355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ТО) » Текст книги (страница 27)
Большая Советская Энциклопедия (ТО)
  • Текст добавлен: 17 сентября 2016, 20:53

Текст книги "Большая Советская Энциклопедия (ТО)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 27 (всего у книги 41 страниц)

  Вообще говоря, установление несуществования гомоморфизма (j тем легче, чем сложнее алгебраическая структура объектов h(X). Поэтому в алгебраических Т. рассматриваются алгебраические объекты чрезвычайно сложной природы, и требования алгебраической топологии существенно стимулировали развитие абстрактной алгебры.

  Топологическое пространство Х называется клеточным пространством, а также клеточным разбиением (или CW -комплексом), если в нём указана возрастающая последовательность подпространств X Ì ¼ Ì X n—1 Ì X n Ì ¼ (называется остовами клеточного пространства X ), объединением которых является всё X , причём выполнены следующие условия: 1) множество U Ì X тогда и только тогда открыто в X , когда для любого n множество U Ç X n открыто в X n ; 2) X n получается из X n—1 приклеиванием некоторого семейства n -мepных шаров по их граничным (n— 1)-мepным сферам (посредством произвольного непрерывного отображения этих сфер в X n—1 ); 3) X состоит из изолированных точек. Таким образом, структура клеточного пространства состоит, грубо говоря, в том, что оно представлено в виде объединения множеств, гомеоморфных открытым шарам (эти множества называются клетками). В алгебраических Т. изучаются почти исключительно клеточные пространства, поскольку специфика задач алгебраических Т. для них уже полностью проявляется. Более того, фактически для алгебраических Т. интересны некоторые особо простые клеточные пространства (типа полиэдров , см. ниже), но сужение класса клеточных пространств, как правило, существенно осложняет исследование (поскольку многие полезные операции над клеточными пространствами выводят из класса полиэдров).

  Два непрерывных отображения f, g : X ® Y называются гомотопными, если они могут быть непрерывно продеформированы друг в друга, то есть если существует такое семейство непрерывных отображений ft : X ® Y, непрерывно зависящих от параметра t Î [0, 1], что f = f и f1 = g (непрерывная зависимость от t означает, что формула F(x, t) = ft (x), х Î X , t Î [0, 1] определяет непрерывное отображение F : Х ´ [0, 1] ® Y ; это отображение, а также семейство {ft } называют гомотопией, связывающей f с g ). Совокупность всех непрерывных отображений X ® Y распадается на гомотопические классы гомотопных между собой отображений. Множество гомотопических классов непрерывных отображений из Х в Y обозначается символом [X , Y ]. Изучение свойств отношения гомотопности и, в частности, множеств [X , Y ] составляет предмет так называемой гомотопической топологии (или теории гомотопий). Для большинства интересных топологических пространств множества [X , Y ] конечны или счётны и могут быть в явном виде эффективно вычислены. Топологические пространства Х и Y называются гомотопически эквивалентными, или имеющими один и тот же гомотопический тип, если существуют такие непрерывные отображения f : Х ® Y и g : Y ® Х , что непрерывные отображения g×f : Х ® Х и f×g : Y ® Y гомотопны соответствующим тождественным отображениям. В гомотопической Т. такие пространства следует рассматривать как одинаковые (все их «гомотопические инварианты» совпадают).

  Оказывается, что во многих случаях (в частности, для клеточных пространств) разрешимость задачи распространения зависит только от гомотопического класса непрерывного отображения f : A ® Y ; точнее, если для f распространение g : Х ® Y существует, то для любой гомотопии ft : A ® Y(с f = f) существует распространение gt : Х ® Y такое, что g = g . Поэтому вместо f можно рассматривать его гомотопический класс [f] и в соответствии с этим изучать лишь гомотопически инвариантные функторы (кофункторы) h , то есть такие, что h(f ) = h(f1 ), если отображения f и f1 гомотопны. Это приводит к настолько тесному переплетению алгебраической и гомотопической Т., что их можно рассматривать как единую дисциплину.

  Для любого топологического пространства Y формулы h(X) = [X , Y ] и h(f)= [j

f], где f : X1 ® X2 и j : X2 ® Y, определяют некоторый гомотопически инвариантный кофунктор h , о котором говорят, что он представлен топологическим пространством Y . Это – стандартный (и по существу единственный) приём построения гомотопических инвариантных кофункторов. Чтобы множество h (X ) оказалось, скажем, группой, нужно У выбрать соответствующим образом, например потребовать, чтобы оно было топологической группой (вообще говоря, это не совсем так: необходимо выбрать в Х некоторую точку x и рассматривать лишь непрерывные отображения и гомотопии, переводящие x в единицу группы; это техническое усложнение будет, однако, в дальнейшем игнорироваться). Более того, достаточно, чтобы Y было топологической группой «в гомотопическом смысле», то есть чтобы аксиомы ассоциативности и существования обратного элемента (утверждающие фактически совпадение некоторых отображений) выполнялись бы только «с точностью до гомотопии». Такие топологические пространства называются Н -пространствами. Таким образом, каждое Н -пространство Y задаёт гомотопически инвариантный кофунктор h(X) = [X , Y ], значениями которого являются группы.

  Аналогичным («двойственным») образом, каждое топологическое пространство Y задаёт по формулам h(X)= [Y , X ], h(f) = [f

j], где f : X1 ® X2 и j : Y ® X1 , некоторый функтор h . Чтобы h(X) было группой, нужно, чтобы Y обладало определённой алгебраической структурой, в некотором точно определённом смысле двойственной структуре Н -пространства. Топологические пространства, наделённые этой структурой, называются ко-Н -пространствами. Примером ко-Н- пространства является n -мepная сфера S n (при n ³ 1 ). Таким образом, для любого топологического пространства Х формула pnX= [S n , X ] определяет некоторую группу pnX , n ³ 1 , которая называется n -й гомотопической группой пространства X . При n = 1 она совпадает с фундаментальной группой. При n > 1 группа pnX коммутативна. Если p1X   = {1}, то Х называется односвязным.

  Клеточное пространство Х называется пространством K (G, n ), если pi(X)= 0 при i ¹ n и pnX = G ; такое клеточное пространство существует для любого n ³ 1 и любой группы G (коммутативной при n > 1) и с точностью до гомотопической эквивалентности определено однозначно. При n > 1 (а также при n = 1, если группа G коммутативна) пространство K (G, n ) оказывается Н -пространством и потому представляет некоторую группу H n(X ; G) = [X ; K(G, n) ]. Эта группа называется n -мepной группой когомологий топологического пространства Х с группой коэффициентов G . Она является типичным представителем целого ряда важных кофункторов, к числу которых принадлежит, например, К -функтор KO(X) = [Х , BO ], представляемый так называемым бесконечномерным грассманианом BO , группы ориентированных кобордизмов WnX и т.п.

  Если G является кольцом, то прямая сумма Н*(Х; G) групп H n (X; G) является алгеброй над G . Более того, эта прямая сумма обладает очень сложной алгебраической структурой, в которую (при G = Zp , где Zp – циклическая группа порядка р ) входит действие на Н*(Х; G) некоторой некоммутативной алгебры p , называемой алгеброй Стинрода. Сложность этой структуры позволяет, с одной стороны, выработать эффективные (но совсем не простые) методы вычисления групп H n (X; G), а с другой – установить связи между группами H n (X; G) и другими гомотопически инвариантными функторами (например, гомотопическими группами pnX ), позволяющие часто в явном виде вычислить и эти функторы.

  Исторически группам когомологий предшествовали так называемые группы гомологий Hn (X; G) , являющиеся гомотопическими группами pnM(X, G) некоторого клеточного пространства M(X, G) , однозначно строящегося по клеточному пространству Х и группе G . Группы гомологий и когомологий в определённом смысле двойственны друг другу, и их теории по существу равносильны. Однако алгебраическая структура, имеющаяся в группах гомологий, менее привычна (например, эти группы составляют не алгебру, а так называемую коалгебру), и поэтому в вычислениях обычно пользуются группами когомологий. Вместе с тем в некоторых вопросах группы гомологий оказываются более удобными, поэтому они также изучаются. Часть алгебраических Т., занимающаяся изучением (и применением) групп гомологий и когомологий, называется теорией гомологий.

  Перенесение результатов алгебраических Т. на пространства более общие, чем клеточные пространства, составляет предмет так называемой общей алгебраической Т. В частности, общая теория гомологий изучает группы гомологий и когомологий произвольных топологических пространств и их применения. Оказывается, что вне класса компактных клеточных пространств различные подходы к построению этих групп приводят, вообще говоря, к различным результатам, так что для неклеточных топологических пространств возникает целый ряд различных групп гомологий и когомологий. Основное применение общая теория гомологий находит в теории размерности и в теории так называемых законов двойственности (описывающих взаимоотношения между топологическими свойствами двух дополнительных подмножеств топологического пространства), и её развитие было во многом стимулировано нуждами этих теорий.

4. Кусочно-линейная топология

  Подмножество Р Î  называется конусом с вершиной а и основанием В , если каждая его точка принадлежит единственному отрезку вида ab , где b Î В. Подмножество Х Î  называется полиэдром, если любая его точка обладает в Х окрестностью, замыкание которой является конусом с компактным основанием. Непрерывное отображение f : X ® Y полиэдров называется кусочно-линейным, если оно линейно на лучах каждой конической окрестности любой точки х Î X. Взаимно однозначное кусочно-линейное отображение, обратное к которому также кусочно-линейно, называется кусочно-линейным изоморфизмом. Предметом кусочно-линейной Т. является изучение полиэдров и их кусочно-линейных отображений. В кусочно-линейной Т. полиэдры считаются одинаковыми, если они кусочно-линейно изоморфны.

  Подмножество Х Î  тогда и только тогда является (компактным) полиэдром, когда оно представляет собой объединение (конечного) семейства выпуклых многогранников. Любой полиэдр может быть представлен в виде объединения симплексов , пересекающихся только по целым граням. Такое представление называют триангуляцией полиэдра. Каждая триангуляция однозначно определена её симплициальной схемой, то есть множеством всех её вершин, в котором отмечены подмножества, являющиеся множествами вершин симплексов. Поэтому вместо полиэдров можно рассматривать лишь симп-лициальные схемы их триангуляций. Например, по симплициальной схеме можно вычислять группы гомологий и когомологий. Это делается следующим образом:

  а) симплекс, вершины которого определённым образом упорядочены, называется упорядоченным симплексом данной триангуляции (или симплициальной схемы) К ; формальные линейные комбинации упорядоченных симплексов данной размерности n с коэффициентами из данной группы G называются n -мepными цепями; все они естественным образом составляют группу, которая обозначается символом C n(K; G) ;

  б) выбросив из упорядоченного n -мерного симплекса s вершину с номером i , 0 £ i £ n, получим упорядоченный (n— 1)-мерный симплекс, который обозначается символом s(i ) ; цепь  называется границей s; по линейности отображение  распространяется до гомоморфизма   : Cn (K; G) ® Cn-1(K; G) ;

  в) цепи с , для которых  = 0, называются циклами, они составляют группу циклов Zn (K; G);

  г) цепи вида  называются границами, они составляют группу границ Bn (K; G) ;

  д) доказывается, что Bn (K; G) Ì Zn (K; G) (граница является циклом); поэтому определена факторгруппа

  Hn (K; G)=Zn (K; G)/ Bn (K; G) .

  Оказывается, что группа Hn (K; G) изоморфна группе гомологий Hn (X; G) полиэдра X , триангуляцией которого является К . Аналогичная конструкция, в которой исходят не из цепей, а из коцепей (произвольных функций, определённых на множестве всех упорядоченных симплексов и принимающих значения в G ), даёт группы когомологий.

  С этой конструкции, изложенной здесь в несколько модифицированной форме, и началось по существу становление алгебраической Т. В первоначальной конструкции рассматривались так называемые ориентированные симплексы (классы упорядоченных симплексов, отличающихся чётными перестановками вершин). Эта конструкция развита и обобщена в самых разнообразных направлениях. В частности, её алгебраические аспекты дали начало так называемой гомологической алгебре.

  Самым общим образом симплициальную схему можно определить как множество, в котором отмечены некоторые конечные подмножества («симплексы»), причём требуется, чтобы любое подмножество симплекса было снова симплексом. Такая симплициальная схема является симплициальной схемой триангуляции некоторого полиэдра тогда и только тогда, когда число элементов произвольного отмеченного подмножества не превосходит некоторого фиксированного числа. Впрочем, понятие полиэдра можно обобщить (получив так называемые «бесконечномерные полиэдры»), и тогда уже любая симплициальная схема будет схемой триангуляции некоторого полиэдра (называемого её геометрической реализацией).

  Произвольному открытому покрытию {Ua } каждого топологического пространства Х можно сопоставить симплициальную схему, вершинами которой являются элементы Ua покрытия и подмножество которой тогда и только тогда отмечено, когда элементы покрытия, составляющие это подмножество, имеют непустое пересечение. Эта симплициальная схема (и соответствующий полиэдр) называемому нервом покрытия. Нервы всевозможных покрытий в определённом смысле аппроксимируют пространство Х и, исходя из их групп гомологий и когомологий, можно посредством соответствующего предельного перехода получать группы гомологий и когомологий самого X . Эта идея лежит в основе почти всех конструкций общей теории гомологий. Аппроксимация топологического пространства нервами его открытых покрытий играет важную роль и в общей Т.

  5. Топология многообразий

  Хаусдорфово паракомпактное топологическое пространство называется n- мерным топологическим многообразием, если оно «локально евклидово», то есть если каждая его точка обладает окрестностью (называемой координатной окрестностью, или картой), гомеоморфной топологическому пространству . В этой окрестности точки задаются n числами x1 , , xn , называемыми локальными координатами. В пересечении двух карт соответствующие локальные координаты выражаются друг через друга посредством некоторых функций, называемых функциями перехода. Эти функции задают гомеоморфизм открытых множеств в , называются гомеоморфизмом перехода.

  Условимся произвольный гомеоморфизм между открытыми множествами из  называть t -гомеоморфизмом. Гомеоморфизм, являющийся кусочно-линейным изоморфизмом, будем называть p -гомеоморфизмом, а если он выражается гладкими (дифференцируемыми любое число раз) функциями, – s -гомеоморфизмом.

  Пусть a = t, p или s. Топологическое многообразие называется a-многообразием, если выбрано такое его покрытие картами, что гомеоморфизмы перехода для любых его двух (пересекающихся) карт являются a-гомеоморфизмами. Такое покрытие задаёт a-структуру на топологическом многообразии X . Таким образом, t -многообразие – это просто любое топологическое многообразие, p -многообразия называются кусочно-линейными многообразиями. Каждое кусочно-линейное многообразие является полиэдром. В классе всех полиэдров n -мерные кусочно-линейные многообразия характеризуются тем, что любая их точка обладает окрестностью, кусочно-линейно изоморфной n -мерному кубу. s -многообразия называются гладкими (или дифференцируемыми) многообразиями. a-отображением a-многообразия называются называется при a =t произвольное непрерывное отображение, при a = s — произвольное кусочно-линейное отображение, при a = s — произвольное гладкое отображение, то есть непрерывное отображение, записывающееся в локальных координатах гладкими функциями. Взаимно однозначное a-отображение, обратное к которому также является a-отображением, называется a-гомеоморфизмом (при a =s также диффеоморфизмом), a-многообразия Х и Y называются a-гомеоморфными (при a = s – диффеоморфными), если существует хотя бы один a-гомеоморфизм X ® Y . Предметом теории a-многообразий является изучение a-многообразий и их a-отображений; при этом a-гомеоморфные a-многообразия считаются одинаковыми. Теория s -многообразий является частью кусочно-линейной Т. Теория s -многообразий называется также гладкой Т.

  Основной метод современной теории многообразий состоит в сведении её задач к проблемам алгебраических Т. для некоторых нужным образом сконструированных топологических пространств. Эта тесная связь теории многообразий с алгебраической Т. позволила, с одной стороны, решить много трудных геометрических проблем, а с другой – резко стимулировала развитие самой алгебраической Т.

  Примерами гладких многообразий являются n -мерные поверхности в , не имеющие особых точек. Оказывается (теорема вложения), что любое гладкое многообразие диффеоморфно такой поверхности (при N ³ 2n + 1). Аналогичный результат верен и при a =t , p .

  Каждое p -многообразие является t- многообразием. Оказывается, что на любом s -многообразии можно некоторым естественным образом ввести p -структуру (которая называется обычно у айтхедовской триангуляцией). Можно сказать, что любое a-многообразие, где a = p или s, является a’-многообразием, где a’ = t или p . Ответ на обратный вопрос: на каких a’-многообразиях можно ввести a-структуру (такое a’-многообразие при a’ = p называется сглаживаемым, а при a’ = t –  триангулируемым), а если можно, то сколько? – зависит от размерности n.

  Существует только два одномерных топологических многообразия: окружность S1 (компактное многообразие) и прямая линия  (некомпактное многообразие). Для любого a =p , s на t -многообразиях S1 и  существует единственная a-структура.

  Аналогично, на любом двумерном топологическом многообразии (поверхности) существует единственная a-структура, и можно легко описать все компактные связные поверхности (некомпактные связные поверхности также могут быть описаны, но ответ получается более сложный). Для того чтобы поверхности были гомеоморфны, достаточно, чтобы они были гомотопически эквивалентны. При этом гомотопический тип любой поверхности однозначно характеризуется её группами гомологий. Существует два типа поверхностей: ориентируемые и неориентируемые. К числу ориентируемых принадлежит сфера S2 и тор T2 . Пусть Х и Y – два связных n -мерных a-многообразия. Вырежем в Х и Y по шару (при n = 2 – диску) и склеим получившиеся граничные сферы (при n = 2 – окружности). При соблюдении некоторых само собой разумеющихся предосторожностей в результате снова получим a-многообразие. Оно называется связной суммой a-многообразий Х и Y и обозначается X #Y. Например , T2 #T2 имеет вид кренделя. Сфера S n является нулём этого сложения, то есть  S n #X = Х для любого X . В частности, S2 #T2 = T2 . Оказывается, что ориентируемая поверхность гомеоморфна связной сумме вида S2 #T2 # #T2 , число p слагаемых T2 называется родом поверхности. Для сферы p = 0, для тора p = 1 и т. д. Поверхность рода p можно наглядно представлять себе как сферу, к которой приклеено p «ручек». Каждая неориентируемая поверхность гомеоморфна связной сумме P2 # ¼ #P2 некоторого числа проективных плоскостей P2 . Её можно представлять себе как сферу, к которой приклеено несколько Мебиуса листов .

  На каждом трёхмерном топологическом многообразии при любом a = p , s также существует единственная a-структура и можно описать все гомотопические типы трёхмерных топологических многообразий (однако групп гомологий для этого уже недостаточно). В то же время до сих пор (1976) не описаны все (хотя бы компактные связные) трёхмерные топологические многообразия данного гомотопического типа. Это не сделано даже для односвязных многообразий (все они гомотопически эквивалентны сфере S 3 ). Гипотеза Пуанкаре утверждает, что любое такое многообразие гомеоморфно S 3 .

  Для четырёхмерных (компактных и связных) топологических многообразий вопрос о существовании и единственности a-структур (a = p , s ) ещё не решен, а их гомотопический тип описан только в предположении односвязности. Справедлив ли для них аналог гипотезы Пуанкаре, неизвестно.

  Замечательно, что для компактных и связных топологических многообразий размерности n ³ 5 ситуация оказывается совсем иной: все основные задачи для них можно считать в принципе решенными (точнее, сведёнными к проблемам алгебраической Т.). Любое гладкое многообразие Х вкладывается как гладкая (n -мepная) поверхность в ; и касательные векторы к Х составляют некоторое новое гладкое многообразие TX, которое называется касательным расслоением гладкого многообразия X . Вообще, векторным расслоением над топологическим пространством Х называется топологическое пространство Е, для которого задано такое непрерывное отображение p : Е ® Х , что для каждой точки х Î Х прообраз v (слой) является векторным пространством и существует такое открытое покрытие {Ua } пространства X , что для любого a прообраз p—1 (Ua ) гомеоморфен произведению Ua ´ , причём существует гомеоморфизм p—1 (Ua ) ® Ua ´ , линейно отображающий каждый слой p—1(x), x Î Ua, на векторное пространство {х} ´ . При Е = TX непрерывное отображение p сопоставляет с каждым касательным вектором точку его касания, так что слоем p—1(x) будет пространство, касательное к Х в точке х. Оказывается, что любое векторное расслоение над компактным пространством Х определяет некоторый элемент группы KO(X). Таким образом, в частности, для любого гладкого, компактного и связного многообразия Х в группе KO(X) определён элемент, соответствующий касательному расслоению. Он называется тангенциальным инвариантом гладкого многообразия X . Имеется аналог этой конструкции для любого a. При a = p роль группы KO(X) играет некоторая другая группа, которая обозначается KPL(X), а при a = t роль этой группы играет группа, обозначаемая KTop(X). Каждое a-многообразие Х определяет в соответствующей группе [КО(Х) , KPL(X) или KTop(X) ] некоторый элемент, называемый его a-тангенциальным инвариантом. Имеются естественные гомоморфизмы KO(X) ® KPL(X) ® KTop(X) , и оказывается, что на n -мерном (n ³ 5 ) компактном и связном a'-многообразии X , где a' = t , p , тогда и только тогда можно ввести a-структуру (a = р, если a' = t, и a = s, если a' = p ), когда его a'-тангенциальный инвариант лежит в образе соответствующей группы [KPL(X) при a' = t и KO(X) при a' = p ]. Число таких структур конечно и равно числу элементов некоторого фактормножества множества [X , Ya ], где Ya – некоторое специальным образом сконструированное топологическое пространство (при a = s топологическое пространство Ya обозначается обычно символом PL/O , а при a = p — символом Top/PL ). Тем самым вопрос о существовании и единственности a-структуры сводится к некоторой задаче теории гомотопий. Гомотопический тип топологического пространства PL/O довольно сложен и до сих пор (1976) полностью не вычислен; однако известно, что pi (PL/O ) = 0 при i £ 6, откуда следует, что любое кусочно-линейное многообразие размерности n £ 7 сглаживаемо, а при n £ 6 единственным образом. Напротив, гомотопический тип топологического пространства Top/PL оказался удивительно простым: это пространство гомотопически эквивалентно K (ℤ2 , 3). Следовательно, число кусочно-линейных структур на топологическом многообразии не превосходит числа элементов группы H 3 (X , ℤ2 ). Такие структуры заведомо существуют, если H 4 (X , ℤ2 ) = 0, но при H 4 (X , ℤ2 ) ¹ 0 кусочно-линейной структуры может не существовать.

  В частности, на сфере S n существует единственная кусочно-линейная структура. Гладких структур на сфере S n может быть много, например, на S 7 существует 28 различных гладких структур. На торе T n (топологических произведении n экземпляров окружности S 1 ) существует при n ³ 5 много различных кусочно-линейных структур, которые все допускают гладкую структуру. Таким образом, начиная с размерности 5, существуют гомеоморфные, но не диффеоморфные гладкие многообразия; сферы с таким свойством существуют, начиная с размерности 7.

  Задачу описания (с точностью до a-гомеоморфизма) всех n -мерpных (n ³ 5) связных компактных a-многообразий естественно решать в два этапа: искать условия гомотопической эквивалентности a-многообразий и условия a-гомеоморфности гомотопически эквивалентных a-многообразий. Первая задача относится к гомотопической Т. и в её рамках может считаться полностью решенной. Вторая задача также по существу полностью решена (во всяком случае для односвязных a-многообразий). Основой её решения является перенос в высшие размерности техники «разложения на ручки». С помощью этой техники удаётся, например, доказать для n -мерных (n ³ 5) топологических многообразий гипотезу Пуанкаре (связное компактное топологическое многообразие, гомотопически эквивалентное сфере, гомеоморфно ей).

  Наряду с a-многообразиями можно рассматривать так называемые a-многообразия с краем; они характеризуются тем, что окрестности некоторых их точек (составляющих край) a-гомеоморфны полупространству Xn ³ 0 пространства . Край является (n— 1)-мерным a-многообразием (вообще говоря, несвязным). Два n -мерных компактных a-многообразия Х и Y называются (ко) бордантными, если существует такое (n +1)-мерное компактное a-многообразие с краем W, что его край является объединением непересекающихся гладких многообразий, a-гомеоморфных Х и У . Если отображения вложения X ® W и Y ® W являются гомотопическими эквивалентностями, то гладкие многообразия называются h -кобордантными. Методами разложения на ручки удаётся доказать, что при n ³ 5 односвязные компактные a-многоооразия a-гомеоморфны, если они h -кобордантны. Эта теорема о h -кобордизме доставляет сильнейший способ установления a-гомеоморфности a-многообразий (в частности, гипотеза Пуанкаре является её следствием). Аналогичный, но более сложный результат имеет место и для неодносвязных a-многообразий.

  Совокупность  классов кобордантных компактных a-многообразий является по отношению к операции связной суммы коммутативной группой. Нулём этой группы служит класс a-многообразий, являющихся краями, то есть кобордантных нулю. Оказывается, что эта группа при a = s изоморфна гомотопической группе p2n+1MO (n+ 1) некоторого специально сконструированного топологического пространства MO (n+ 1), называется пространством Тома. Аналогичный результат имеет место и при a = p , t . Поэтому методы алгебраической Т. позволяют в принципе вычислить группу . В частности, оказывается, что группа  является прямой суммой групп ℤ2 в количестве, равном числу разбиений числа n на слагаемые, отличные от чисел вида 2m —1. Например, = 0 (так что каждое трёхмерное компактное гладкое многообразие является краем). Напротив,  = ℤ2, так что существуют поверхности, кобордантные друг другу и не кобордантные нулю; такой поверхностью, например, является проективная плоскость P 2 .

  М. М. Постников.

  6. Основные этапы развития топологии

  Отдельные результаты топологического характера были получены ещё в 18—19 вв. (теорема Эйлера о выпуклых многогранниках, классификация поверхностей и теорема Жордана о том, что лежащая в плоскости простая замкнутая линия разбивает плоскость на две части). В начале 20 в. создаётся общее понятие пространства в Т. (метрическое – М. Фреше , топологическое – Ф. Хаусдорф ), возникают первоначальные идеи теории размерности и доказываются простейшие теоремы о непрерывных отображениях (А. Лебег , Л. Брауэр ), вводятся полиэдры (А. Пуанкаре ) и определяются их так называемые числа Бетти. Первая четверть 20 в. завершается расцветом общей Т. и созданием московской топологической школы; закладываются основы общей теории размерности (П. С. Урысон ); аксиоматике топологических пространств придаётся её современный вид (П. С. Александров ); строится теория компактных пространств (Александров, Урысон) и доказывается теорема об их произведении (А. Н. Тихонов ); впервые даются необходимые и достаточные условия метризуемости пространства (Александров, Урысон); вводится (Александров) понятие локально конечного покрытия [на основе которого в 1944 Ж. Дьёдонне (Франция) определил паракомпактные пространства]; вводятся вполне регулярные пространства (Тихонов); определяется понятие нерва и тем самым основывается общая теория гомологий (Александров). Под влиянием Э. Нётер числа Бетти осознаются как ранги групп гомологий, которые поэтому называются также группами Бетти. Л. С. Понтрягин , основываясь на своей теории характеров, доказывает законы двойственности для замкнутых множеств.

  Во 2-й четверти 20 в. продолжается развитие общей Т. и теории гомологий: в развитие идей Тихонова А. Стоун (США) и Э. Чех вводят так называемое стоун – чеховское, или максимальное, (би)компактное расширение вполне регулярного пространства; определяются группы гомологий произвольных пространств (Чех), в группы когомологий (Дж. Александер , А. Н. Колмогоров ) вводится умножение и строится кольцо когомологий. В это время в алгебраической Т. царят комбинаторные методы, основывающиеся на рассмотрении симплициальных схем; поэтому алгебраическая Т. иногда и до сих пор называется комбинаторной Т. Вводятся пространства близости и равномерные пространства. Начинает интенсивно развиваться теория гомотопий (Х. Хопф , Понтрягин); определяются гомотопические группы (В. Гуревич, США) и для их вычисления применяются соображения гладкой Т. (Понтрягин). Формулируются аксиомы групп гомологий и когомологий (Н. Стинрод и С. Эйленберг, США). Возникает теория расслоений (Х. Уитни, США; Понтрягин); вводятся клеточные пространства (Дж. Уайтхед, Великобритания).

  Во 2-й половине 20 в. в СССР складывается советская школа общей Т. и теории гомологий: ведутся работы по теории размерности, проблеме метризации, теории (би)компактных расширений, общей теории непрерывных отображений (факторных, открытых, замкнутых), в частности теории абсолютов; теории так называемых кардинальнозначных инвариантов (А.В. Архангельский, Б. А. Пасынков, В. И. Пономарев, Е. Г. Скляренко, Ю. М. Смирнов и др.).

  Усилиями ряда учёных (Ж. П. Серр и А. Картан во Франции, М. М. Постников в СССР, Уайтхед и др.) окончательно складывается теория гомотопий. В это время создаются крупные центры алгебраической Т. в США, Великобритании и др. странах; возобновляется интерес к геометрической Т. Создаётся теория векторных расслоений и К -функтора (М. Атья, Великобритания; Ф. Хирцебрух, ФРГ), алгебраическая Т. получает широкие применения в гладкой Т. (Р. Том, Франция) и алгебраической геометрии (Хирцебрух); развивается теория (ко)бордизмов (В. А. Рохлин, СССР; Том, С. П. Новиков ) и теория сглаживания и триангулируемости (Дж. Милнор, США).


    Ваша оценка произведения:

Популярные книги за неделю