Текст книги "Большая Советская Энциклопедия (СП)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 16 (всего у книги 27 страниц)
Спинола Амбросио
Спи'нола (Spinola) Амбросио (1569, Генуя, – 25.9.1630, Кастельнуово-Скривия), испанский полководец. Из генуэзского аристократического рода. С 1598 на службе у исп. короля. Набрав на собственные средства войско, С. успешно сражался во Фландрии с войсками Морица Оранского. В 1604 исп. войска под его командованием взяли Остенде. В 1614 в связи с вмешательством Испании в войну за юлихклевское наследство С. воевал на территории Юлиха и Клеве. В начале Тридцатилетней войны 1618—48 С., направленный для подкрепления военных сил габсбургского блока, в 1620 занял часть Пфальца. В 1621 получил от исп. короля титул маркиза де лос Бальбасес. В том же году был отозван во Фландрию. В 1625 овладел голл. крепостью Бреда. В войне за Мантуанское наследство войска С. осадили Касале, заняли в 1630 часть города, однако крепость взять им не удалось.
Спинор
Спи'нор (от англ. spin – вращаться), математическая величина, характеризующаяся особым законом преобразования при переходе от одной системы координат к другой. С. применяются в различных вопросах квантовой механики, в теории представлений групп и т. д. См. Спинорное исчисление.
Спин-орбитальное взаимодействие
Спин-орбита'льное взаимоде'йствие, взаимодействие частиц, зависящее от величин и взаимной ориентации их орбитального и спинового моментов количества движения и приводящее к т. н. тонкому расщеплению уровней энергии системы (см. Тонкая структура). С.-о. в. – релятивистский эффект; формально оно получается, если энергию быстро движущихся во внешнем поле частиц находить с точностью до v2/c2, где v – скорость частицы, с – скорость света.
Наглядное физическое истолкование С.-о. в. можно получить, рассматривая, например, движение электрона в атоме водорода. Движение вокруг ядра приводит в общем случае к появлению у электрона орбитального механического момента количества движения и (вследствие того, что электрон – заряженная частица) пропорционального ему орбитального магнитного момента. В то же время электрон обладает собственным моментом количества движения – спином, с которым связан спиновый магнитный момент. Добавки к энергии электрона, вызванные взаимодействием орбитального и спинового магнитных моментов, зависят от взаимной ориентации моментов, т. е. определяются С.-о. в. Так как проекция спина электрона на любое выбранное направление, в данном случае на направление орбитального момента, может принимать два значения + /2 и – /2 (где – постоянная Планка), которым отвечают разные энергии взаимодействия с орбитальным моментом, то С.-о. в. приводит к расщеплению уровней энергии в атоме водорода (и водородоподобных атомах) на два близких подуровня (к дублетной структуре уровней). У многоэлектронных атомов С.-о. в. определяется (как правило) взаимодействием полного орбитального и полного спинового моментов электронов, и картина тонкого (мультиплетного) расщепления уровней энергии оказывается более сложной. (Атомы щелочных металлов, у которых полный спин электронов равен /2, также обладают дублетной структурой уровней.)
Наглядное представление о С.-о. в. как взаимодействии магнитных моментов не является общим и может играть лишь вспомогательную роль, поскольку С.-о. в. существует и у нейтральных частиц (например, у нейтронов), имеющих и орбитальный, и спиновый механические моменты. Весьма существенно С.-о. в. нуклонов (протонов и нейтронов) в атомных ядрах, вклад которого в полную энергию взаимодействия достигает 10 %.
Лит. см. при ст. Атом.
В. И. Григорьев.
Спинорное исчисление
Спино'рное исчисле'ние, математическая теория, изучающая величины особого рода – спиноры. При изучении физических величин их относят обычно к той или иной системе координат. В зависимости от закона преобразования этих величин при переходе от одной системы координат к другой различают величины различных типов (тензоры, псевдотензоры). При изучении явления спина электрона было обнаружено, что существуют физические величины, не принадлежащие к ранее известным типам (например, эти величины могут быть определены лишь с точностью до знака, т. к. при повороте системы координат на 2p вокруг некоторой оси все компоненты этих величин меняют знак). Такие величины были рассмотрены ещё в 1913 Э. Картаном в его исследованиях по теории представлений групп и вновь открыты в 1929 Б. Л. Варденом в связи с исследованиями по квантовой механике. Он назвал эти величины спинорами.
Спиноры первой валентности задаются двумя комплексными числами (x1, x2 ), причём в отличие, например, от тензоров, для которых различные совокупности чисел задают различные тензоры, для спиноров считают, что совокупности (x1, x2) и (—x1, —x2) определяют один и тот же спинор. Это объясняется законом преобразования спиноров при переходе от одной системы координат к другой. При повороте системы координат на угол q вокруг оси с направляющими косинусами cosc1, cosc2, cosc3 компоненты спинора преобразуются по формулам
где
б , , ,
, , , .
В частности, при повороте системы координат на угол 2p, возвращающем её в исходное положение, компоненты спинора меняют знак, что объясняет тождественность спиноров (x1, x2) и (—x1, —x2). Примером спинорной величины может служить волновая функция частицы со спином 1/2 (например, электрона).
Матрица является в этом случае унитарной матрицей.
К спинорам относят и величины, компоненты которых комплексно сопряжены с компонентами спинора (x1, x2). Матрица преобразования этих величин имеет вид .
Пусть Oxyz и 0'х'у'z' – две системы координат с параллельными осями, причём O'x'y'z' движется относительно Охуz со скоростью v = cthq (где с – скорость света) в направлении, образующем с осями координат углы c1, c2, c3. При Лоренца преобразованиях, соответствующих переходу от Oxyz к O'x'y'z', компоненты спинора преобразуются по формулам
, ,
где
б , , ,
, , , .
Если рассматривают преобразования Лоренца для случая, когда оси координат непараллельны, то матрица о преобразования компонент спинора может быть любой комплексной матрицей второго порядка, определитель которой равен единице, – унимодулярной матрицей.
Наряду с введёнными выше контравариантными компонентами x1, x2 спинора, можно ввести ковариантные компоненты x1, x2 положив , где (как всегда, по повторяющимся индексам производится суммирование). Иными словами, x2 = x1, x1 = -x2. Ковариантные компоненты преобразуются матрицей . При вращениях эта матрица совпадает с матрицей s, т. е. при вращениях ковариантные компоненты спинора преобразуются как компоненты комплексно сопряжённого спинора.
Спинорная алгебра строится аналогично обычной тензорной алгебре (см. Тензорное исчисление). Спинором валентности r (или спинтензором) называется совокупность 2r комплексных чисел , определённых с точностью до знака, которая при переходе от одной системы координат к другой преобразуется как произведение r компонент спиноров первой валентности, т. е. как . Аналогично определяются комплексно сопряжённый спинор валентности r, смешанный спинор, спинор с ковариантными компонентами и т. д. Сложение спиноров и умножение спинора на скаляр определяются покоординатно. Произведением двух спиноров называется спинор, компонентами которого являются попарные произведения компонент сомножителей. Например, из спиноров второй и третьей валентности и можно образовать спинор пятой валентности . Свёрткой спинора по индексам l1 и l2 называется спинор
.
В спинорной алгебре часто используются тождества
,
.
В квантовой механике важную роль играет исследование систем линейных дифференциальных уравнений, связывающих величины спинорного типа, которые остаются инвариантными при унимодулярных преобразованиях, т. к. только такие системы уравнений релятивистски инвариантны. Наиболее важны приложения спинорного анализа к теории уравнений Максвелла и Дирака. Запись этих уравнений в спинорной форме позволяет сразу установить их релятивистскую инвариантность, установить характер преобразования входящих в них величин. Спинорная алгебра находит также приложения к квантовой теории химической валентности. Теория спиноров в пространствах высшего числа измерений связана с представлениями групп вращений многомерных пространств. С. и. связано также с некоторыми вопросами неевклидовой геометрии.
Лит.: Румер Ю. Б., Спинорный анализ, М. – Л., 1936; Картан Э., Теория спиноров, пер. с франц., М., 1947; Ландау Л., Лифшиц Е., Квантовая механика, ч. 1, М. – Л., 1948 (Теоретическая физика, т. 5, ч. 1 ); Рашевский П. К., Риманова геометрия и тензорный анализ, 3 изд., М., 1967; его же, Теория спиноров, «Успехи математических наук», 1955, т. 10, в. 2(64).
Спинороги
Спиноро'ги (Balistidae), семейство рыб отряда сростночелюстных. Тело высокое, с боков уплощённое, длиной до 60 см. Чешуи крупные, костные, налегающие. Первая колючка переднего спинного плавника мощная, «запирается» в вертикальном положении с помощью второй колючки. Обе колючки брюшных плавников сливаются в единый шип. Мощными зубами, как кусачками, С. отламывают веточки кораллов, дробят раковины моллюсков, панцири морских ежей и крабов. Среди С. имеются и растительноядные виды. 11 родов, включающих около 30 видов. Широко распространены в тропических и субтропических морях. Обычно держатся поодиночке; очень медлительны. Серый С. (Balistes capriscus) распространён в Средиземном море, в восточной части Атлантики и в прибрежных водах её западной части; в водах СССР – в Чёрном море. Мясо С. ядовито.
Лит.: Световидов А. Н., Рыбы Черного моря, М. – Л., 1964; Никольский Г. В., Частная ихтиология, 3 изд., М., 1971.
Серый спинорог.
Спин-спиновое взаимодействие
Спин-спи'новое взаимоде'йствие, взаимодействие между спиновыми магнитными моментами микрочастиц (см. Спин). Это взаимодействие является релятивистским эффектом (оно содержит множитель 1/с2, где с – скорость света). Вследствие этого С.-с. в. мало по сравнению с электрическим взаимодействием частиц, обменным взаимодействием, взаимодействием спинового магнитного момента с внешним полем и т. д. Тем не менее оно приводит к ряду важных эффектов в атомах, молекулах и твёрдых телах.
Взаимодействие спиновых магнитных моментов электронов и ядра даёт вклад в энергию атома, которая вследствие этого зависит от взаимной ориентации суммарного спина электронов и спина ядра. Это приводит к сверхтонкому расщеплению уровней энергии атомов и линий атомных спектров (см. Сверхтонкая структура). С.-с. в. электронов также даёт добавку к энергии атома. Однако оно не приводит к дополнительному расщеплению уровней энергии и обычно мало по сравнению со спин-орбитальным взаимодействием, определяющим в основном тонкую структуру атомных спектров (см. Мультиплетность). В молекулах же мультиплетную структуру спектров в ряде случаев определяет именно С.-с. в. электронов (S-уровни; см. Молекулярные спектры).
В ферромагнетиках магнитное упорядочение обусловлено обменным взаимодействием атомных носителей магнитного момента. Менее существенно их магнитное взаимодействие, но оно наряду с действием электрического поля кристаллической решётки приводит к зависимости энергии кристалла от направления его намагниченности (к магнитной анизотропии). Хотя энергия магнитной анизотропии мала по сравнению с обменной энергией, она сказывается в существовании оси лёгкого намагничивания в ферромагнетике и явления магнитострикции. С.-с. в. в ферромагнитном кристалле является также одним из механизмов релаксации, приводящим к конечной ширине резонансной линии в эффекте ферромагнитного резонанса (см. Релаксация магнитная).
Взаимодействие между спиновыми магнитными моментами электронов и ядер проявляется также в электронном парамагнитном резонансе (ЭПР) и ядерном магнитном резонансе (ЯМР). Оно вызывает расщепление магнитных уровней энергии электрона во внешнем поле и обусловливает сверхтонкую структуру линий ЭПР. В металлах резонансная частота прецессии ядерных магнитных моментов при ЯМР сдвигается вследствие появления эффективного локального магнитного поля на ядре, созданного намагниченными внешним полем электронами проводимости (сдвиг Найта). С.-с. в. внутри систем электронов и ядер обусловливает в этих системах релаксационные процессы и даёт вклад в ширину резонансных линий ЭПР и ЯМР.
Лит.: Ландау Л. Д., Лифшиц Е. М., Теоретическая физика, 3 изд., т. 3, М., 1974; Вонсовский С. В., Магнетизм, М., 1971; Керрингтон А., Мак-Лечлан Э., Магнитный резонанс и его применение в химии, пер. с англ., М., 1970.
Л. Г. Асламазов.
Спинтарископ
Спинтариско'п (от греч. spintharis – искра и skopeo – смотрю), демонстрационный прибор для визуального наблюдения a-частиц. Падая на экран, покрытый сцинтиллирующим веществом, a-частица вызывает слабую световую вспышку, которую можно наблюдать глазом. С. – родоначальник сцинтилляционного счётчика.
Спирали
Спира'ли (франц., единственное число spirale, от лат. spira, греч. speira – виток), плоские кривые линии, бесчисленное множество раз обходящие некоторую точку, с каждым обходом приближаясь к ней или с каждым обходом удаляясь от неё. Если выбрать эту точку за полюс полярной системы координат, то полярное уравнение С. r = f(j) таково, что f(j + 2p) > f(j) или f(j + 2p) < f(j) при всех j. В частности, С. получаются, если f(j) – монотонно возрастающая или убывающая положительная функция. Наиболее простой вид имеет уравнение архимедовой С. (см. рис.): r = аj, изученной древнегреческим математиком Архимедом (3 в. до н. э.) в связи с задачами трисекции угла и квадратуры круга в сочинении «О спиралях». Архимед нашёл площадь сектора этой С., что было одним из первых примеров квадратуры криволинейной области. Архимедова С. является подерой (см. Подера и антиподера) эвольвенты круга (см. Эволюта и эвольвента), что используется в некоторых конструкциях разводных мостов для уравновешивания переменного натяжения цепи. Если эксцентрик ограничен дугами архимедовой С. (сердцевидный эксцентрик), то он преобразует равномерное вращательное движение в равномерное поступательное, причём расстояние между диаметрально противоположными точками эксцентрика постоянно. Французский математик П. Ферма исследовал обобщённые архимедовы С. (r/a)n = (j/2p)m и нашёл площадь их сектора.
Уравнение r = аекj задаёт логарифмическую С. (см. рис.). Логарифмическая С. пересекает под одним и тем же углом а все радиус-векторы, проведённые из полюса, причём ctga = k. Это свойство логарифмической С. используется при проектировании вращающихся ножей, фрез и т. д. для достижения постоянства угла резания. Логарифмическая С. встречается также в теории спиральных приводов к гидравлическим турбинам и т. д. В теории зубчатых колёс используется возможность качения без скольжения одной логарифмической С. по другой, равной с ней, когда обе С. вращаются вокруг своих полюсов. При этом получаются зубчатые передачи с переменным передаточным числом. При стереографической проекции плоскости на сферу логарифмической С. переходит в локсодромию (кривую, пересекающую все меридианы под одним и тем же углом). Определение длин дуг логарифмической С. дано итал. учёным Э. Торричелли. Длина дуги логарифмической С. пропорциональна разности длин радиус-векторов, проведённых в концы дуги, точнее равна . Швейц. учёный Я. Бернулли показал, что эволюта и каустика (см. Каустическая поверхность) логарифмической С. являются логарифмическими С. При вращении вокруг полюса логарифмической С. получается кривая, гомотетичная (см. Гомотетия) исходной. При инверсии логарифмическая С. переходит в логарифмическую С.
Из других С. практическое значение имеет Корню С. (или клотоида), применяемая при графическом решении некоторых задач дифракции (см. рис.). Параметрическое уравнение этой С. имеет вид:
, .
Корню С. является идеальной переходной кривой для закругления железнодорожного пути, так как её радиус кривизны возрастает пропорционально длине дуги. С. являются также эвольвенты замкнутых кривых, например эвольвента окружности.
Названия некоторым С. даны по сходству их полярных уравнений с уравнениями кривых в декартовых координатах, например параболическая С. (см. рис.): (а – r)2 = bj, гиперболическая С.(см. рис.): r = а/j. К С. относятся также жезл (см. рис.): r2 = a/j и si-ci-cпираль, параметрические уравнения которой имеют вид:
,
[si (t) и ci (t) – интегральный синус и интегральный косинус]. Кривизна si-ci-cпирали изменяется с длиной дуги по закону показательной функции. Такие С. применяют в качестве профиля для лекал.
Напоминает С. кривая , называемая кохлеоидой (см. рис.). Она бесконечное множество раз проходит через полюс, причём каждый следующий завиток лежит в предыдущем.
С. встречаются также при рассмотрении особых точек в теории дифференциальных уравнений (см. Особые точки).
С. иногда называют также пространственные кривые, делающие бесконечно много оборотов вокруг некоторой оси, например винтовая линия.
Лит. см. при ст. Линия.
Архимедова спираль.
Спирализация хромосом
Спирализа'ция хромосо'м, процесс укорочения и уплотнения хромосом при делении клеток; способствует нормальному расхождению хромосом к полюсам клетки. С. х. обусловлена уменьшением шага и увеличением диаметра составляющих хромосомы спирально закрученных нуклеопротеидных нитей – хромонем. Впервые описана в 1880 русским исследователем О. В. Баранецким, обратившим внимание на периодичность и обратимость этого процесса в клеточном цикле у традесканции. У некоторых простейших спиральная структура хромосом сохраняется и в интерфазе. Число витков спирали хромонемы постоянно для каждой хромосомы, а направление спиралей в сестринских хроматидах и плечах хромосомы может быть как одинаковым, так и различным (правым или левым). Скорость С. х. на отдельных участках неодинакова и зависит от особенностей их структуры и функционирования, что приводит к закономерному изменению морфологии хромосом на разных стадиях митоза или мейоза (см. также Пуфы, Хромосомы).
Лит.: Прокофьева-Бельговская А. А., Микроскопическое строение хромосом, в кн.: Руководство по цитологии, т. 2, М. – Л., 1966; Дифференциальная спирализация и хромосомный анализ, «Цитология», 1974, т. 16, №3; Ohnuki V., Structure of chromosomes. 1. Morphological studies of the spiral structure of human somatic chromosomes, «Chromosoma», 1968, Bd 25, H. 3.
А. Б. Иорданский.
Спиральная антенна
Спира'льная анте'нна, диапазонная антенна бегущей волны, излучающая (принимающая) электромагнитные волны с эллиптической или круговой поляризацией волн. С. а. применяют преимущественно в дециметровом и сантиметровом диапазонах длин волн – как самостоятельно, так и в качестве облучателей зеркальных и линзовых антенн (например, в системах космической связи). Различают плоские и пространственные С. а.
Плоскую С. а. обычно выполняют в виде двухпроводной линии, каждый проводник (плечо) которой имеет форму архимедовой (рис. 1, а) или логарифмической (рис. 1, б) спирали (см. Линия).
Передатчик (приёмник) подсоединяют к плечам в центральной части С. а. с помощью коаксиальной или открытой двухпроводной линии. Отношение максимальной частоты рабочего диапазона к минимальной (кратность диапазона) может достигать 20; коэффициент направленного действия обычно равен нескольким единицам.
Пространственные С. а. цилиндрической (рис. 2, а) или конической (рис. 2, б) формы выполняют из металлического провода, который подсоединяется к центральному проводнику коаксиальной линии; внешний проводник линии – наружная оболочка – подсоединяется к плоскому металлическому экрану. Их обычно используют в диапазонах частот, имеющих кратность 2—3; коэффициент направленного действия достигает 100 и более.
Г. К. Галимов.
Рис. 1. Плоские спиральные антенны: а – архимедова спираль; б – логарифмическая спираль.
Рис. 2. Пространственные спиральные антенны: а – цилиндрическая; б – коническая; 1 – металлическая спираль; 2 – металлический экран; 3 – коаксиальная линия.
Спиральная камера гидротурбины
Спира'льная ка'мера гидротурби'ны, обеспечивает равномерное поступление воды по всему периметру направляющего аппарата, т. е. осесимметричный режим работы всех направляющих лопаток; сечение С. к. г. равномерно сужается по ходу потока. На ГЭС с напором, превышающим 50—60м, применяются стальные С. к. г. круглого сечения (рис.), охватывающие статор почти полностью («полная спираль»). На ГЭС с меньшим напором С. к. г. изготовляются из железобетона, угол охвата составляет около 225°, сечение имеет вид тавра. С. к. г. в отличие от других турбинных камер (например, открытых) позволяют вынести значительную часть механизмов гидротурбины в сухое помещение, что улучшает условия эксплуатации турбины.
Сборка сварной спиральной камеры.