Текст книги "Мир вокруг нас"
Автор книги: Этэрнус
сообщить о нарушении
Текущая страница: 8 (всего у книги 22 страниц)
Конфигурации нейтронизбыточных изотопов гелия
У гелия, как уже говорилось, известно восемь изотопов, из которых, два первых – мы уже рассматривали (стабильные гелий-3 и гелий-4). Теперь рассмотрим короткоживущие, нестабильные, а именно – нейтроноизбыточные изотопы.
Спин первого из них, гелия-5 – равен 3/2, и т. о. сильно отличается от спина соседних изотопов, гелия-4 и гелия-6, см. табл. 2. Это скачкообразное изменение спина, между соседними изотопами (гелием-4, -5 и -6) – легко и наглядно объясняется геометрией ядер, из которой видно, почему выгодны конфигурации именно с такими спинами – см. рис. 38. В целом, ядро гелия-5, как видно, устроено аналогично ядру водорода-4.
Таблица 2 [8]
Изотопы гелия
Рис. 38
Следующий изотоп, гелий-6 – в целом, аналогичен, по строению, водороду-5, см. рис. 38. Согласно экспериментальным данным, ядро гелия-6 – имеет аномально высокий эффективный радиус, т. к. обладает гало из двух слабо связанных с остальным ядром (т. е. сердцевиной), нейтронов [9]. Отныне, можно наглядно видеть причину этого: внешние нейтроны, в ядре гелия-6 – связаны с протонами лишь косвенно, через другие нейтроны, а значит, связаны слабо, и поэтому могут (благодаря всё той же квантовой неопределённости), значительно отдаляться от сердцевины, или кора ядра. Кроме того, нейтроны – развёрнуты наружу (что также сильно облегчает взаимодействие с ними других ядер и частиц, т. е. увеличивает измеряемый эффективный радиус ядра).
Следующий изотоп, гелий-7 – показан на рис. 39. По структуре, это ядро (изотоп), как видно – является аналогом водорода-6. В своей структуре, гелий-7 имеет тринейтрон, выгода которого – аналогична описанной для водорода-6.
Рис. 39
Далее, рассмотрим строение ядра изотопа гелий-8 – см. рис. 40. В строении ядра гелия-8, как известно [10], и как видно на рис. – имеется гало из четырёх нейтронов. Эти четыре слабосвязанных нейтрона – прикреплены к альфа-частице (кору, нуклоны в котором – сильно связаны друг с другом). Гелий-8, в целом – также аналогичен соответствующему изотопу водорода, – водороду-7.
Рис. 40
Фактически, зная наглядную геометрию и основные правила, или закономерности связи нуклонов друг с другом, которые были рассмотрены, видимо, можно было бы легко предсказать существование гелия-8, и все его свойства (в т. ч. наличие четырёх гало-нейтронов) – и до их экспериментального открытия.
Далее: Гелий-9 можно представить в виде одной из трёх возможных конфигураций, показанных на рис. 41. Неосуществление механизма водорода-6 во второй конфигурации на этом рис. (симметричное отдаление двух тринейтронов, что невыгодно, т. к. легко осуществимо), даёт возможность сразу отбросить эту, вторую конфигурацию. Также отбросим и третью конфигурацию, т. к. добавляемый нейтрон в ней, очевидно, связан слишком косвенно (нейтрон присоединён к нейтрону гало, т. е. слабосвязанному нейтрону). Т. о. остаётся лишь первая конфигурация, как правильная.
Рис. 41
Наконец, последний изотоп гелия, гелий-10 – см. на рис. 42. Из наглядной структуры этого ядра, видно, что оно содержит максимальное число нейтронов, и дальше добавлять нейтроны уже некуда: восемь нейтронов в гелии-10 связаны только благодаря незанятости более низкого энергетического уровня, т. е. из-за отсутствия нейронов в положении (отсутствующей) альфа-частицы в центре. Т. е. в этом ядре – нет кора (как и у изотопов гелия-5, -7 и -9). Внутренние нейтроны в гелии 10 – связаны (относительно) сильно, а наружные нейтроны – развёрнуты кнутри, т. о. гало-нейтроны тут отсутствуют, несмотря на то, что число нейтронов в гелии-10 – больше, чем в гелии-8 (это – теоретическое предсказание, т. к. из-за малого времени жизни, наличие / отсутствие гало-нейтронов у гелия-10 – ещё не определено).
Рис. 42
Если бы существовали изотопы гелия-11 и -12, нейтроны в них были бы связаны ещё более косвенно (не менее, чем через нейтроны гало), что является слишком слабой связью (поэтому изотопы гелия-11 и -12, как и водород-8, пока не наблюдались).
Итак, мы рассмотрели (вместе с изотопами водорода), наглядное строение атомных ядер первых 15-ти изотопов таблицы Менделеева, объясняя их спины, наличие или отсутствие гало-нейтронов, и общее число этих изотопов (т. е. почему их именно 7 у водорода, и 8 у гелия). Теперь мы можем пойти далее, и рассмотреть:
Объяснения закономерностей радиоактивных распадов
Объясним реакции распада ядер нестабильных изотопов, рассмотренных в предыдущих главах. Т. е. рассмотрим закономерности взаимопревращений ядер атомов, в связи с наглядными изображениями внутреннего строения ядер. Также определим и причины стабильности нерадиоактивных изотопов. Начнём с ядер водорода:
Водород-1 (протон) – стабилен т. к. протон, сам по себе, является стабильной элементарной частицей. Изотоп водорода-2 (дейтерий) – также полностью стабилен, т. к. нейтрон, превращаясь в протон – «расширяется», что неосуществимо в ядре дейтерия, см. рис. 43. (Кроме того, распад нейтрона – невыгоден, т. к. превратит ядро дейтерия в несвязанную (или почти несвязанную) систему – ядро гелия-2 (дипротон)).
Рис. 43
После стабильных, водорода-1 и дейтерия, следует радиоактивный водород-3 (тритий), имеющий, как уже говорилось, сравнительно большой период полураспада (12,32 года). В этом ядре, нейтроны – находятся на самом нижнем (= базовом) энергетическом уровне, что, естественно, выгодно, и связаны непосредственно или (нижний нейтрон) почти непосредственно с протоном, т. е. связаны сильно (а значит, нейтрон – не может вылететь из ядра, в отличие от наблюдаемого вылета нейтронов при распадах более тяжёлых изотопов водорода, о чём – далее). Один из нейтронов в тритии может лишь распасться до протона («расшириться»). Но в чём выгода этого? Можно видеть, что образующийся гелий-3 – замыкает область пространства большую, чем тритий, и т. о. оказывается немного ближе, по строению, к полностью замкнутой фигуре, т. е. фигуре наиболее энерговыгодного, среди всех рассмотренных ядер, гелия-4 (= альфа-частице).
Следующие за тритием, нестабильные изотопы водорода: 4, 5, 6 и 7 – имеют примерно одинаковые времена полужизни – порядка 10–22 сек (подробнее – см. в табл. 1). Все они – распадаются с вылетом нейтронов, как видно из табл. 1. Исходя из крайне малого времени жизни, мы можем сразу потребовать, чтобы распады этих ядер – происходили с переходом нейтрона на более низкий (в данном случае – базовый) энергетический уровень, в котором имеется т. о. вакансия. Действительно, для изотопов водорода-4 и -6 – это легко увидеть, см. рис. 44. Видно, что один из нижних нейтронов, в ядре водорода-4 – может «перевернуться», и занять более низкий (базовый) энергетический уровень, образовав т. о. ядро трития; соседний нейтрон, при этом – становится лишним (несвязанным), и вылетает, унося выделившуюся (при переходе между уровнями), энергию. То же самое – происходит в водороде-6, но вылетать может как один нейтрон, так и три нейтрона сразу (см. табл. 1 + рис. 44).
Рис. 44
Водород-6, несмотря на большую, чем у водорода-4, нейтроноизбыточность – живёт несколько дольше водорода-4 (см. табл. 1). Это увеличение времени жизни – можно объяснить, исходя из наличия тринейтрона (которое ведёт к асимметрии ядра, и в конечном итоге, уменьшению квантовой неопределённости положения нуклонов, что выгодно, и уже рассматривалось ранее). На неклассическом этапе, увеличение времени жизни у более нейтронизбыточных изотопов водорода – называлось водородной аномалией [11], т. к. оставалось, в целом, необъяснимым. (Аналогичная «аномалия» – имеется у ядер гелия: гелий-7, так же содержащий тринейтрон – стабильнее гелия-5).
Далее: Чтобы понять (объяснить) радиоактивный распад изотопа водорода-5, происходящий с вылетом двух нейтронов (табл. 1), мы должны учесть, что эти, до вылета – слабосвязанные, нейтроны, в этом ядре находятся не на базовом, а на более высоком энергоуровне. Но перейти в более низкое энергетическое состояние в ядре, они не могут, т. к. последнее – уже занято нейтронами кора (трития). Это уже объясняет, почему время жизни водорода-5 – больше времени жизни водорода-4 и -6, имеющих незаполненные места для нейтронов, на базовом энергоуровне.
Теперь учтём, что связь слабосвязанных нейтронов в ядре водорода-5, по определению, слабая, т. е. это должны быть гало-нейтроны (как у изотопов гелия-6 и -8), но для изотопа водорода-5 – экспериментальное определение наличия гало-нейтронов затруднено малым временем жизни ядра, и поэтому не выполнено. Аналогия наглядного строения ядра гелия-6 с ядром водорода-5 говорит, что в водороде-5 содержатся именно гало-нейтроны (из наглядной структуры ядра видно, что данные нейтроны связаны через другие нейтроны, а значит, связаны слабо (причём, ещё более слабо, чем в изотопах гелия-6 и -8, т. к. в водороде – всего один протон)). Слабая связь – эквивалентна малой энергетической выгоде от такой связи. В итоге, оказывается более энергетически выгодным переход гало-нейтронов из этого, как бы возбуждённого состояния – в базовое, т. е. на базовый энергоуровень, который хоть в этом ядре и занят, но свободен вне ядра, см. рис. 45. Т. е. гало-нейтроны, переходя на более низкий энергоуровень – оказываются свободными нейтронами, что и объясняет вылет нейтронов при распаде водорода-5. (Нужно также учесть спаренность этих нейтронов, благодаря которой, они могут совершать переход между уровнями одновременно друг с другом, и вылетать одновременно).
Рис. 45
Можно сказать, что ядро водорода-5 – вообще существует за счёт того, что находится в подобии возбуждённого состояния, т. е. как бы и не имеет базового состояния (его базовое состояние – соответствует ядру трития и двум свободным нейтронам, а это уже не водород-5, т. е. не связанная система). При синтезе (получении) ядра водорода-5, энергия т. о., соответственно, поглощается, а не выделяется.
Далее: Последний изотоп водорода, водород-7 – пока мало изучен, поэтому на нём (вернее, на рассмотрении его распада), подробно останавливаться не будем.
Итак, мы рассмотрели распады изотопов водорода, в связи с наглядными представлениями о внутренней структуре этих ядер. Пути распада, как видно – вытекают из структуры ядер, также как и соотношения времён жизни между изотопами.
Распады изотопов гелия
Теперь можно перейти к рассмотрению и реакций распада ядер изотопов гелия. Во многом, они дублируют те закономерности, что мы видели у изотопов водорода, но есть и существенные отличия, обусловленные наличием второго протона, из-за которого, нейтроны в изотопах гелия становятся связаны более сильно, а реакции с вылетом нейтронов, у некоторых изотопов, аналогичных изотопам водорода – становятся нехарактерными (см. табл. 2). Итак, рассмотрим реакции распада изотопов гелия, чтобы увидеть, как влияет увеличение связанности нейтронов (т. е. добавление протона) на эти реакции. Итак, по порядку:
Гелий-3 и гелий-4 – стабильны, т. к. все нуклоны в них находятся на наиболее выгодном (базовом) уровне, и расположены в соответствии с правилом о выгоде наиболее близкого расположения кварков (т. е. граней) нуклонов; кроме того, гелий-4 является полностью замкнутой фигурой. Любой распад этих ядер т. о. – невыгоден.
Гелий-5 – уже быстро распадается (период полужизни – всего 7×10–22 сек). Этот изотоп – испускает нейтрон, превращаясь в стабильный гелий-4. Механизм распада, в целом – аналогичен распаду изотопа водорода-4, см. рис. 46. На рис. видно, что в этом процессе, один из нижних нейтронов – изменяет спин (т. е. переворачивается), и переходит в базовое положение, образуя альфа-частицу (кор), где кварки этого нейтрона более близко расположены к протонам и другому базовому нейтрону, что усиливает его связь с последними. Второй нижний нейтрон, при этом – становится слабосвязанным (ядру он невыгоден из-за отсутствия сил спаривания). Поэтому этот лишний нейтрон – вылетает (так же переходя на низший (базовый) энергоуровень, но уже вне ядра, т. е. в свободное состояние).
Рис. 46
В следующем изотопе, гелии 6, нейтронам – некуда переворачиваться: более выгодные (базовые) положения в ядре – уже заняты другими нейтронами. В то же время, переход обоих нейтронов в базовое состояние вне ядра – в отличие от изотопа водорода-5, становится уже невыгоден (из-за наличия дополнительного протона). Кроме того, если один из нейтронов распадётся на протон, то получится стабильное ядро лития 6, что энергетически выгодно (о чём, подробнее – позже), и наблюдается в большинстве (99,99 %) распадов гелия-6, см. рис. 47. Поэтому, этому изотопу – приходится ждать, пока один из его гало-нейтронов не распадётся на протон, электрон и антинейтрино (b– распад). Время распада, вследствие этого, оказывается огромно, по сравнению с ядром водорода-5: так, гелий-6 – существует около секунды (806,9 мс), а водород-5 – лишь примерно (более) 9,1×10–22 сек. Также, это время жизни примерно в миллиард миллионов миллионов раз длиннее, чем у гелия-5 (7×10–22 сек), в котором, для распада, достаточно перехода нейтрона из более высокоэнергетичного положения в базовое, которое в этом ядре свободно (после чего, другой нейтрон, легко переходит в базовое положение вне ядра).
Рис. 47
Далее: В ничтожных 1,7×10–4 % случаев, b– распад гелия 6 может приводить не к литию-6, а к двум осколкам – гелию-4 и дейтерию. Это можно представить через промежуточную («виртуальную») стадию на рис. 48. При этом, нужно учесть, что значимая часть энергии b– распада тут передаётся, в конечном итоге, не электрону и антинейтрино, а осколкам – ядру дейтерия и гелия-4, благодаря чему и возможен такой канал распада (в то время как сам литий-6, который угадывается, хотя и в возбуждённом, а не основном состоянии, в «виртуальной» стадии – в своём обычном (основном) состоянии, как известно и уже говорилось – стабилен).
Рис. 48
Далее: Гелий-7 (похожий по строению на водород-6, и тоже содержащий тринейтрон) – имеет время жизни 3,1×10–21 сек, т. е. немного выше, чем у гелия-5, несмотря на свою более высокую нейтроноизбыточность (это одно из проявлений т. н. гелиевой аномалии, уже объяснявшейся для случая водорода-6 / гелия-7 – ранее).
Распад гелия-7, несмотря на сходство этого ядра с изотопом водорода-6, происходит не с вылетом трёх нейтронов: Гелий-7 – распадается с вылетом только одного нейтрона, т. к. связь нейтронов в гелии-7 – выше, чем в водороде 6, и вылет сразу трёх нейтронов – невыгоден. Механизм реакции распада ядра гелия-7 – показан на рис. 49. Как видно, один из нижних нейтронов, тут – переворачивается, занимая конфигурацию в образующейся т. о. альфа-частице (= сердцевине будущего гелия-6); при этом, самый верхний нейтрон в тринейтроне – становится несвязанным (т. к. присоединён к гало-нейтрону), и переходит (минуя сразу два энергоуровня), в базовое состояние вне ядра (т. е. вылетает, унося энергию распада, в виде импульса).
Рис. 49
Далее: Следующий изотоп, гелий-8, по реакции распада и времени полужизни, в целом – схож с гелием-6 (см. табл. 2). По структуре, от гелия-6, это ядро отличается, как уже рассматривалось, лишь тем, что содержит не два, а 4 гало-нейтрона. Любой из этих гало-нейтронов – может превратиться в протон, поэтому время жизни гелия-8 (119,1 мс) – несколько меньше, чем у гелия-6 (806,9 мс).
В большинстве (83%) случаев реакции распада гелия-8, из-за превращения (b– распада) одного из гало-нейтронов в протон – образуется изотоп литий-8. Возможные «виртуальные» стадии этого превращения – показаны на рис. 50.
Рис. 50
В 16,1% случаев, b– распад гелия-8 сопровождается вылетом нейтрона, что можно объяснить через промежуточные (возбуждённые / «виртуальные») состояния [12], как наглядно показано – на рис. 51. Как видно, в этом канале распада, продуктами являются стабильное ядро лития-7, и свободный нейтрон.
Рис. 51
В 0,9% случаев, распад идёт до гелия-5 и трития, а это – как раз компоненты, которые можно видеть (в виде относительно самостоятельных частей (кластеров)), в наглядной структуре ядра лития-8 (в который гелий-8 превращается, как уже говорилось, в 83% случаев). В данном же случае, (образующееся) ядро лития-8 – не успело передать, в полной мере, лишний импульс (энергию) b– распада электрону и нейтрино, и оказалось в некотором высоковозбуждённом состоянии, которое имеет достаточную энергию, чтобы перейти в базовое состояние не обычным путём (через испускание гамма-кванта), а через распад с образованием двух осколков – ядер гелия-5 и трития [12]. Упрощённо, можно представить, что лишняя энергия раскалывает ядро 8Li (в основном состоянии) – на две и так бывшие относительно самостоятельными, части.
Далее: Следующие изотопы, гелий-9 и гелий-10, существуют за счёт того, что содержат незаполненные участки в базовом энергетическом уровне ядра. Поэтому распад этих ядер – происходит, подобно гелию-5 и -7 – через посредство перехода одного или двух нейтронов, на более низкий энергетический уровень в ядре (тут – базовый энергоуровень), с образованием альфа-частицы в центре ядра (т. е. с образованием кора). Эта переконфигурация нуклонов – естественным образом, приводит к одному или двум лишним, несвязанным нейтронам, переходящим в базовые состояния уже путём вылета из ядра, см. рис. 52.
Рис. 52
В целом, механизм распада изотопов гелия-9 и -10 – аналогичен таковому у гелия-5 и гелия-7. Время жизни гелия-9 (8×10–21 сек) и гелия-10 (3,1×10–21 сек) – поэтому крайне похоже на времена жизни гелия-5 (7×10–22 сек) и гелия-7 (3,1×10–21 сек).
Итак, мы рассмотрели распады всех нестабильных изотопов гелия. В сумме с предыдущими главами, мы рассмотрели т. о. распады радиоактивных ядер среди первых 15-ти изотопов таблицы Менделеева. Как видно, всё может объясняться из наглядной геометрии ядер (для полного объяснения – необходимо разобрать ещё выгоду конфигураций изотопов лития-6, -7 и -8, являющихся продуктами реакций распада гелия-6 и -8; об этих ядрах, подробнее – несколько позже).
В целом, вместе с предыдущими главами, мы рассмотрели весь первый ряд таблицы Менделеева. На примере изотопов наиболее простых элементов, водорода и гелия – мы увидели причины различных свойств ядер, включая объяснения величин спинов ядер, числа изотопов у элементов, существования нейтронных гало, времён полужизни ядер (либо их стабильности), и путей распада.
Далее, можно рассмотреть и более сложные изотопы, принадлежащие уже элементам второго ряда таблицы Менделеева. Но прежде – обратимся, подробнее, к рассмотрению вопроса о природе ядерных взаимодействий (= сильных (мезонных) полей), с учётом полученных знаний о структуре ядер водорода и гелия.
Роль мезонов в ядерных взаимодействиях
На неклассическом этапе, известно, что взаимодействия нуклонов внутри ядра, осуществляются путём обмена квантами сильного (ядерного) поля – мезонами. Но как уточняется роль мезонов в связывании нуклонов с т. зр. постнеклассических представлений, и где их место в ядре (наглядно)? Рассмотрим это:
Для начала, вспомним строение мезонов – см. рис. 53. Теперь определим место, которое занимают мезоны в наглядно изображаемом ядре, например, гелии-4 (альфа-частице) – см. рис. 54. Из рис. видно, что мезоны – естественным образом, помещаются в «разломе», отделяющем протон от нейтрона, как будто этот разлом – специально создан для мезонов. (Вернее, как будет позже показано, существование этого разлома – причина существования мезонов (и сильного (т. е. ядерного) взаимодействия)).
Рис. 53
Рис. 54
Итак, теперь мезонное (= ядерное) поле – можно представить т. о. наглядно, т. е. на более глубоком уровне.
Далее: Известно, что спин пи-мезонов равен нулю. Попробуем определить спин мезонов, каким он является, по отношению к протонам и нейтронам, на рис. 55. На рис. видно, что мезоны – не развёрнуты ни вверх, ни вниз, т. е. располагаются, одновременно – и над, и под плоскостью, делящей ядро на верхнюю и нижнюю части. Т. о. спин мезонов не может быть ни положительным, ни отрицательным (в отличие от спинов нейтронов и протонов). Этому соответствует только спин 0. Итак, теперь мы можем видеть наглядно и причину нулевого спина мезонов, по отношению к положительным и отрицательным полуцелым спинам нуклонов: в дополнение к объяснению спина 0 через взаимопротивоположные спины кварка и антикварка в мезоне, спин 0 объясняется самой ориентацией мезона в ядре (рис. 55).
Рис. 55
Дальнейшее рассмотрение ядерных полей – пока отложим.