355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Кульский » КВ-приемник мирового уровня? Это очень просто! » Текст книги (страница 15)
КВ-приемник мирового уровня? Это очень просто!
  • Текст добавлен: 5 июля 2017, 00:00

Текст книги "КВ-приемник мирового уровня? Это очень просто!"


Автор книги: Александр Кульский



сообщить о нарушении

Текущая страница: 15 (всего у книги 23 страниц)

«Н»: Ну и мороки с этими кольцами!

«С»: Вовсе не так много, как кажется. Зато после такой обработки можно ни фторопластом, ни целлофаном, ни лакотканью тороидальный сердечник не обматывать! Кстати, в нашем случае количество витков скрученного провода будет очень невелико. В зависимости от требуемой полосы частот, от 10 до 20 витков.

«А»: Всего то?

«С»: А чего ты ожидал, дорогой друг? Полагал, что потребуются многие десятки или даже сотни витков? Как видишь – нет!

«Н»: А как поступим с «узелком»?

«С»: Возьмем ножницы и, аккуратненько так, срежем. Получается изделие, показанное на рис. 19.2. Теперь зачистим и залудим концы проводов. С помощью тестера убедимся, что проводники не закорочены.


«А»: Я обозначил здесь номерами 1 и 3 – концы одного из проводов скрученной пары, а номерами 2 и 4 – концы другого проводника.

«С»: А теперь – внимание! Я аккуратно скручиваю вместе концы проводов 2 и 3. А затем пропаиваю их. У нас получился простейший ШПТЛ.

А вот как подобная конфигурация выглядит на принципиальной электрической схеме (рис. 19.3).


«Н»: А что означают точки возле начала обмоток?

«С»: Что полярность подключения обмоток должна быть только такой, как показано. И никакой другой!

Ну, можем считать, что предварительные сведения о ШПТЛ – получены! Теперь можем переходить к рассмотрению других компонентов.

Глава 20. Реле, оптроны, блоки питания

«Спец»: Поговорим об очень ответственных компонентах нашего, ещё не построенного, приемника. А именно – о реле!

«Аматор»: Об электромагнитных реле? Но для чего они в нашем приёмнике?

«С»: А как вы, милостивый государь, собираетесь реализовывать переключение диапазонов?

«А»: С помощью переключателя, естественно. Правда, если исходить из современных тенденций, можно попробовать использовать специальные переключающие диоды, например.

«Незнайкин»: Или панельку, как у калькулятора ил и у цифрового телефона.

«А»: Да, в конце-концов, поставить хороший герметизированный барабанный переключатель? Я знаю подходящие.

«С»: Это всё понятно! Иными словами, вы предлагаете в высококачественном приемнике, значительное количество слаботочных проводников вытянуть из-под экрана, дотянуть до переключателя, а затем тянуть обратно?

«А»: Я же говорил о переключающих диодах! Тогда всё можно решить тихо-мирно!

«С»: Это в высококачественном приемнике-то!? Какая милая шутка! То есть ввести в состав входных контуров заведомо нелинейные элементы, которые ещё и ухудшают развязку? Ну, уж нет!

«А»: А что ещё можно предложить?

«С»: Ничего, кроме коммутации входных цепей с помощью специализированых малогабаритных электромагнитных реле. На сегодняшний день они для этих применений зарекомендовали себя отлично!

«Н»: Один приятель принес как-то в класс электромагнитное реле. Здоровущее такое!..

«С»: Я говорил о специализированных! Напомню, что электромагнитные реле предназначены для коммутации электрических цепей в системах автоматики, сигнализации и связи. Вообще слово «реле» – французского происхождения и имеет многовековую историю. Раньше оно означало почтовые станции, на которых происходила перепряжка лошадей.

В нашем случае реле выглядит несколько иначе. Оно состоит из корпуса, сердечника, катушки и контактной группы. Или даже нескольких контактных групп. Всё это смонтировано на общем основании и закрыто чехлом.

«А»: Я слышал, что есть и так называемые ГЕРКОНОВЫЕ реле.

«С»: Да, есть. Вообще ГЕРКОН – это герметизированный контакт. Он помещается в стеклянную колбочку, заполненную инертным газом. Контакты геркона, находящиеся внутри колбочки, представляют из себя контактные ферромагнитные пружины. Они, одновременно, являются и элементом магнитной цепи. Если магнитное поле имеет достаточную напряженность, эти контактные пружины притягиваются. При этом они, обратимо деформируясь, замыкают или размыкают контакты.

«Н»: А в обычных реле не используются герконы?

«А»: В обычных – нет! Но меня смущает тот факт, что контактные группы обычных реле рассчитаны на значительные токи и напряжения. Они справятся с коммутацией очень малых сигналов?

«С»: Обычные реле НЕТ, не справятся! Но есть несколько типов реле, которые предназначены самим провидением для коммутации радиочастотных цепей. Это, например, герконовые реле типа РЭС-42; РЭС-43; РЭС-44; РЭС-64 и т. д. Но… все они достаточно великоваты, а учитывая их потребное количество, со вздохом, правда, но мы вынуждены будем по этой причине отказаться от их применения в нашей конструкции (рис. 20.1).




«Н»: Ну, а есть какие-нибудь ну очень миниатюрные реле, способные успешно коммутировать слабые высокочастотные сигналы?

«С»: К нашему общему удовольствию – да! Причем несколько типов.

Например: РЭС-49; РЭС– 60; РЭС-80 и т. д. Герконов они НЕ СОДЕРЖАТ! Из них самые подходящие и доступные – это РЭС-49. Они имеют одну контактную группу на переключающих контактах с серебряным или платиновым покрытием. Гарантированное количество срабатываний для нашего режима коммутации – до миллиона! Их габаритные размеры – площадь, занимаемая на плате – 5x10 мм. Высота – 15 мм.

«Н»: Совсем крохотные!

«С»: И тем не менее великолепно зарекомендовавшие себя в радио-технических цепях.

«А»: А какой у них ток срабатывания?

«С»: Существенный вопрос. Я предполагаю, что наиболее оптимальными для нас будут РЭС-49, имеющие номер технического паспорта 428. У них ток срабатывания – 7 мА; напряжение срабатывания – 11 вольт. Специфику их схемотехнического применения дадим тогда, когда перейдем к рассмотрению конкретных схем.

«А»: Какие еще элементы остались без рассмотрения?

«С»: Да вот, например. Что мы решаем по поводу регулирующего устройства для системы АРУ?

«А»: Пожалуй, можно подумать о применении в качестве таковой, системы, включающей в себя полевой транзистор. Мне как-то пришлось читать, что регулирующие устройства для аттенюаторов цепей АРУ бывают однозвенными, а также двузвенными. С продольным и поперечным включением регулируемого элемента (резистора). Я зарисовал это (рис. 20.2). Здесь на рис. 20.2, а и б изображены аттенюаторы с продольным расположением регулирующего резистора, а на рис. 20.2, в и г – с поперечным расположением.


«Н»: А в качестве регулирующего резистора ты и предлагаешь взять «полевик»?

«А»: Ну естественно!

«С»: Поздравляю, дорогой Аматор! Это очень неплохое решение, особенно если использовать варианты с поперечным расположением. У них нелинейность заведомо меньше, чем у продольных.

«А»: Тогда, может, приступим к выбору типа полевого транзистора для этой цели?

«С»: Мы бы немедленно приступили к этой работе, случись нам говорить на эту тему лет двадцать назад! Но мы говорим об этом именно сегодня. Поэтому я просто обязан заметить, что наиболее высокую степень линейности регулирования достигают не с помощью jFET или MOSFET, а с помощью совершенно иных приборов – ОПТРОНОВ и XОЛЛОTPОHОB!

«А»: О холлотронах я слышу вообще в первый раз!

«С»: Холлотрон – это преобразователь, основанный на эффекте Холла, управляемый магнитным полем. У этого прибора есть немало сторонников, но я не из их числа. Иное дело – ОПТРОН!

Вообще оптическая электроника – это бескрайний Океан! В нем можно утонуть с головой!

«Н»: Если перед этим акулы не съедят!

«С»: А их, поверь, хватает! Оптоэлектроника – это стремительно развивающаяся область электроники, оптики и еще Бог знает чего! Я листал недавно ведомственный справочник, так оптоэлектронные приборы занимают уже отдельные тома! Каких там только нет!? Так вот, из всего этого великолепия я выбрал один прибор, который существует, можно сказать, именно для нашего случая.

«А»: Ну, Спец, не томите душу…

«С»: Не стану. Вот я изобразил этот прибор схематически (рис. 20.3).


«Н»: Только и всего?

«А»: Как сказал муравей, увидав слона…

«С»: Дорогой Незнайкин, а разве этого мало? Все гениальное сперва может и не казаться таковым. Очевидно, ты просто не вдумался в то, что видишь?

«Н»: Ну, я так понимаю, что внизу изображен светодиод. А вверху, очевидно, фоторезистор. Когда светит светодиод – сопротивление фоторезистора Rф МИНИМАЛЬНОЕ, а когда он не светит, то МАКСИМАЛЬНОЕ!

«С»: Все правильно, но не совсем. Дело в том, что излучающий светодиод имеет ЛИНЕЙНУЮ характеристику интенсивности излучения от величины тока, проходящего через него. Следовательно, фоторезистор Rф будет также ЛИНЕЙНО и плавно изменять свое сопротивление!

«А»: Это действительно здорово! Во-первых, у сигнальной цепи НИКАКОЙ гальванической связи с управляющей цепью НЕТ! Даже у полевых транзисторов реальная АССИМЕТРИЯ характеристик, если поменять местами сток и исток все равно существует!

А здесь ее просто нет! А как называется это чудо?

«С»: С удовольствием сообщаю. Это АОР-124. Его данные мы помещаем в наш с вами справочник. Но мы связались с высокими частотами, однако ещё не решили вопрос, какими марками кабелей и разъемов мы с вами будем осуществлять коммутацию высокочастотных блоков? Поскольку обычные проводники длинною 7—10 см для передачи ВЧ-сигналов совершенно не пригодны. Они и сами «излучают» и «принимают» на себя высокочастотные электромагнитные поля.

«Н»: Я раньше думал, что кабель используется только для подачи сигнала от коллективной антенны к телевизору!

«А»: Полагаю, что теперь уже ты так не думаешь! Но я бы попросил рассказать о кабелях вас, Спец!

«С»: Линии передачи сигнала играют ответственную роль в радиочастотных цепях, где они используются в качестве путевода для сигналов от одного участка схемы к другому. Интересно, что линии передачи сигнала являются как бы исключением из того принципа, согласно которому полное сопротивление источника сигнала, в идеале, должно быть малым по сравнению с сопротивлением нагрузки, создаваемым возбуждаемой целью; а нагрузка должна иметь входное сопротивление, которое превышает сопротивление источника, к которому она (нагрузка) подключена. Вот как раз для линий передачи оказывается, что нагрузка должна иметь сопротивление, РАВНОЕ волновому сопротивлению линии.

«А»: В этом случае говорят, что «линия согласована»?

«С»: Именно так! При этом сами линии передачи сигнала бывают, в основном, двух видов: ПАРАЛЛЕЛЬНЫЕ ПРОВОДНИКИ и КОАКСИАЛЬНЫЕ ЛИНИИ. Именно коаксиальные линии используются в виде коротких отрезков с разъемами типа BNC (байонетными) для передачи сигналов между приборами, или блоками, или даже отдельными узлами. Коаксиальные линии, будучи полностью экранированными, исключают влияние излучения и наводок от внешних сигналов.

«А»: Я встречался с определениями, что такой-то кабель обладает «волновым сопротивлением – 75 Ом». Или 50 Ом. Что имеется в виду?

«С»: Это значит, что волна, бегущая по линии, имеет отношение напряжение/ток, равное Z0. Это Z0 обычно равно или 75 или 50 Ом. При работе с ВЧ сигналами ОЧЕНЬ ВАЖНО «согласовать» нагрузку с волновым сопротивлением линии.

«А»: В связи с тем, что «согласованная» нагрузка может передать импульс в оконечное устройство без искажений?

«С»: Верно! Причем именно в этом случае вся мощность сигнала попадает в нагрузку. Поэтому при конструировании узлов мы будем пользоваться коаксиальными линиями. Следовательно, входы и выходы ВЧ блоков будут выполняться с использованием ВЧ-разъемов.

«А»: Разъемы типа BNC (байонет) очень распространены. Их насчитывается десятки видов! Какие модификации найдут непосредственное применение в нашей разработке?

«С»: Вообще самые распространенные – это пара: СР-50-74 ПВ и СР-50-73 ФВ, рассчитанные на применение кабелей с внешним диаметром 3,5 мм. Но для нас наиболее предпочтительными являются такие пары, как: СР-50-104 ФВ и СР-50-103 ФВ или подобные им. Они рассчитаны на кабели с внешним диаметром 2,5 мм.

Ну вот, пожалуй и все по общим вопросам!

«Н»: Теперь можно перейти к схемотехнике?

«С»: Да, если бы не одна «мелочь». А именно, чем вы, друзья мои, собираетесь запитывать макет, а затем и конструктивно оформленные блоки радиоприемника?

«Н»: То есть необходим некий блок питания? А какое выходное напряжение он должен выдавать?

«А»: Полагаю, Незнайкин, что Н И КАКИМ одним выходным напряжением мы не обойдемся!

«С»: Правильная мысль! Давайте прикинем: для питания ОУ, а они у нас явно найдут применение, необходимо симметричное (как «+», так и «-») напряжение 15 вольт. Или, по меньшей мере, симметричное напряжение 10 вольт! Затем напряжение для ЦОУ. Его величина составляет + 7,5 вольт. Затем, относительно высокое напряжение для варикапов +30 вольт. Для питания усилителей, гетеродинов, преобразователей и наконец, УНЧ (усилителя низкой частоты) – тоже необходимо симметричное напряжение 15 вольт.

«А»: То есть необходимы, как минимум, ТРИ напряжения относительно мощных, способных отдать ток до 300 мА. И одно напряжение (для запитки варикапов), имеющее крайне незначительную токовую нагрузку.

«С»: Действительно, сами варикапы тока, практически, не потребляют! Но стабилизатор, запитывающий варикапы, некоторый ток все же потребляет. А поскольку напряжение на варикапы подается с движка многооборотного переменного резистора ППМЛ-1И, то важен номинал этого резистора. Наиболее предпочтителен номинал 22 кОм. Следовательно, ток потребляемый этим резистором, – около 2 мА. И внутреннее потребление стабилизатора – тоже, примерно, 2–3 мА. Вот из этого и будем исходить.

«Н»: Но ведь батарейки нас не спасут?

«А»: Ну конечно не спасут! Так что некий «лабораторный блок» сетевого питания строить все равно придется.

«С»: Это не проблема. Тем более, что это далеко не напрасный труд! Или этот же лабораторный блок, или такой же подобный, все равно должен войти в состав радиоприемника.

«Н»: Ну и отлично! Делать, так делать!

«С»: А еще говорят, что весь энтузиазм остался в прошлом!.. Ну, в таком случае, начнем рассмотрение схемотехнических вопросов именно с блока питания!

«Н»: Это, наверное, достаточно просто! Вот я сейчас зарисую «принципиалочку». Значит так… Трансформатор, выпрямители, а затем – на стабилитроны. Вот так, готово! А что, разве неправильно (рис. 20.4)?…


«А»: Твоими устами, Незнайкин, да мед бы пить!.. Представь себе, что идея у тебя правильная. Но, к сожалению, только в принципе! А любой прибор, Незнайкин, запомни это, должен работать НЕ В ПРИНЦИПЕ, А В КОРПУСЕ!

«Н»: А в чем ОНА – моя ошибка?

«А»: Если строить стабилизатор по предложенной тобой схеме, Незнайкин, учитывая тот факт, что сквозной ток стабилитрона СРАВНИМ ПО ВЕЛИЧИНЕ с током нагрузки, то плата за электроэнергию будет несколько выше оптимальной! А самое главное – стабилизатор этот все равно будет НИКУДА НЕ ГОДЕН! Потому что НЕСТАБИЛЬНОСТЬ выходного напряжения будет не менее нескольких ДЕСЯТКОВ МИЛЛИВОЛЬТ!

«Н»: Ну, а что с этим можно поделать?

«С»: Очень даже можно! Ты нарисовал так называемый ПАРАМЕТРИЧЕСКИЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ. То есть такой, степень стабилизации которого зависит от параметров примененных стабилитронов.

Но в современной электронике подобные стабилизаторы давно не применяются! А имеют место только, так называемые, КОМПЕНСАЦИОННЫЕ СТАБИЛИЗАТОРЫ. Ты ведь имел с ними дело, дружище Аматор?

«А»: Да, это великолепная вещь! Принцип действия компенсационного стабилизатора (иначе КС) сводится к автоматическому регулированию выходного напряжения. Компенсационные стабилизаторы напряжения являются АВТОРЕГУЛИРУЕМЫМИ УСТРОЙСТВАМИ с замкнутой системой автоматического регулирования. Принцип действия показан на приведенном рис. 20.5.


«Н»: Получается, что делитель напряжения на резисторах R2 и R3 позволяет получать в точке «а» напряжение, пропорциональное выходному Uвых.

«А»: Да, если меняется Uвых, скажем, увеличивается, то увеличивается и потенциал точки «а». А если Uвых уменьшается, то это происходит и в названной точке тоже. Ну, рассуждай дальше…

«Н»: Я не знаю, как получается опорное напряжение в точке «б», но, оно НЕ ИЗМЕНЯЕТСЯ при изменении Uвых! Но тогда между точками «а» и «б» возникает некоторое напряжение, величина и знак которого зависят от Uвых?…

«С»: Смелее, Незнайкин! Далее это РАЗНОСТНОЕ напряжение заводится на входы УСИЛИТЕЛЯ РАССОГЛАСОВАНИЯ, на выходе которого вырабатывается сигнал, величина которого пропорциональна модулю напряжения рассогласования. А полярность такова, что управляемое им РЕГУЛИРУЮЩЕЕ УСТРОЙСТВО компенсирует ВСЕ изменения выходного напряжения.

Таким образом, СТАБИЛИЗАЦИЯ СВОДИТСЯ К УСТРАНЕНИЮ РАЗНОСТИ между эталонным (или опорным) напряжением и той частью выходного напряжения, которая поступает в точку «а». Ну вот, а теперь можно переходить к РЕАЛЬНЫМ принципиальным схемам!

КОНЕЦ ВТОРОЙ ЧАСТИ

Часть III
МЫ «ЛОВИМ» ВЕСЬ МИР

Глава 21. Стабилизатор напряжения – тонкости и нюансы

«Аматор»: Ну тогда вам, Спец, и карты в руки!

«Спец»: Вот какую принципиальную электрическую схему электронного стабилизатора напряжения я предлагаю сперва для обсуждения, а затем для реализации (рис. 21.1).


«Незнайкин»: Есть моменты в этой схеме, которых я не понимаю совершенно! Например, какую функцию выполняет транзистор КП103К?

«С»: Очень важную, дорогой Незнайкин! Этот типичный jFET, имеющий канал p-типа, включен в качестве СТАБИЛИЗАТОРА ТОКА. Этот стабилизатор тока удобен именно тем, что выполняется по схеме БЕЗ использования вспомогательного напряжения, благодаря чему это дает возможность включить его как ДВУХПОЛЮСНИК.

Его внутреннее сопротивление (как источника тока) несколько превышает 500 кОм! Второе преимущество этой «простой» схемки – работа в области «термостабильной» точки, что делает величину Iс. ст (тока стока) независимой от температуры окружающей среды…

«А»: Если я верно понял, ток стока полевого транзистора затем разделяется и одна часть его является базовым током транзистора КТ312, а другая – является коллекторным током транзистора VT6. Интересно вот только, как соотносятся между собой эти части. А также – зачем потребовалось такое странное включение транзисторов VT2, VT3 и VT4?

«С»: Это «странное» включение называется СХЕМА ДАРЛИНГТОНА или иначе – СОСТАВНОЙ ТРАНЗИСТОР.

Служит она только для получения на основе «обычных» транзисторов «прибора» со сверхвысоким значением В. Обычной величиной является 20000 – 50000! Следовательно, без учета воздействия суммарного Iко (обратного коллекторного тока), для нормальной работы VT4, при среднем токе нагрузки стабилизатора 300 мА, необходим базовый ток около 6 мА. Для VT3 базовый ток равен приблизительно 300 микроампер. Откуда базовый ток VT2 – 5 микроампер!

«Н»: Значит при этом из 200 микроампер, которые обеспечиваются источником тока на jFET VT1, собственно в базу VT2 идет 5 микроампер, а на долю коллекторного тока VT6 остается 195 мкА? А этого хватит для нормальной работы КТ315?

«С»: Вполне! Вообще запомни, что планарно-эпитаксиальные транзисторы типа КТ315; КТ312; КТ342 и подобные им, уже при коллекторных токах от 100 микроампер и выше имеют высокие значения В!

«А»: А какую задачу выполняет VT5?

«С»: Представь себе, что жизнь сложилась так, что напряжение Uвых по каким-то причинам уменьшилось. Тогда его значение понизилось и на базе VT6. Следовательно, уменьшится и ток коллектора Iк транзистора VT6. И, естественно, эмиттерный ток тоже.

Так вот, не будь транзистора VT5, потенциал эмиттера VT6 уменьшился бы тоже. Но VT5 реагирует на это увеличением своего коллекторного тока, компенсируя тем самым начавшееся было уменьшение потенциала на эмиттерном резисторе R3.

«А»: Иными словами, «свято место пусто не бывает»! Но ведь ток коллектора VT6 все равно уменьшился?

«С»: Без вариантов! Теперь он равен уже не 195 мкА, а, например, 185 мкА или даже меньше! Что же произойдет дальше?

«А»: Я полагаю, что поскольку стабилизатор тока на jFET стойко держит свои 200 мкА. (и никаких гвоздей), a VT6 свои прежние 195 мкА коллекторного тока брать на себя не желает, а «согласен» только на 185 мкА, то эти самые 10 мкА пойдут в базу VT2, увеличивая, тем самым проводимость составного транзистора.

«С»: Все так! Это приводит к тому, что проводимость VT4 – увеличивается, а его напряжение коллектор-эмиттер УМЕНЬШАЕТСЯ. Следовательно, это приводит к возрастанию Uвых!

«Н»: Ну, а если Uвыx почему-то увеличилось?

«А»: В этом случае VT6 начинает увеличивать свой эмиттерный ток. Потенциал его эмиттера при этом ВСЕ РАВНО НЕ ИЗМЕНИТСЯ, поскольку VT5 соответственно, уменьшит значение коллекторного (а значит и эмиттерного) тока. Но базовый ток составного транзистора – уменьшится. Следовательно, уменьшится проводимость VT4. Таким образом, система автоматического регулирования «отрабатывает» все изменения выходного напряжения, немедленно компенсируя их!

«С»: Вот и разобрались! Какие еще неясности?

«Н»: Зачем в схеме конденсатор С4?

«С»: Для предотвращения возможного самовозбуждения схемы.

«Н»: А почему применено такое странное параллельное включение конденсаторов С1 и С2?

«А»: Этого момента спервоначала не понимают многие… Дело в том, что любой конденсатор С можно рассматривать, как последовательный колебательный контур, образуемый не только емкостью С, но и собственной паразитной индуктивностью Lc! А электролитические конденсаторы характеризуются вполне ощутимой собственной индуктивностью. Чтобы «закоротить» эту индуктивность, практикуют параллельное с электролитом подключение КЕРАМИЧЕСКОГО конденсатора.

«Н»: Мы рассмотрели работу стабилизатора напряжения (СН) на +12 вольт.

А как устроена схема СН на-12 вольт? В ней есть какие-либо принципиальные отличия?

«С»: Все транзисторы заменяются своими комплементарными аналогами. Изменяются полярности подключения стабилитронов и электролитов. Единственный транзистор, который остается тем же – это jFET типа КП103!

«А»: Именно из-за того, что наш стабилизатор тока – ДВУХПОЛЮСНИК, достаточно просто поменять местами его выводы «а» и «б»!

«С»: Большего и не требуется!

«А»: Но все же мне непонятно одно! Ведь есть же неплохие интегральные стабилизаторы напряжения серии К142ЕН… Почему бы не применить их?

«С»: Если ты внимательно ознакомишься с их параметрами, то заметишь, что их коэффициент стабилизации как по напряжению, так и по току оставляет желать много лучшего.

«Н»: А что это такое – КОЭФФИЦИЕНТ СТАБИЛИЗАЦИИ?

«С»: КОЭФФИЦИЕНТ СТАБИЛИЗАЦИИ ПО НАПРЯЖЕНИЮ равен отношению изменения напряжения на входе схемы СН к вызванному им изменению напряжения на выходе схемы СН при некотором токе нагрузки.

Обычно ток нагрузки приравнивается к номинальному.

Kст = ΔUвхUвых.

Величина, обратная Кст называется КОЭФФИЦИЕНТОМ НЕСТАБИЛЬНОСТИ.

«Н»: Тогда коэффициент стабилизации по току, означает, как изменяется выходное напряжение при изменении выходного тока в некотором промежутке значений?

«С»: Да, при изменении тока нагрузки от минимального до максимального при условии, что входное напряжение не меняется!

«А»: Но ведь в реальных схемах меняются в некоторых пределах, случайным образом, и входное напряжение, и ток нагрузки?

«С»: Несомненно! Поэтому и говорят о некотором суммарном коэффициенте стабилизации. Так вот, на микросхемах 142 серии этот показатель получается в 3–5 раз хуже, чем в предложенной нами схеме.

«Н»: То есть имеет смысл немедленно взяться за ее изготовление?

«С»: Не раньше, чем мы выясним еще один важный вопрос. Самым мощным, естественно, является транзистор VT4, который называется ПРОХОДНЫМ. Но как вы считаете, что произойдет, если закоротить клемму Uвых на землю?

«А»: Ток проходного транзистора резко возрастает, поскольку ничем не ограничен. А всё напряжение, которое в состоянии обеспечить выпрямитель приходится на переход коллектор – эмиттер VT4. Мощность значительно превышает максимально допустимую и транзистор, естественно, полностью выходит из строя. Пробой транзистора означает, что на выходе будет повышенное нестабилизированное напряжение, которое станет представлять опасность уже для основных электронных радиотехнических узлов.

«Н»: Но предложенный вами стабилизатор, дорогой Спец, не защищен ведь от короткого замыкания на выходе?

«С»: Вот именно для того, чтобы избежать последствий, в случае короткого замыкания выхода, я предлагаю следующее дополнение к ранее приведенной схеме (рис. 21.2).



«А»: Я так понимаю, что пока ток нагрузки (рис. 21.2, а) не превышает некоторый максимально допустимый, например 500 мА, падение напряжения на резисторе R13 недостаточно для отпирания VT1. Следовательно, его коллекторный ток можно считать равным нулю. Но в этом случае заперт и VT2. Следовательно, коллекторный ток VT2 так же равен нулю!

«С»: Верно! Ну, а в случае короткого замыкания на выходе?

«А»: В этом случае падение напряжения на Rдат превышает 0,6 В. VT1 переходит в состояние насыщения и его коллекторный ток «отопрет» транзистор VT2. В свою очередь, его коллекторный ток создаст на истоковом резисторе падение напряжения такой полярности, что это вызовет запирание полевого транзистора.

«С»: Процесс этот, прошу заметить, носит динамический характер. То есть максимальный ток, проходящий через проходной транзистор, очень просто подсчитывается по формуле:

Imах к.з. = 0.6∙B/Rдат.

Таким образом при Rдат = 1 Ом, максимальный ток короткого замыкания буде равен 600 мА.

«А»: Действительно, VT4 будет работать в допустимом режиме по току.

«Н»: А если снять закоротку?

«С»: Стабилизатор немедленно восстановит нормальный режим работы. Предлагаемая схема в этом отношении является совершенно некапризной.

Кстати, есть прямой смысл заменить в приведенной схеме транзисторы VT3 и VT4 на один составной транзистор Дарлингтона (речь идет о рис. 21.1).

«А»: Я полагаю, это будет составной n-р-n-транзистор типа КТ825?

«С»: Совершенно верно! Помимо того, что у КТ825 сравнительно мало напряжение насыщения составной структуры (около 2 В), его максимальный ток составляет несколько ампер. Поэтому, уменьшив величину Rдат, не прибегая более ни к каким схемным изменениям, можно увеличить допустимый уровень тока нагрузки.

«Н»: А не будете ли вы столь добры представить схему стабилизатора на отрицательное напряжение?

«А»: Если никто не возражает, я сделаю это прямо сейчас (рис. 21.3).


«Н»: В этом стабилизаторе в качестве VT3 и VT4 тоже применяется составной транзистор?

«А»: Да, но типа КТ827. Он комплементарен Дарлингтоновскому транзистору КТ825.

«Н»: А сложно построить подобный стабилизатор?

«С»: Если строго соблюсти условия, которое я вам сейчас сообщу, то стабилизаторы, собранные по приведенным выше схемам, начинают работать сразу.

«А»: Интересно, в чем заключается это условие?

«С»: Обратите еще раз внимание на стабилизатор тока. Его ток стока должен быть установлен равным точно 0,2 мА. Тогда все остальные режимы устанавливаются АВТОМАТИЧЕСКИ!

«Н»: А как проще всего это сделать?

«С»: Обычно поступают следующим образом. Собирают отдельно вот такую элементарную цепь. Для ее питания достаточно обычной батарейки на 9 вольт (рис. 21.4).


«А»: В качестве измерительного прибора лучше всего использовать тестер.

«С»: Да, поставив его на предел 600 микроампер. Rист берется для начала, равным 3,3 кОм. Если ток измерительного прибора превышает требуемые 200 микроампер, то увеличивают Rист, проходя последовательно значения: 3,6 к; 3,9 к; 4,3 к; 4,7 к и т. д. Применяя транзисторы соответственных буквенных индексов, обычно при подборе требуется не более трех попыток.

«Н»: А какие буквенные индексы наиболее предпочтительны для рассматриваемой схемы стабилизатора?

«С»: Для транзисторов с p-каналом это: КП103И; КП103К; 2П103Б и 2П103В. Для n-канала можно выбирать такие транзисторы, как КП303Б, КП303В; КП303А; 2П303А (Б, В). То есть такие, паспортное значение Uотс, которых не превышает 3-х вольт.

«А»: А какого типа следует применять подстроечный резистор?

«С»: Предпочтительнее всего использовать следующие типы многооборотных подстроечных резисторов: СП5-3; СП5-2; СП5-22; СП5-1ВА. Возможно применение и однооборотных СП5-16ВА или СП5-16ВБ. А также подобных им модификаций.

Применение подстроечного резистора дает возможность ТОЧНО установить выходное напряжение. Точно – это значит до единиц милливольт!

«Н»: Но речь шла о ТРЕХ выходных напряжениях, а не о ДВУХ!? Что меняется в стабилизаторе на +7,5 вольт?

«С»: Прежде всего, вполне достаточно иметь на входе не 16, а всего 12 вольт! Схема защиты при этом не претерпевает ровно никаких изменений, кроме одного единственного. В качестве VD1 применяется стабилитрон КС168 или КС175. А вот схема дифференциального усилителя несколько иная. Да вот она (рис. 21.5).


«А»: Здесь в качестве опорного стабилитрона применен ТОЛЬКО один светодиод?

«С»: Этого достаточно вполне.

«Н»: Я хотел еще спросить о том, чего здесь нет!

«А»: Интересный поворот темы! Это не о трансформаторе ли зашла речь?

«Н»: Именно о нем!

«С»: Есть много возможностей! Следует исходить из того, по какому пути проще пойти! Можно, например, взять готовый стандартный трансформатор типа ТПП, имеющий соответствующие вторичные обмотки. Или, скажем, использовать трансформатор одного из следующих типов: ТН-33; ТН-34; ТН-36, и т. п.

Полное наименование: ТН-33-220-50; ТН-34-220-50 и т. д. Очень хорошим решением является изготовление трансформатора-тора. Это, кстати, обойдется в несколько раз дешевле. Можно использовать как самодельный, так и стандартный тороидальный трансформатор.

«А»: Действительно, сейчас можно на радиотолчке приобрести соответствующий по мощности тор с уже намотанной первичной (сетевой) обмоткой. Она обычно содержит 2200 витков. Следовательно, 10 витков на вольт! Намотать три вторичных обмотки на соответствующие выходные напряжения – труда не составит!

«Н»: Ну, это как для кого. А какие нам нужны вторичные напряжения обмоток?

«А»: Исходи из того, что нужны ДВЕ обмотки по 15 вольт и одна на 10 вольт!

«Н»: Но на принципиальной схеме (рис. 21.6) я вижу нечто ИНОЕ? На входах двух стабилизаторов 18 вольт и на входе третьего – 12 вольт?


«А»: Все учтено могучим ураганом! Входные конденсаторы «поднимают» напряжение обмотки, примерно, в 1,3 раза! Но из вновь полученного значения следует вычесть величину несколько превышающую один вольт. Это напряжение теряется на выпрямительных диодах. Как легко убедиться, напряжение на входе первых двух стабилизаторов при этом и будет составлять около 16,5 вольт. А с учетом падения напряжения на активном сопротивлении выходных обмоток – 16 вольт!

«С»: То есть именно то, что и требуется! А теперь следует определиться в токах. Учтите, что максимально допустимая мощность для тора с габаритами 50x20x10 мм составляет 25 ватт!

«А»: А хватит ли этого? Давайте прикинем. Две обмотки по 16 вольт на 0,4 ампера каждая, это 2x15x0,4 = 12 ватт. Одна обмотка на 10 вольт и 0,4 ампера – это 10x0,4 = 4 ватта. Итого: 12 + 4 = 16 ватт!

«С»: Обратите внимание, что тороидальный трансформатор весит в два – три раза меньше, чем адекватный ему по мощности обычного исполнения. И еще одно – КПД тороидального трансформатора обычно не менее 99 процентов! Кроме того, он допускает домотку обмоток, что в трансформаторе обычного типа сделать весьма проблематично!


    Ваша оценка произведения:

Популярные книги за неделю