Текст книги "Мир вокруг нас"
Автор книги: Этэрнус
сообщить о нарушении
Текущая страница: 12 (всего у книги 22 страниц)
Об энергетических уровнях в ядрах
Нуклоны в ядре – различаются по энергии, т. к. геометрически не могут располагаться все одновременно на базовом уровне, т. е. поместиться в одну альфа-частицу. Добавляемые нуклоны, поэтому – располагаются выше и дальше от базовых. При этом, естественно предположить, что нуклоны, расположенные на одном расстоянии – одинаковы по энергии, т. е. должны принадлежать одному энергоуровню. Рассмотрим, каким образом располагаются энергетические уровни в атомном ядре, в связи с наглядной геометрией (частично, мы уже касались этого вопроса):
Самый первый, т. е. базовый энергетический уровень – впервые полностью заполнен, как уже отмечалось, в ядре гелия-4 (альфа-частице): об этом свидетельствует, помимо всего прочего, полностью замкнутая форма этого ядра. Как увидим далее, каждый заполненный более высокий энергетический уровень – тоже соответствует геометрически замкнутой форме ядра (углерод-8, неон-20 и т. д.).
Последовательное заполнение базового энергетического уровня, как несложно догадаться – происходило в последовательности следующих изотопов: водород, дейтерий, тритий / гелий-3, и заканчивается гелием-4. Всего, на базовом энергетическом уровне, могут находиться т. о. 4 нуклона – два протона и два нейтрона.
Следующий, после базового, второй по счёту, энергетический уровень – впервые полностью заполнен в ядрах углерода-8 и водорода-7, но только в углероде-8, этот уровень заполнен 4 протонами, а в водороде-7 – 4 нейтронами, см. рис. 132. Это и определяет свойства данных ядер, а также почему изотопы водорода заканчиваются на водороде-7, и изотопы гелия, с повышенной стабильностью, соответственно – на гелии-8 (что свидетельствует о наличии такого уровня в ядре, помимо наглядной геометрии). (Кроме того, об этом свидетельствует отсутствие изотопа кислорода-10). В целом, на втором (после базового), энергетическом уровне – могут расположиться всего 4 нуклона, но они могут быть любыми. (Хотя при дальнейшем прибавлении нуклонов = у более тяжёлых ядер, на этом энергоуровне – очевидно, способны расположиться только нейтроны).
Рис. 132
Отметим, что полностью заполненный второй энергоуровень, в отличие от первого (= базового) – не прибавляет ядру стабильности, а наоборот, ускоряет распад, т. к. в соответствующих ядрах оказывается наиболее высока протоноизбыточность (углерод-8) или нейтроноизбыточность (водород-7). Энергии связи этих ядер, среди изотопов соответствующих элементов (углерода и водорода), естественно – также оказываются наиболее низки [18] (в отличие от 4He).
Далее: Ещё более высокий, третий по счёту, энергетический уровень – впервые наполовину заполняется, как уже отмечалось, в ядре углерода-12 (см. рис. 120). На то же расстояние, что и в углероде-12, нуклоны могут добавляться вплоть до неона-20. Поэтому полностью, третий энергоуровень (впервые) заполнен – у неона-20 (который, как и полагается ядру с полностью заполненными энергоуровнями, имеет замкнутую, правильную геометрическую форму, напоминающую кристалл (см. рис. 129)). На рис. 129 видно, что протоны, в боковых альфа-кластерах, в ядре неона-20 – не тождественны, по расположению, протонам в углероде-8 (см. рис. 132), т. е. протонам второго энергоуровня, а значит, находятся выше по энергии (= находятся на третьем энергоуровне). Четыре из нейтронов в неоне-20 – тоже располагаются выше нейтронов в водороде-7 (= нейтронов второго энергоуровня), из чего можно видеть, что они также принадлежат третьему энергоуровню. Всего, на третьем энергоуровне т. о. располагается 12 нуклонов (8 протонов и 4 нейтрона (см. рис. 129)).
Полностью заполненный 3-й энергоуровень – даёт стабильное ядро (неон-20), т. к. это ядро оказывается состоящим из (выгодных) альфа-кластеров, уравновешивающих друг друга. Соотношение протонов и нейтронов, при этом, получается 1 : 1, как и в альфа-частице (заполненный первый энергоуровень). Выгода ядра неона 20 – несколько снижается вследствие ближне-дальней симметрии, из-за одинаковости кластеров (альфа-кластеры) вблизи и вдали, что проявляется в меньшем энерговыделении при образовании этого ядра, по сравнению с кислородом-16 и магнием-24 (подробнее, это будет рассмотрено позже).
Итак, обобщим данные, по числу нуклонов на энергоуровнях: 1-й (базовый) энергоуровень – имеет 4 нуклона, 2-й – тоже 4 нуклона, 3-й – 12 нуклонов. Получившиеся числа – напоминают количество электронов на энергетических уровнях в атоме (хотя и умноженное на два): как известно, первые энергоуровни в атоме, называемые 1s, 2s и 2p, содержат, соответственно, 2, 2 и 6 электронов.
Итак, получилось совпадение (симметрия) между атомными и ядерными энергетическими уровнями. Случайно ли это? И почему нуклонов на энергоуровнях (в ядре) – в два раза больше, чем электронов на энергоуровнях в атоме?
На последний вопрос, ответ, вероятно, вытекает из нарушения симметрии между веществом и антивеществом (причина которого – ещё будет рассматриваться, позже): ведь на 1s электронной оболочке в атоме, помимо двух электронов (с противоположными спинами), могли бы разместиться ещё и два позитрона (тоже с противоположными спинами), что не нарушает известный принцип запрета Паули. Но позитронов в реальном атоме нет, т. к. в ядре нет отрицательного заряда, который бы их притягивал (т. к. вместо антипротонов – в ядре имеются лишь нейтроны, заряженные нейтрально). Тем не менее, подлинное число частиц на 1s энергоуровне атома – можно считать равным четырём, хотя это и не реализуется, из-за нарушенной симметрии между веществом и антивеществом (вернее, атомы не существовали бы, если бы эта симметрия (вещество / антивещество) не была нарушена (все частицы в окружающем Мире проаннигилировали бы)). Почему симметрия нарушилась – рассмотрим несколько позже.
Итак, ещё раз подчеркнём то, что так или иначе, но открывается скрытая симметрия между энергоуровнями атома и атомного ядра.
Это позволяет дать имена энергоуровням атомного ядра – точно такие же, как и энергоуровням атома:
1s-энергоуровень – заполнен у альфа-частицы (4 нуклона), 2s-энергоуровень – у углерода-8 и водорода-7 (4 нуклона), и 2p-энергоуровень – заполнен у неона-20 (12 нуклонов).
Наглядно видно, почему 2s– и 2p-энергоуровни объединены одной цифрой – т. к. только совместно они образуют (выгодные) боковые альфа-кластеры (в неоне-20 и углероде-12). Т. е. (что неудивительно), только (боковые) альфа-частицы целиком – являются энергетическим уровнем, а 2s и 2p – его подуровни. (Нуклоны на этих подуровнях – должны, как и в случае подуровней в атоме – быть близки по энергии (и сильно отличаться по энергии от нуклонов на 1s– и 3s-энергоуровнях)).
Чтобы посмотреть, продолжается ли совпадение атомных и ядерных энергетических уровней и далее, т. е. для более тяжёлых ядер, переходим к вопросу:
О строении ядер третьего и четвёртого рядов таблицы Менделеева
Рассмотрим строение ядер третьего и четвёртого рядов таблицы Менделеева, прежде всего таких, у которых полностью заполнены энергетические уровни (о чём будет свидетельствовать замкнутая геометрическая форма таких ядер).
На рис. 133 – показано строение ядра изотопа кремния, кремния 24 (положение этого элемента в таблице Менделеева – см. в табл. 22). Ядро кремния-24 – имеет замкнутую геометрическую форму. В этом ядре, можно предположить впервые полностью заполненным (протонами), 3s энергетический уровень (точнее, подуровень). Максимально, тут, как видно – может разместиться 4 нуклона (протона). Размещению пятого, и более, протонов (т. е. размещению их в ближней части ядра, на рис. 133), мешают сами протоны, в дальней части ядра (геометрически). При более точном рассмотрении, из-за равнозначности ближней и дальней частей ядра, протоны могут изначально располагаться в любой части ядра, и т. о. – колеблются между этими частями (как было показано на рис. 133). Т. о. протоны находятся в обеих частях ядра одновременно, так что в среднем, каждой части ядра принадлежит по одному протону. Из этого – легко увидеть, почему расположение нейтронов, отражающее положение 3s-энергоуровня, также полностью заполненного (но нейтронами), в ядре неона 24, на первый взгляд, не совпадает с положением протонов в кремнии-24 (если не учесть колебание протонов), см. рис. 134.
Рис. 133
Таблица 22
Таблица Менделеева, первые четыре ряда
Рис. 134
Следующий, 3p-энергетический уровень – наполовину заполняется также в изотопе кремния, – кремний-28, см. рис. 135. (По структуре, это ядро – является аналогом углерода-12 (рис. 120), в котором наполовину заполнен 2p-(под)уровень).
Рис. 135
Полностью заполняется 3p-энергоуровень – в изотопе элемента, завершающего третий ряд таблицы Менделеева (табл. 22), это – аргон-36, см. рис. 136. В структуре ядра аргона-36, нужно уже учитывать, что некоторые из альфа-кластеров – должны повернуться, чтобы не мешать расположению друг друга геометрически, т. к. без поворота, они – немного заходили бы за плоскость симметрии, см. рис. 137.
Рис. 136
Рис. 137
При этом, если поворот совершат только альфа-кластеры третьего энергоуровня, то они, уже не пересекая плоскость симметрии, всё равно будут мешать расположению друг друга, как показано на рис. 138.
Рис. 138
Пригодная структура – возможна только в случае на рис. 139. На рис., поворот делает альфа-частица 2-го энергоуровня в одной части ядра, и альфа-частица 3-го энергоуровня – в другой.
Рис. 139
Все эти повороты альфа-частиц, были проведены одинаковым образом: строго вокруг мест прикрепления альфа-частиц друг к другу (т. е. после поворота, нейтроны крепятся друг к другу теми же частями, что и до поворота (например, отрицательно заряженные кварки dd одного нейтрона – к положительному кварку u другого)). Такой поворот – можно сказать, находится в некоторой аналогии с поворотами в структурах молекул, т. е. с возможностью молекулы менять т. н. конформацию.
В целом, структура аргона-36, как видно – является аналогом неона-20 (рис. 129), а заполнение энергоуровней – продолжает быть симметричным заполнению электронами энергоуровней атома. (О схожести (аналогичности) структур неона-20 и аргона-36 – свидетельствует в т. ч. близость энергии, выделяющейся при их образовании (в ядерных реакциях), о чём, подробнее – позже).
Далее: Для атома, после заполнения 3p-подуровня – следует 4s (два электрона), а затем – 3d-подуровень, с десятью электронами. Для ядра, если аналогичный, 3d энергетический уровень имеется в ядре, он соответствовал бы 20 нуклонам, а значит, 5 альфа-частицам (т. е. нечётному числу альфа-частиц). Это означает, что одна из альфа частиц 3d-подуровня (пятая) – должна принадлежать, одновременно, и верхней, и нижней частям ядра, т. о. пополам разделяясь плоскостью симметрии (аналогично энергоуровню 1s). Как ни удивительно, но именно такой, неизбежно оказывается одна из альфа-частиц, присоединяемых далее – см. рис. 140. Альфа-частица, располагаясь, как показано на рис., действительно, будет пересекаться плоскостью симметрии ровно пополам. Из этого, легко предположить, что эта альфа-частица принадлежит 3d-подуровню.
Рис. 140
Кроме того, очевидно, что данная альфа частица тянет кварковую плотность нейтронов в сторону, противоположную альфа частице базового энергоуровня, что должно снижать энергию связи нуклонов. Из этого, можно предположить, что она должна заполняться последней, среди других альфа частиц 3d-подуровня. Если предположить, где располагаются остальные альфа-частицы 3d подуровня – можно наглядно увидеть ядро никеля-62, обладающее наивысшей, среди известных (тысяч) ядер, энергией связи, см. рис. 141.
Рис. 141
В ядре никеля-62, помимо частично заполненного 3d-энергоуровня, также, естественно, полностью заполнен 4s-энергоуровень, который должен заполняться ещё раньше, чем 3d, см. табл. 23 и рис. 141.
Таблица 23 [IV]
Порядок заполнения энергоуровней в атоме, 1-е четыре ряда таблицы Менделеева
Заполнение 3d-энергоуровня (электронами), впервые полностью завершается – у элемента цинка (табл. 22, 23), а значит, и в ядре, т. е. именно в нём впервые появляется невыгодная (= пересекаемая плоскостью симметрии), последняя альфа-частица 3d-подуровня: пример – изотоп цинка-64, строение которого показано на рис. 142. Заполнение маловыгодной альфа частицы, у цинка – приводит к тому, что энергия связи нуклонов в таблице Менделеева, начинает снижаться именно с ядер цинка, и максимальна, как уже отмечалось – у предыдущего чётного элемента, никеля (62Ni).
Рис. 142
Далее, аналогично порядку заполнения энергоуровней в атоме, приходит черёд заполнения 4p-энергоуровня: При этом, в ядре образуются четыре альфа-частицы 4sp-энергоуровня, и получается ядро криптона-72, – изотопа элемента, завершающего четвёртый ряд таблицы Менделеева (табл. 22), см. рис. 143.
Рис. 143
Итак, вплоть до криптона, т. е. до конца четвёртого ряда таблицы Менделеева, симметрия электронных и ядерных энергоуровней – прослеживается (возможна).
О трансляционной симметрии в ядре
В продолжение рассмотрения ядер, остановимся, подробнее, на строении (нейтронизбыточных и стабильных) изотопов второй половины 4-го ряда таблицы Менделеева, т. е. от никеля до криптона (табл. 22). Чтобы подойти к строению всех этих ядер, нужно сперва познакомиться с явлением трансляционной симметрии в ядре:
Трансляционная симметрия, как понятие – это повторяемость какой-либо структуры, через равные пространственные промежутки. Трансляционной симметрией – обладают, например, кристаллы, т. к. кристаллическая структура и заключается в регулярной повторяемости т. н. ячейки кристаллической решётки, в пространстве.
Определённой трансляционной симметрией обладает и атомное ядро. Это становится очевидным, при рассмотрении тяжёлых ядер: Возьмём в пример, уже упоминавшийся ранее, изотоп криптон-72, см. рис. 144. Альфа-частицы, обозначенные на рис. стрелочками – имеют одинаковую ориентацию в ядре. Т. о. ориентация альфа-кластеров – полностью повторяется с определённым пространственным шагом. Это – и есть трансляционная симметрия.
Рис. 144
Теперь применим требование трансляционной симметрии к альфа-частицам 4sp-энергоуровня: это приведёт к повороту этих альфа-частиц, как показано на рис. 145. При этом повороте, альфа-частицы связываются через нейтроны 3d-альфа-частиц, обычным способом. После поворота, они могут выгодно уравновесить нейтроны, добавляемые в положения, обозначенные на рис. 146. При повороте – также открываются ещё по четыре дополнительных места, для непосредственного связывания нейтронов (= связывания их с альфа-кластерами), см. рис. 147. Неудивительно, что криптон-84 – стабилен (хотя стабильность также объясняется ростом выгоды от избытка нейтронов (которых в 84Kr – уже на 12 больше, чем протонов)), см. табл. 24. Этим (т. е. возможностью присоединения всех нейтронов непосредственно к альфа-кластерам, в условиях растущей выгоды от избытка нейтронов), можно объяснить также наибольшую энергию связи этого ядра, среди других изотопов криптона, см. табл. 25.
Рис. 145
Рис. 146
Рис. 147
Таблица 24 [8]
Стабильные изотопы и изотопы с периодом полураспада, превышающим время, прошедшее от Большого Взрыва (13,8×109 лет), криптона
Примечания:
– жирным выделены времена полураспада > 1,38×1010 лет
– ядерные изомеры – опущены
Таблица 25 [18]
Изотопы криптона, с наибольшей энергией связи, и смежные к ним
Рассмотрим строение и более тяжёлых изотопов данного элемента:
Ядро криптона-86 – показано на рис. 148. Видно, что протоны из невыгодной 3d-альфа-частицы – перешли на более высокий энергоуровень, эффективно связав два дополнительных нейтрона с образованием кластеров трития (и дополнительно уравновесив нейтроны, расположенные напротив), поэтому энергия связи в криптоне-86 – оказывается лишь немного меньше, чем в наиболее энерговыгодном криптоне-84 (табл. 25). Надо заметить, что к такому переходу – способны протоны только невыгодной 3d-альфа-частицы (т. е. пересекаемой плоскостью симметрии), и в меньшей степени (как увидим далее), протоны ближнего (вернее, правого) 3sp-альфа-кластера, и никакие другие протоны, т. к. иначе получалось бы расположение кластера трития на кластере трития, что запрещено (т. к. крайне энергетически невыгодно), и ни в одном ядре – не встречается.
В следующем изотопе, криптоне-88, энергия связи нуклонов значительно падает (табл. 25), т. к. дополнительные нейтроны теперь могут быть присоединены только в менее энерговыгодные положения, – без непосредственной связи с альфа-частицами / в выгодных кластерах, либо благодаря переходу протона из правой альфы 3sp-энергоуровня. Наилучшим из возможных расположений добавляемых нейтронов, представляется показанное на рис. 149.
Рис. 148
Рис. 149
Дальнейшее присоединение нейтронов – возможно только к нейтронам, не входящим в альфа-кластеры, и без возможности образования кластеров трития; это – ещё менее выгодно, поэтому после криптона-88, следуют изотопы, по отношению к которым, криптон-88 обладает повышенной стабильностью, см. табл. 26. Из табл. видно, что время жизни ядра криптона-88 – повышено, по сравнению с предыдущим, нечётным изотопом (криптон-87), в то время как для криптона-90, и дальнейших чётных изотопов – оно, в аналогичных случаях, понижено.
Таблица 26 [8]
Периоды полураспада изотопов криптона от 87 до последнего известного чётного изотопа криптона
Вероятное строение последнего известного (чётного) изотопа криптона, криптона-100 (табл. 26), показано на рис. 150. На рис. видно, что все нейтроны в ядре связаны одинаковым образом: не более, чем в три шага, т. е. нейтрон, непосредственно связанный с альфа-частицей (1-й шаг), может связать ещё один нейтрон (2-й шаг), который может связать ещё нейтрон (3-й шаг), см. рис. 150.
Рис. 150
Возможность связи нейтронов в три шага, т. е. весьма косвенной связи – обусловлена большим числом протонов в ядре криптона, создающим достаточно сильное смещение кварковой плотности нейтронов (необходимое для связывания нейтронов через другие нейтроны). (В более лёгких ядрах, чем меньше протонов в ядре, тем, естественно, в меньшее число шагов могут быть присоединены нейтроны: например, в последнем изотопе водорода (7H), нейтроны связаны, максимум, примерно в один шаг, и то слабо, а в последних изотопах гелия (9 и 10), нейтроны связаны – максимум, «в полтора» шага, а в последнем изотопе бериллия, бериллии-16 – примерно в два шага, но слабо (эти изотопы – крайне маложивущи, и распадаются с вылетом нейтронов, что уже рассматривалось ранее)).
Далее: Обратимся теперь к строению ядра предыдущего чётного элемента, перед криптоном, – селена (табл. 22).
Селен содержит на два протона меньше, чем криптон, а значит, одна из альфа-частиц, имевшихся в криптоне-84 (наиболее энерговыгодном изотопе криптона), – превращается в кластер трития, с которым нейтроны могут связаться только относительно слабо, см. рис. 151. Этим объясняется, почему наибольшей энергией связи обладает изотоп селен-78, содержащий на четыре нейтрона меньше, чем криптон-84, см. табл. 27.
Рис. 151
Таблица 27 [18]
Изотоп селена, с наибольшей энергией связи, и смежные к нему
Аналогично, и для ещё более лёгкого чётного элемента, германия (см. табл. 22), наиболее энерговыгодным изотопом оказывается германий-72, содержащий на четыре нейтрона меньше селена-78, см. табл. 28 и рис. 152.
Таблица 28 [18]
Изотоп германия, с наибольшей энергией связи, и смежные к нему
Рис. 152
Если отнять ещё два протона (и эффективно связанные с ними, в кластерах трития, нейтроны, а также нейтроны, которые уравновешивались ими), получим цинк-66, наиболее энерговыгодный изотоп цинка, см. табл. 29 и рис. 153. Как видно, в этом ядре, на месте кластера трития – остался только один нейтрон, и маловыгодными (отсутствующими) стали нейтроны, которые притягивал кластер трития, через альфа-кластер (см. рис. 153). В то же время, эти нейтроны, могут входить в состав цинка-68, почти не отличающегося по энергии связи от цинка-66 (табл. 29), см. рис. 153 (хотя более вероятная структура цинка-68 – представляется как включающая образование кластера трития, благодаря переходу протона из (маловыгодной) 3d-альфа-частицы, как показано на рис. 154).
Таблица 29 [18]
Изотопы цинка, с наибольшей энергией связи, и смежные к ним
Рис. 153
Рис. 154
Т. о., наиболее энерговыгодный, среди изотопов цинка, цинк-66 – содержит тоже на четыре нейтрона меньше, чем наиболее энерговыгодный изотоп соседнего чётного элемента, германий-72.
В дальнейшем, при переходе от цинка к никелю (также чётному элементу), отнимаются два протона уже из 3d-положения, в соответствии с симметрией между энергоуровнями атома и ядра (табл. 23). 3d-протоны альфа-частицы, делящейся плоскостью симметрии пополам – слабо участвовали в связывании нейтронов, и тянули кварковую плотность противоположно базовым протонам, о чём уже говорилось. Поэтому наиболее энерговыгодный никель-62 (как упоминалось ранее, наиболее энерговыгодный среди всех изотопов элементов в таблице Менделеева) – отличается всего на два нейтрона от цинка-66, а не на четыре, как было бы, если бы протоны отнимались от оставшегося кластера трития. (Строение никеля-62 – уже рассматривалось ранее (рис. 141)).
Вернёмся, далее, к изотопам цинка:
Теперь начнём прибавлять нейтроны: При этом, последним стабильным изотопом цинка – оказывается последний изотоп, в котором нейтроны могут быть связаны непосредственно (и без перехода протонов из альфы 3sp-энергоуровня). Это – цинк-70, см. рис. 155 и табл. 30. Аналогично, последними стабильными (или практически стабильными) изотопами элементов германия, селена и криптона – также являются последние изотопы с непосредственно связанными нейтронами (и без перехода протонов из альфы 3sp), показанные на рис. 156 и 148, см. также табл. 24, 31 и 32. На рис. видно, что в германии 76, переход протонов из 3d (маловыгодного) положения – даёт альфа-частицу, и возможность непосредственного связывания дополнительных четырёх нейтронов (что на четыре больше, чем у наиболее энерговыгодного изотопа, германия-72). Селен-82 образуется аналогичным образом, и также содержит на четыре нейтрона больше, чем селен-78. Криптон же 86 (и тем более, 88) – не может образоваться аналогичным образом, что видно из наглядной геометрии (альфа-кластеры – уже образованы), поэтому протон, переходящий из 3d-положения – может дать только кластер трития, связав только два дополнительных нейтрона. (Поэтому последний стабильный изотоп криптона – отличается только на два нейтрона от наиболее энерговыгодного изотопа этого элемента).
Рис. 155
Таблица 30 [8]
Стабильные изотопы и изотопы с периодом полураспада, превышающим время от Большого Взрыва (13,8×109 лет), цинка
Рис. 156
Таблица 31 [8]
Стабильные изотопы и изотопы с периодом полураспада > времени от Большого Взрыва (1,38×1010 лет), селена
Таблица 32 [8]
Стабильные изотопы и изотопы с периодом полураспада > времени от Большого взрыва (13,8×109 лет), германия
Идём далее: