффициент усиления по дифференциальному входу: который легко подсчитывается по формуле:

При этом, поскольку баланс инструментального усилителя регулируется отдельным подстроенным резистором R21, то регулировка усилителя на «нуль» не представляет никаких трудностей. Резистор R15 состоит из двух последовательно включенных резисторов. Что и определяет, в зависимости от крайних положений ползунка подстроечного резистора, его максимальное и минимальное значения коэффициента усиления.

С выхода микросхемы D5 сигнал, который теперь представляет собой некоторый постоянный отрицательный потенциал, подается на вход ИТУН1, который собран на D2 и транзисторах VT3 и VT4. Абсолютная величина этого отрицательного потенциала зависит, в основном, от двух факторов. Во-первых, от абсолютной величины дифференциального входного напряжения, которое приложено ко входам инструментального усилителя. А это напряжение, в свою очередь, после предварительной настройки схемы, зависит ТОЛЬКО от амплитуды ВЧ-сигнала, поступающего на вход балансного детектора. Во-вторых, от значения выбранного К.

Напомним, что дифференциальное входное напряжение представляет из себя:

Uвх. дифф = ΔUвх = U2U1.

Если сигнал на выходе инструментального усилителя (ИУ) равен нулю, то, соответственно, генерируемый схемой ИТУН1, также равен нулю. Это означает, что светодиод оптрона ЗОР124А – не светится. Следовательно, сопротивление резистора оптрона максимально. А, значит, этот фоторезистор не оказывает никакого шунтирующего действия на резистор R2, который, в свою очередь, входит в состав делителя напряжения, определяющего уровень положительного потенциала на входе ИТУН2.

Токовой нагрузкой ИТУН2, как это видно из принципиальной схемы, является p-i-n-диод. Именно его высокочастотная проводимость и является объектом регулирования. Но в исходном состоянии проводимость этого диода должна быть максимальной. То есть ИТУН2 построен таким образом, что при отсутствии сигнала на входе петли АРУ-2, величина тока через этот диод максимальна и выбирается из технических характеристик оптрона. Следовательно, высокочастотная проводимость при этом тоже максимальна.

Но в том случае, если на вход балансного амплитудного детектора цепи АРУ-1 поступает высокочастотный сигнал, в зависимости от своей амплитуды, он вызывает на выходе инструментального усилителя соответствующий потенциал, имеющий ОТРИЦАТЕЛЬНУЮ полярность. Который, как уже говорилось ранее, понижая сопротивление фоторезистора, входящего в состав оптрона ЗОР124А, уменьшает величину положительного смещения на неинвертирующем входе ОУ D1. Это, соответственно, приводит к уменьшению величины постоянного тока, протекающего через структуру диодного аттенюатора. Следовательно, высокочастотная проводимость последнего становится меньше. А значит, уровень ВЧ-сигнала на входе широкополосного УВЧ – существенно понижается.

Таким образом, цепь АРУ-1 оказывается замкнутой. Напомним, что именно малое высокочастотное сопротивление p-i-n-диода в открытом состоянии (т. е. максимальной проводимости) позволяет включать его в состав входной цепи радиоприемника. Причем, именно ДО входа предварительного УВЧ! Практически, не увеличивая при этом коэффициент шума. При таком включении диод действует, как легко регулируемый линейный ослабитель (аттенюатор), у которого значение коэффициента ослабления является плавной функцией от протекающего через этот диод постоянного тока. А, следовательно, функцией входного сигнала. В связи с этим во много раз увеличивается способность приемника воспроизводить без искажений сигналы, уровень которых изменяется во времени случайным образом, причем в широком динамическом диапазоне. Поэтому p-i-n-диод в значительной степени отличается от обычного диода с р-n-переходом тем, что между областями с дырочной и электронной проводимостями, находится слой полупроводникового материала с СОБСТВЕННОЙ ПРОВОДИМОСТЬЮ, так называемый i-слой. Этот слой характеризуется очень малым содержанием примесей и поэтому обладает большим удельным сопротивлением. Когда ток через структуру такого диода не проходит, объемное сопротивление слоя, обладающего собственной проводимостью, характеризуется величиной эквивалентного сопротивления, составляющего обычно от 7 до 10 килоом. (это при 50-омной то схемотехнике!)

А минимальное его сопротивление порядка единиц Ом. Изменение величины объемного сопротивления, в зависимости от изменения прямого тока смещения, легко подсчитать по формуле:

Ri= 26/I0.87

где Ri– выражено в омах, I – в миллиамперах.

«Аматор»: Если Вы, уважаемый Спец, не против, я хотел бы, чтобы какую-то часть в процессе наших объяснений принял и Незнайкин.

«Спец»: А почему я должен быть против? Ну, наша будущая смена, «прошу к доске».

«Незнайкин»: Так и я не против. Свой рассказ начну с преобразователя напряжения.


3. Высокостабилизированный преобразователь напряжения для варикапов ГПД

Принципиальная электрическая схема этого узла уже была представлена на рис. 16.4.

Функционирование этого преобразователя напряжения происходит следующим образом. Задающий низкочастотный генератор, снабженный двумя различными, независимыми системами обратной связи, стабилизирующими амплитуду выходного переменного напряжения, генерирует низкочастотный синусоидальный сигнал. Этот сигнал подается на вход двухтактного оконечного усилителя мощности, выход которого по петле обратной связи через резисторы R1 и R5 подается на вход и, соответственно, осуществляет авторегулировку режима транзистора VT1, на котором и реализован ЗНГ (задающий низкочастотный генератор). Лампочка накаливания «Л1», включенная в цепь эмиттера транзистора VT1, является нелинейным элементом цепи обратной связи по амплитуде выходного сигнала.

Характер подобного элемента цепи ОС (обратной связи) – параметрический. Та часть сигнала ЗНГ, которая подается в цепь базы VT1 через фазосдвигающую цепочку R1, С1, С2 – носит компенсационный характер.

Таким образом, с выхода той части принципиальной схемы, которая реализована на транзисторах VT1—VT6, через конденсатор связи С7, стабилизированный по амплитуде сигнал от ЗНГ подается на вход усилителя амплитуды (мощности) выходного сигнала. Он выполнен на транзисторе VT7, нагрузкой которого служит импульсный повышающий трансформатор Тр1.

Со вторичной обмотки которого, после выпрямления и фильтрации, положительное напряжение, величина которого составляет около 38 вольт, подается на вход прецизионного стабилизатора напряжения, собранного по компенсационной схеме на транзисторах VT8 и VT9 и микросхеме 198НТ1А.

С целью получения максимально высоких качественных показателей, в данном высокоточном стабилизаторе напряжения, вместо имеющих достаточно высокий уровень шумов стабилитронов, использованы, соответствующим образом включенные, интегральные транзисторы, входящие в состав микросборки. Это позволило также значительно понизить величину сквозного тока через структуру цепочки, выполняющей функции генератора опорного напряжения от значения 5–8 миллиампер (в случае применения обычного стабилитрона) до 1 миллиампера, что в данном конкретном случае является существенным.

Наличие в схеме подстроечного резистора R19 типа СП5-16ВА-0,125 (или подобного, но обязательно «закрытой» конструкции) дает возможность осуществить подстройку величины выходного высокостабилизированного напряжения представленной на рис. 16.4. схемы в пределах от 26 до 34 вольт.

«Спец»: Ну просто как по книге. Молодцом! Продолжай в том же духе. Но помни, что для «большого приемника» узел, включающий R21—R25 – отбрасывается. И заменяется другим!

«Незнайкин»: Я попробую…


И. Амплитудный детектор и усилитель мощности звуковой частоты

Конструктивно, в состав электронных узлов приемника, скомпонованных в единой обечайке, данный узел не входит. И поэтому выполнен на отдельной печатной плате. Это, помимо прочего, дает возможность делать его легкозаменяемым, т. е. сменным. При дальнейшей модификации описываемого радиоприемника, предполагается ввести в состав последнего СИНХРОННЫЙ ДЕТЕКТОР. Поэтому применение той или иной разновидности УМЗЧ, соответствующей различным тенденциям и взглядам, касающимся этого вопроса, присущих различным радиолюбителям-конструкторам, также не может игнорироваться. Поэтому, вместо представленной на рис. 28.9, принципиальной электрической схемы узла УМЗЧ, может быть использована и иная.


В предложенном автором варианте УМЗЧ используется обычный амплитудный диодный детектор с предварительным смещением диода, позволяющий существенно линеаризовать его характеристику. С выхода амплитудного детектора, через конденсатор С4, выделенная низкочастотная составляющая сигнала подается на предварительный усилитель, выполненный на транзисторах VT1 и VT2, охваченных глубокой отрицательной обратной связью. С выхода предварительного усилителя низкой частоты сигнал поступает на двухтактный оконечный каскад, все пять транзисторов которого, а именно, VT3—VT7 охвачены отрицательной обратной связью по постоянному току, что способствует стабилизации режимов работы каскадов УМЗЧ и значительно улучшает линейность.

«Аматор»: Хочу сделать небольшое примечание: в качестве резистора R15 желательно применить СП5-16ВА-0,25 или подобный. Все постоянные резисторы OMЛT-0,25 или С2-23-0,125. Конденсаторы С6 и С9 желательно применить танталовые (тип К52-1). Остальные – К50-35Б. А еще лучше – производства Южной Кореи или Тайваня.

А вот о блоке питания просил бы рассказать Вас, уважаемый Спец.

«Спец»: Ну, что же, не вижу причин для отказа.


К. Схема и описание блока стабилизированных источников питания

Принципиальная электрическая схема блока стабилизированных источников питания предлагаемого для повторения приемника, представлена на рис. 28.10.




Как легко видеть, в одном блоке объединены три автономные стабилизированные источника напряжения: +12,6, -12,6, и +7,5 вольта.

Рассмотрим функционирование этих стабилизированных источников на примере СН (стабилизатора напряжения) на +12,6 вольта. Он представляет собой стабилизированный источник напряжения компенсационного типа с последовательно включенным исполнительным регулирующим устройством, в качестве которого использован составной проходной транзистор (схема Дарлингтона). Проходной транзистор состоит из трех транзисторов, соответственно, VT4, VT5 и интегрального транзистора, входящего в состав транзисторной сборки 198НТ1 А, остальные интегральные транзисторы которой используются в схеме сравнения.

Как известно, схема Дарлингтона обладает очень высоким значением Вст. Величина которого 10000 и более. Таким образом, задаваясь значением максимального тока, отдаваемым СН в нагрузку, равного в нашем случае 0,4 ампера, нетрудно убедиться, что для этого достаточно, чтобы базовый ток интегрального транзистора, входящего в состав составного, был равен, примерно, всего 5 микроамперам!

Особенность работы данного стабилизатора напряжения (СН) заключается в том, что его функционирование проходит по основной формуле

Iст = 0,2 миллиампера.

Ток стока полевого транзистора VT3 является строго фиксированной и стабильной величиной. Во-первых, потому что VT3 и R6 представляют собой СТАБИЛИЗАТОР ТОКА уже по причине самой конфигурации их включения. Во– вторых, значение тока стока равное 0,2 миллиампера, в данном случае выбрано далеко не случайно. Эксперименты показали, что для Р-канального полевого транзистора типа КП103К, именно эта величина тока стока является «магической». То есть лежит в области особой, термостабильной точки проходной характеристики этого транзистора, ток стока в которой НЕ ЯВЛЯЕТСЯ функцией температуры в пределах от -40 до +85 °C! Вот по какой причине применение полевых транзисторов того же типа КП103, но других индексов, крайне нежелательно.

Более того, практика показала, что при построении СН этого типа, желательно иметь уже заранее подобранные пары (транзистор VT3 – резистор R6), поскольку для различных образцов полевого транзистора КП103К (2П103В) значение R6 может варьироваться.

Как легко видеть, базовый ток интегрального транзистора VT1 вызывает значительный коллекторный ток силового регулирующего (проходного) транзистора VT4, через который проходит ВЕСЬ ток, питающий нагрузку СН.


    Ваша оценка произведения:

Популярные книги за неделю