355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (СП) » Текст книги (страница 9)
Большая Советская Энциклопедия (СП)
  • Текст добавлен: 14 сентября 2016, 21:15

Текст книги "Большая Советская Энциклопедия (СП)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 9 (всего у книги 27 страниц)

Спектроскопия лазерная

Спектроскопи'я ла'зерная, раздел оптической спектроскопии, методы которой основаны на использовании лазерного излучения. Применение монохроматического излучения лазеров позволяет стимулировать квантовые переходы, между вполне определёнными уровнями энергии атомов и молекул (в спектроскопии, использующей нелазерные источники света, изучают спектры, возникающие в результате переходов между громадным числом квантовых состояний атомов и молекул).

  Первые серьёзные лазерные эксперименты в спектроскопии были осуществлены после создания достаточно мощных лазеров видимого диапазона, излучение которых имеет фиксированную частоту. Они были использованы для возбуждения спектров комбинационного рассеяния света. Принципиально новые возможности С. л. открылись с появлением лазеров с перестраиваемой частотой. С. л. позволила решить или приступить к решению важных задач, перед которыми спектроскопия обычных источников света практически бессильна.

  Высокая монохроматичность излучения лазеров с перестраиваемой частотой даёт возможность измерять истинную форму спектральных линий вещества, не искажённую аппаратной функцией спектрального прибора. Это особенно существенно для спектроскопии газов в инфракрасной области, где разрешение лучших промышленных приборов обычного типа составляет 0,1 см-1, что в 100 раз превышает ширину узких спектральных линий (см. Ширина спектральных линий).

  Временная и пространственная когерентность лазерного излучения, лежащая в основе методов нелинейной С. л., позволяет изучать структуру спектральных линий, скрытую обычно доплеровским уширением, вызываемым тепловым движением частиц в газе.

  Благодаря высокой монохроматичности и когерентности излучение лазера переводит значительное число частиц из основного состояния в возбуждённое. Это повышает чувствительность регистрации атомов и молекул – в 1 см3вещества удаётся регистрировать включения, состоящие из 102 атомов или 1010 молекул. Разрабатываются методы регистрации отдельных атомов и молекул.

  Короткие и ультракороткие лазерные импульсы дают возможность исследовать быстропротекающие (~10-6—10-12сек) процессы возбуждения, девозбуждения и передачи возбуждения в веществе. С помощью импульсов направленного лазерного излучения можно исследовать спектры рассеяния и флуоресценции атомов и молекул в атмосфере на значительном расстоянии (~ 100 км) и получать информацию о её составе, а также осуществлять контроль загрязнения окружающей среды.

  Фокусируя лазерное излучение, можно исследовать состав малых количеств вещества (имеющих размеры порядка длины волны). Это успешно применяется в локальном эмиссионном спектральном анализе.

  Приборы, применяемые в С. л., принципиально отличаются от обычных спектральных приборов. В приборах, использующих лазеры с перестраиваемой частотой, отпадает необходимость в разложении излучения в спектр с помощью диспергирующих элементов (призм, дифракционных решёток), являющихся основной частью обычных спектральных приборов. Иногда в С. л. применяют приборы, в которых излучение разлагается в спектр с помощью нелинейных кристаллов (см. рис. 4 в ст. Нелинейная оптика).

  Лит.: Летохов В. С., Чеботаев В. П., Принципы нелинейной лазерной спектроскопии, М., 1975; Менке Г., Менке Л., Введение в лазерный эмиссионный микроспектральный анализ, пер. с нем., М., 1968; Летохов B. C., Проблемы лазерной спектроскопии, «Успехи физических наук», 1976, т. 118, в. 2.

  В. С. Летохов.

Спектрофотометр

Спектрофото'метр (от спектр и фотометр), спектральный прибор, который осуществляет фотометрирование – сравнение измеряемого потока с эталонным (референтным) для непрерывного или дискретного ряда длин волн излучения. С. обеспечивает отсчёт или автоматическую регистрацию результатов сравнения в соответствующей двумерной шкале: абсцисса – длина волны, ордината – результат фотометрирования на этой длине волны. С. также называют аналитические приборы, которые не измеряют спектров, а определяют концентрации элементов в пробе по линиям абсорбции (или эмиссии) атомов в пламени (атомно-абсорбционные или пламенные С.) или определяют концентрации компонент в смесях веществ по характеристическим полосам поглощения (например, двуволновые инфракрасные С. или С.-анализаторы). Основные типы С. описаны в ст. Спектральные приборы.

Спектрофотометрия

Спектрофотоме'трия, область измерительной техники, объединяющая спектрометрию, фотометрию и метрологиюи занимающаяся разработкой системы методов и приборов для количественных измерений спектральных коэффициентов поглощения, отражения, излучения, спектральной яркости как характеристик сред, покрытий, поверхностей, излучателей (см. также Спектральные приборы).

Спектры испускания

Спе'ктры испуска'ния,спектры оптические, испускаемые источниками света.

Спектры кристаллов

Спе'ктры криста'ллов (оптические) по структуре разнообразны. Наряду с узкими линиями они содержат широкие полосы (отношение частоты n к скорости света с от долей до нескольких тыс. см-1) и сплошные области спектра, простирающиеся на десятки тыс. см-1 (см. Спектры оптические). В инфракрасной области спектров поглощения наблюдаются полосы, связанные с квантовыми переходами между энергетическими уровнями, обусловленными колебательными движениями частиц кристалла, которым сопутствуют изменения электрического дипольного момента: поглощается фотон и рождается квант колебаний кристаллической решётки – фонон. Процессы, сопровождающиеся рождением нескольких фононов, «размывают» и усложняют наблюдаемый спектр. В реальном кристалле обычно есть дефекты структуры (см. Дефекты в кристаллах), вблизи них могут возникать локальные колебания, например внутренние колебания примесной молекулы. При этом в спектре появляются дополнительные линии с возможными «спутниками», обусловленными связью локального колебания с решёточными. В полупроводниках некоторые примеси образуют центры, в которых электроны движутся на водородоподобных орбитах. Они дают спектр поглощения в инфракрасной области, состоящий из серии линий, заканчивающихся непрерывной полосой поглощения (ионизация примеси). Поглощение света электронами проводимости и дырками в полупроводниках и металлах начинается также в инфракрасной области (см. Металлооптика). В спектрах магнитоупорядоченных кристаллов аналогично фононам проявляют себя магноны (см. Спиновые волны).

  В спектре рассеянного света из-за взаимодействия света с колебаниями решётки, при которых изменяется поляризуемость кристалла, наряду с линией исходной частоты no появляются линии, сдвинутые по обе стороны от неё на частоту решёточных колебаний, что соответствует рождению или поглощению фононов (см. Комбинационное рассеяние света,рис. 1). Акустические решёточные колебания приводят к тому, что при рассеянии света на тепловых флуктуациях у центральной (не смещенной) релеевской линии также появляются боковые спутники, обусловленные рассеянием на распространяющихся флуктуациях плотности (см. Рассеяние света).

  Большинство неметаллических кристаллов за инфракрасной областью в определённом интервале частот прозрачно. Поглощение возникает снова, когда энергия фотона становится достаточно велика, чтобы вызвать переходы электронов из верхней заполненной валентной зоны в нижнюю часть зоны проводимости кристалла. Спектр этого интенсивного собственного поглощения света отображает структуру электронных энергетических зон кристалла и простирается дальше в видимый диапазон, по мере того как «включаются» переходы между др. энергетическими зонами. Положение края собственного поглощения определяет окраску идеального кристалла (без дефектов). Для полупроводников длинноволновая граница области собственного поглощения лежит в ближней инфракрасной области, для ионных кристаллов – в ближней ультрафиолетовой области. Вклад в собственное поглощение кристалла наряду с прямыми переходами электронов дают и непрямые переходы, при которых дополнительно рождаются или поглощаются фононы. Переходы электронов из зоны проводимости в валентные зоны могут сопровождаться рекомбинационным излучением.

  Электрон проводимости и дырка благодаря электростатическому притяжению могут образовать связанное состояние – экситон. Спектр экситонов может варьироваться от водородоподобных серий до широких полос. Линии экситонного поглощения лежат у длинноволновой границы собственного поглощения кристалла (рис. 2). Экситоны ответственны за электронные спектры поглощения молекулярных кристаллов. Известна также экситонная люминесценция.

  Энергии электронных переходов между локальными уровнями дефектных центров попадают обычно в область прозрачности идеального кристалла, благодаря чему они часто обусловливают окраску кристалла. Например, в щёлочно-галоидных кристаллах возбуждение электрона, локализованного в анионной вакансии(F-центр окраски), приводит к характеристической окраске кристалла. Различные примесные ионы (например, Тl в КСl) образуют центры люминесценции в кристаллофосфорах. Они дают электронно-колебательные (вибронные) спектры. Если электрон-фононное (вибронное) взаимодействие в дефектном центре слабое, то в спектре появляется интенсивная узкая бесфононная линия (оптический аналог линии Мёссбауэра эффекта), к которой примыкает «фононное крыло» со структурой, отражающей особенности динамики кристалла с примесью (рис. 3). С ростом вибронного взаимодействия интенсивность бесфононной линии падает. Сильная вибронная связь приводит к широким бесструктурным полосам. Поскольку часть энергии возбуждения в процессе колебательной релаксации до излучения рассеивается в остальном кристалле, максимум полосы люминесценции лежит по длинноволновую сторону от полосы поглощения (правило Стокса). Иногда к моменту испускания светового кванта в центре не успевает установиться равновесное распределение по колебательным подуровням, при этом возможна «горячая» люминесценция.

  Если кристалл содержит в качестве примесей атомы или ионы переходных или редкоземельных элементов, с недостроенными f- или d-оболочками, то можно наблюдать дискретные спектральные линии, соответствующие переходам между подуровнями, возникающими в результате расщепления атомных уровней внутрикристаллическим электрическим полем (см. Кристаллическое поле, Квантовый усилитель).

  Лит. см. при ст. Спектроскопия кристаллов.

  Н. Н. Кристофель.

Спектры оптические. Спектр угольной дуги (полосы молекул CN и C2).

Рис. 3. Бесфононная линия и фононное крыло в спектре поглощения примесной молекулы NO2- в KI при температуре жидкого гелия.

Рис. 2. Длинноволновый участок собственного поглощения кристалла КВr при температуре жидкого азота. Первые два интенсивных пика со стороны низких энергий соответствуют экситонам. Область собственного поглощения начинается за вторым пиком.

Спектры оптические. Спектр испускания паров молекулы йода.

Рис. 1. Спектр комбинационного рассеяния кристалла дигидрофосфата калия (KDP) при разных температурах. По оси абсцисс отложено отношение сдвига частоты (n – no) к скорости света.

Спектры оптические. Спектр меди.

Спектры оптические. Сплошной спектр.

Спектры оптические. Спектр натрия.

Спектры оптические. Спектр атомарного водорода.

Спектры оптические. Линии поглощения (фраунгоферовы линии) в спектре Солнца.

Спектры оптические

Спе'ктры опти'ческие,спектрыэлектромагнитного излучения в инфракрасном, видимом и ультрафиолетовом диапазонах шкалы электромагнитных волн. С. о. разделяют на спектры испускания (называемые также спектрами излучения, или эмиссионными спектрами), спектры поглощения, рассеяния и отражения. С. о. испускания получаются от источников света разложением их излучения по длинам волн lспектральными приборами и характеризуются функцией f(l), дающей распределение энергии испускаемого света в зависимости от l. С. о. поглощения (абсорбции), рассеяния и отражения обычно получаются при прохождении света через вещество с последующим его разложением по l. Эти типы С. о. характеризуются долей энергии света каждой длины волны соответственно поглощённой [k(l)], рассеянной [a(l)] и отражённой [R(l)]. При рассеянии монохроматического света длины волны lо спектр комбинационного рассеяния света характеризуется распределением энергии рассеянного света по измененным длинам волн l  ¹ lо[f’(l)]. Т. о., любой спектр характеризуется некоторой функцией f(l), дающей распределение энергии (абсолютной или относительной) по длинам волн; при этом энергию рассчитывают на некоторый интервал l. От функции f(l) можно перейти к функции j(n), дающей распределение энергии по частотам n = с/ l (с — скорость света); тогда энергия рассчитывается на единицу интервала n.

  С. о. регистрируют с помощью фотографических и фотоэлектрических методов, применяют также счётчики фотонов для ультрафиолетовой области, термоэлементы и болометры в инфракрасной области и т. д. В видимой области С. о. можно наблюдать визуально.

  По виду С. о. разделяют на линейчатые, состоящие из отдельных спектральных линий, соответствующих дискретным значениям l, полосатые, состоящие из отдельных полос, каждая из которых охватывает некоторый интервал l, и сплошные (непрерывные), охватывающие большой диапазон l. Строго говоря, отдельная спектральная линия также не соответствует вполне определённому значению l, а всегда имеет конечную ширину, характеризуемую узким интервалом l (см. Ширина спектральных линий).


Диапазон l, мкмn, сек-1' n/с, см-1hn, эвТ, К
Инфракрасное излучение 103—0,74 3,0×10"—4,0×101410—1,35×1041,25×10-3—1,7 14—2,0×104
Видимое излучение 0,74—0,40 4×1014—7,5×10141,35×104—2,5×1041,7—3,1 2,0×104—3,6×104
Ультрафиолетовое излучение 0,40—0,001 7,5×1014—3,0×10'° 2,5×104—1063,1—125 3,6×104—1,4×106

  С. о. возникают при квантовых переходах между уровнями энергии атомов, молекул, а также твёрдых и жидких тел. С. о. испускания соответствуют возможным квантовым переходам с верхних уровней энергии на нижние, спектры поглощения – с нижних уровней энергии на верхние.

  Вид С. о. зависит от состояния вещества. Если при заданной температуре вещество находится в состоянии термодинамического равновесия с излучением (см. Тепловое излучение), оно испускает сплошной спектр, распределение энергии в котором по l (или n) даётся Планка законом излучения. Обычно термодинамическое равновесие вещества с излучением отсутствует и С. о. могут иметь самый различный вид. В частности, для спектров атомов характерны линейчатые спектры, возникающие при квантовых переходах между электронными уровнями энергии (см. Атомные спектры), для простейших молекул типичны полосатые спектры, возникающие при переходах между электронными, колебательными и вращательными уровнями энергии (см. Молекулярные спектры).

  Для С. о. различным диапазонам l и, следовательно, n соответствуют различные энергии фотонов hn = Е1Е2 (где h – Планка постоянная, Е1 и Е2 – энергии уровней, между которыми происходит переход). В табл. приведены для 3 диапазонов электромагнитных волн примерные интервалы длин волн l, частот n, волновых чисел n/c, энергий фотонов hn, а также температур Т, характеризующих энергию фотонов согласно соотношению kT = hn (k – Больцмана постоянная).

  С. о. широко применяются для исследования строения и состава вещества (см. Спектроскопия, Спектральный анализ).

  Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957. (Общий курс физики, ч. 3); Фриш С. Э., Оптические спектры атомов, М. – Л., 1963.

  М. А. Ельяшевич.

Спектры поглощения

Спе'ктры поглоще'ния,спектры оптические и рентгеновские спектры, получаемые при пропускании через вещество и поглощении в нём соответствующего излучения.

Спекулятивное

Спекуляти'вное (позднелатинское speculativus, от лат. speculor – наблюдаю, созерцаю), тип теоретического знания, которое выводится без обращения к опыту, при помощи рефлексии, и направлено на осмысление предельных оснований науки и культуры. С. знание представляет собой исторически определенный способ обоснования и построения философии. Идея о С. характере философии служила формой утверждения суверенности философского знания и его несводимости к специально-научному знанию. Представление о философии как С. знании сложилось уже в античности; наиболее последовательная система С. знания была развита Г. Гегелем, который усматривал в диалектике высшую форму теоретического умозрения истины; завершением многовековой традиции С. философии явилась феноменология Э. Гуссерля.

  В истории философии существовали различные варианты критики С. знания: понимание С. философии как схоластики, оторванной от человеческого опыта и науки (эмпиризм Ф. Бэкона и Дж. Локка, рационализм Т. Гоббса и Б. Спинозы); истолкование С. знания как философствования в сфере чистого разума, не имеющего своего предмета в опыте (И. Кант); отождествление С. философии с теологией (Л. Фейербах). В современной буржуазной философии С. знание радикально отвергается как полностью лишённое смысла (позитивизм), либо в противовес ему выдвигается идеал экзистенциально-личностного знания (экзистенциализм, персонализм).

  Критика С. философии в марксизме основывается на материалистической концепции отчуждения, выявляющей подлинные истоки С. мышления: отрыв философского познания от реальных общественных отношений и развития науки, понимание человека как абстрактного субъекта и др. Выделяя рациональный момент в С. философии – её стремление к осознанию особенностей философского мышления, марксизм отвергает С. абстрагирование. Диалектический материализм утверждает важнейшее познавательное значение научной абстракции, отражающей объективную реальность, раскрывает связь философии с общественно-исторической практикой. См. лит. при ст. Философия.

Спекуляция

Спекуля'ция (от позднелатинского speculatio, буквально – высматривание), по советскому уголовному праву одно из опасных преступлений хозяйственных, посягающее на нормальную деятельность сов. торговли, на интересы покупателей. Состоит в скупке и перепродаже товаров и иных предметов с целью наживы. Для признания деяния С. не имеет значения, где и у кого куплен товар (в магазине или на рынке, у законного владельца или недобросовестного приобретателя), а также кому он продан: государственной или общественной организации, колхозу или отдельному лицу. Уголовная ответственность за С. наступает с 16 лет.

  С. наказывается лишением свободы на срок до 2 лет с конфискацией имущества или без таковой, либо исправительными работами на срок до 1 года, либо штрафом до 300 руб. Более строгое наказание (до 7 лет лишения свободы с конфискацией имущества) предусмотрено за С. в виде промысла или в крупных размерах (см., например, УК РСФСР, ст. 154). Мелкая С., совершенная впервые, наказывается в административном порядке. Об ответственности за С. валютными ценностями см. ст. Валютные преступления.

Спелеология

Спелеоло'гия (от греч. spelaion – пещера и ...логия), наука, занимающаяся изучением пещер — их происхождением, морфологией, микроклиматом, водами, растениями, современной и древней пещерной фауной, остатками материальной культуры людей каменного века, наскальными рисунками и скульптурными изображениями, современным использованием. С. начала оформляться во 2-й половине 19 в. Её возникновение связано с именами франц. исследователя Э. А. Мартеля, австр. учёных А. Шмидля, Ф. Крауса, А. Грунда и В. Кнебеля. Поскольку крупные пещеры в большинстве случаев возникают в результате растворения водой горных пород и относятся к явлениям карста, С. тесно связана с карстоведением. Помимо карстовых пещер, С. изучает и др. пещеры, образовавшиеся путём выветривания, дефляции, абразии, суффозии, под действием тектонических сил (пещеры-трещины), в результате течения и застывания лавы, таяния льда (ледниковые гроты), осаждения травертина, а также искусственные пещеры, вырубленные в скалах человеком. Изучая все компоненты подземного ландшафта, С. тесно связана с геологией, минералогией, геоморфологией, гидрогеологией, гидрологией, метеорологией и климатологией, ботаникой, ландшафтоведением, зоологией и палеонтологией, археологией и историей. Большая роль в исследовании пещер принадлежит спелеологам-спортсменам (спелеотуристам), поскольку для проникновения в глубокие полости приходится осуществлять трудные спуски и преодолевать водные преграды (сифоны), применяя специальное снаряжение. Во многих странах имеются научные и спортивные спелеологические общества, группы, клубы, образующие национальные объединения. В СССР вопросы С. разрабатывают институты карстоведения и спелеологии в Перми (всесоюзный) и в Уфе, Спелеологический стационар в Кунгуре (Урал), Карстово-спелеологическая комиссия Географического общества СССР (Ленинград), Спелеологический совет при Президиуме АН Грузинской ССР (Тбилиси), многочисленные секции спелеотуризма, действия которых координируются центральной секцией спелеотуризма Центрального совета по туризму и экскурсиям ВЦСПС (Москва). В 1953 состоялся 1-й конгресс Международного спелеологического союза (МСС), устав которого принят на 4-м Международном спелеологическом конгрессе в 1965 в Любляне (Югославия).

  Лит.: Гвоздецкий Н. А., Проблемы изучения карста и практика, М., 1972; Максимович Г. А., Основы карстоведения, т. 1, Пермь, 1963; Илюхин В., Дублянский В., Путешествия под землёй, М., 1968; Пещеры, Сб., в. 1(2)—15, Пермь, 1961—74; Пещеры Грузии, в. 1—5, Тб., 1963—1973.

  Н. А. Гвоздецкий.


    Ваша оценка произведения:

Популярные книги за неделю

    wait_for_cache