355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (АК) » Текст книги (страница 20)
Большая Советская Энциклопедия (АК)
  • Текст добавлен: 16 октября 2016, 23:39

Текст книги "Большая Советская Энциклопедия (АК)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 20 (всего у книги 24 страниц)

  Таким образом, современная А. по своему содержанию и значению далеко перешагнула те границы, в которых она развивалась до 20 в.

  Основные разделы А. Современную А. подразделяют на общую, прикладную и психофизиологическую.

  Общая А. занимается теоретическим и экспериментальным изучением закономерностей излучения, распространения и приёма упругих колебаний и волн в различных средах и системах; условно её можно разделить на теорию звука, физическую А. и нелинейную А. Теория звука пользуется общими методами, разработанными в теории колебаний и волн. Для колебаний и волн малой амплитуды принимается принцип независимости колебаний и волн (суперпозиции принцип), на основе которого определяют звуковое поле в разных областях пространства и его изменение во времени.

  На распространение, генерацию и приём упругих волн оказывает влияние огромное число факторов, связанных со свойствами и состоянием среды. Рассмотрением этого занимается физическая А. К её задачам относятся, в частности, изучение зависимости скорости и поглощения упругих волн от температуры и вязкости среды и др. факторов.

  К важным вопросам физической А. относятся также взаимодействие элементарных звуковых волн (фононов) с электронами и фотонами. Эти взаимодействия становятся особенно существенными на очень высоких ультразвуковых и гиперзвуковых частотах при низких температурах. В области таких частот и температур начинают проявляться квантовые эффекты. Этот раздел физики А. иногда называют квантовой А. Нелинейная А. изучает интенсивные звуковые процессы, когда принцип суперпозиции не выполняется и звуковая волна при распространении изменяет свойства среды. Этот раздел А., очень сложный в теоретическом отношении, быстро развивается (как и теория нелинейных волновых процессов в оптике и электродинамике).

  Прикладная А. – чрезвычайно обширная область, к которой относится прежде всего электроакустика. Сюда же относятся акустические измерения – измерения величин звукового давления, интенсивности звука, спектра частот звукового сигнала и т. д. Архитектурная и строительная А. занимается задачами получения хорошей слышимости речи и музыки в закрытых помещениях и снижением уровней шума, а также разработкой звукоизолирующих и звукопоглощающих материалов. Прикладная А. изучает также шумы и вибрации и разрабатывает способы борьбы с ними. Изучением распространения звука в океане и возникающими при этом явлениями: рефракцией звука, реверберацией при отражении звукового сигнала от поверхности моря и его дна, рассеянием звука на неоднородностях и т. д. занимаются гидроакустика и гидролокация.

  Атмосферная А. исследует особенности распространения звука в атмосфере, обусловленные неоднородностью её структуры, и является частью метеорологии. Геоакустика изучает применения звука в инженерной геофизике и геологии.

  Огромное прикладное значение как в технике физического эксперимента, так и в промышленности, на транспорте, в медицине и др. имеют ультразвук и гиперзвук. Например, в измерительной технике – ультразвуковые линии задержки, измерение сжимаемости жидкостей, модулей упругости твёрдых тел и т. д.; в промышленном контроле – дефектоскопия металлов и сплавов, контроль протекания химических реакций и т. д.; технологические применения – ультразвуковое сверление, очистка и обработка поверхностей, коагуляция аэрозолей и др.

  Психофизиологическая А. занимается изучением звукоизлучающих и звукопринимающих органов человека и животных, проблемами речеобразования, передачи и восприятия речи. Результаты используются в электроакустике, архитектурной А., системах передачи речи, теории информации и связи, в музыке, медицине, биофизике и т. п. К её разделам относятся: речь, слух, психологическая А., биологическая А.

  Вопросами А. в СССР занимаются: в Москве – Акустический институт АН СССР, Научно-исследовательский институт строительной физики, Научно-исследовательский кинофотоинститут, институт звукозаписи; в Ленинграде – институт радиоприёма и акустики; ряд отраслевых институтов, а также большое число лабораторий и кафедр в университетах и вузах страны.

  Научные проблемы А. освещаются в различных физических журналах, а также в специальных акустических журналах: «Акустический журнал» (М., с 1955), «Acustica» (Stuttgart, с 1951), «Journal of the Acoustical society of America» (N. Y., с 1929) и др.

  Лит.: Стретт Дж. В. (лорд Рэлей), Теория звука, пер. с англ., 2 изд., М., 1955; Скучик Е., Основы акустики, пер. с нем. , т. 1 – 2, М., 1958 – 59; Красильников В. А., Звуковые и ультразвуковые волны в воздухе, воде и твердых телах, 3 изд., М., 1960.

  В. А. Красильников.

Акустика движущихся сред

Аку'стика дви'жущихся сред, раздел акустики, в котором изучаются звуковые явления (характер распространения звуковых волн, их излучение и приём) в движущейся среде или при движении источника звука. Область применения А. д. с. обширна, т. к. атмосфера, вода в морях и океанах находятся в непрерывном движении, влияющем на распространение звука.

  Под влиянием течений среды звуковые лучи искривляются. Так, например, в приземном слое атмосферы скорость ветра возрастает с высотой (рис.). Поэтому при звуке, направленном против ветра, лучи изгибаются вверх и могут пройти выше стоящего на земле наблюдателя, а при звуке, распространяющемся по ветру, лучи изгибаются вниз; этим объясняется лучшая слышимость с подветренной стороны. Определение звукового поля в движущейся среде в А. д. с. основывается на относительности принципе Галилея, согласно которому движение среды относительно источника звука равносильно движению (с той же скоростью) источника относительно среды. На основе этого принципа решаются многие задачи, например отражение звука на границе ветра, излучение звука вибрирующей плоскостью, обтекаемой потоком.

  Кроме ветра, в атмосфере происходят беспорядочные турбулентные течения, вызывающие рассеяние звуковых волн и флуктуации (беспорядочные отклонения от среднего значения) их амплитуд и фаз. Задача о рассеянии звука решается с учётом неоднородности турбулентного потока, а также вязкости и теплопроводности среды.

  Развитие техники больших скоростей выдвигает на первый план исследования звукового поля быстродвижущихся источников и приёмников звука, скорость которых близка к скорости звука в среде.

  Лит.: Блохинцев Д. И., Акустика неоднородной движущейся среды, М. – Л., 1946; Чернов Л. А., Акустика движущейся среды. Обзор, «Акуст. ж.», 1958, т. 4, вып. 4.

Схема распространения звука при возрастании ветра с высотой.

Акустика музыкальная

Аку'стика музыка'льная, см. Музыкальная акустика.

Акустико-пневматический элемент

Аку'стико-пневмати'ческий элеме'нт, устройство, преобразующее акустические сигналы в пневматические. А.-п. э. применяется для построения звуковых многоканальных систем управления, электропневматических преобразователей и др. А.-п. э., срабатывающий от звукового сигнала любой частоты (рис., а), состоит из питающего цилиндрического капилляра 1 (от источника Рпит), формирующего ламинарную струю, приёмной трубки 2 и регистратора давления Р. При подаче акустического сигнала 3 звук действует на свободную затопленную ламинарную струю, вызывая в ней возмущения; при этом давление в приёмной трубке падает. Чтобы А.-п. э. обладал способностью выделять звуковые сигналы определённой частоты, питающий капилляр и приёмную трубку соединяют с резонатором акустическим 4 (рис., б). Ламинарная струя становится турбулентной только при совпадении частоты звукового сигнала с собственной частотой резонатора. Частотная подстройка А.-п. э. производится изменением объёма V резонатора.

  В. Н. Дмитриев.

Акустико-пневматические элементы: а – срабатывающий при любой частоте звукового сигнала; б – с избирательным приёмом сигналов.

Акустическая дефектоскопия

Акусти'ческая дефектоскопи'я, методы неразрушающего контроля, основанные на использовании упругих (обычно изгибных) колебаний преимущественно звукового (до 20 кгц) диапазона частот. Применяются для выявления дефектов клеевых соединений в многослойных конструкциях, расслоений в слоистых пластиках, контроля литья, абразивных кругов и др. См. Дефектоскопия, Ультразвуковая дефектоскопия.

  Ю. В. Ланге.

Акустическая травма

Акусти'ческая тра'вма (от греч. akustikós – слуховой и tráuma – повреждение), повреждение органа слуха, вызванное действием звуков чрезмерной силы. В результате А. т. во внутреннем ухе возникают болезненные изменения, приводящие к стойкому понижению слуха или даже глухоте. Наиболее частый вид А. т. – шумовая травма, развивающаяся при длительной работе в условиях шумного производства, например у котельщиков, ткачей, испытателей моторов и т. п. Профилактика: мероприятия, направленные на снижение производственного шума; известную роль играют защитные приспособления индивидуальные (противошумы).

  Л. В. Нейман.

Акустические измерения

Акусти'ческие измере'ния, измерения величин, характеризующих звуки и шумы по их интенсивности и по различным качественным признакам (по спектру, по нарастанию и спаданию звука во времени и др.). Главные величины, которые измеряют в акустике: звуковое давление, интенсивность звука, колебательная скорость и смещение частиц, частота и период колебаний, скорость распространения, коэффициент затухания и др. Наиболее важная характеристика – звуковое давление; это связано с тем, что человеческое ухо в звуковой волне воспринимает именно это давление.

  А. и. тесно переплетаются с электрическими измерениями и проводятся главным образом электронной измерительной аппаратурой. Трудность А. и. обусловлена сложным пространственным распределением звуковых величин в помещениях, а также изменчивостью звуков и шумов во времени.

  Для измерений звукового давления служит измерительный микрофон в воздухе или гидрофон в воде. Приёмная часть этих приборов (собственно микрофоны и гидрофоны) преобразует поступающие звуковые сигналы (давления) в пропорциональные им электрические напряжения, которые затем подаются на вход измерительных усилителей с индикаторными приборами для отсчёта показаний. Для измерений различных шумов применяется шумомер.

  Важный раздел А. и. – измерения в строительной и архитектурной акустике – измерения звукоизоляции перегородок и перекрытий и коэффициент звукопоглощения разных строительных покрытий (штукатурок, обивок, полов и т. д.).

  Имеются и др. виды А. и.: измерения характеристик звукопроводов, испытания акустических приборов связи и вещания – передатчиков и приёмников звука, испытание магнитофонов и проигрывателей, телефонов связи. Особую и значительную группу А. и. составляют субъективные измерения чувствительности слуха людей, а также отклонений от нормы (аудиометрия).

  Лит.: Беранек Л., Акустические измерения, пер. с англ., М., 1952; Клюкин И. И., Колесников А. Е., Акустические измерения в судостроении, 2 изд., Л., 1968.

  И.Г. Русаков.

Акустические материалы

Акусти'ческие материа'лы. Подразделяются на звукопоглощающие материалы и звукоизоляционные прокладочные материалы.

  Звукопоглощающие материалы применяются в основном в звукопоглощающих облицовках производственных помещений и технических устройств, требующих снижения уровня шумов (промышленные цехи, машинописные бюро, установки вентиляции и кондиционирования воздуха и др.), а также для создания оптимальных условий слышимости и улучшения акустических свойств помещений общественных зданий (зрительные залы, аудитории, радиостудии и пр.). Звукопоглощающая способность материалов обусловлена их пористой структурой и наличием большого числа открытых сообщающихся между собой пор, максимальный диаметр которых обычно не превышает 2 мм (общая пористость должна составлять не менее 75% по объёму). Большая удельная поверхность материалов, создаваемая стенками открытых пор, способствует активному преобразованию энергии звуковых колебаний в тепловую энергию вследствие потерь на трение. Эффективность звукопоглощающих материалов оценивается коэффициентом звукопоглощения a, равным отношению количества поглощённой энергии к общему количеству падающей на материал энергии звуковых волн.

  Звукопоглощающие материалы имеют волокнистое, зернистое или ячеистое строение и могут обладать различной степенью жёсткости (мягкие, полужёсткие, твёрдые). Мягкие звукопоглощающие материалы изготовляются на основе минеральной ваты или стекловолокна с минимальным расходом синтетического связующего (до 3% по массе) или без него. К ним относятся маты или рулоны с объёмной массой до 70 кг/м3, которые обычно применяются в сочетании с перфорированным листовым экраном (из алюминия, асбестоцемента, жёсткого поливинилхлорида) или с покрытием пористой плёнкой. Коэффициент звукопоглощения этих материалов на средних частотах (250—1000 гц) от 0,7 до 0,85.

  К полужёстким материалам относятся минераловатные или стекловолокнистые плиты размером (мм) 500 × 500 ×20 с объёмной массой от 80 до 130 кг/м3 при содержании синтетического связующего от 10 до 15% по массе, а также древесноволокнистые плиты с объёмной массой 180—300 кг/м3. Поверхность плит покрывается пористой краской или плёнкой. Коэффициент звукопоглощения полужёстких материалов на средних частотах составляет 0,65—0,75. В эту же группу входят звукопоглощающие плиты из пористых пластмасс, имеющие ячеистое строение (пенополиуретан, полистирольный пенопласт и др.).

  Твёрдые материалы волокнистого строения изготовляются в виде плит «Акминит» и «Акмигран» (СССР), «Травертон» (США) и др. размером (мм) 300 × 300 × 20 на основе гранулированной или суспензированной минеральной ваты и коллоидного связующего (крахмальный клейстер, раствор карбоксиметилцеллюлозы). Поверхность плит окрашена и имеет различную фактуру (трещиноватую, рифлёную, бороздчатую). Объёмная масса 300—400 кг/м3, коэффициент звукопоглощения на средних частотах 0,6—0,7. Разновидность твёрдых материалов – плиты и штукатурные растворы, в состав которых входят пористые заполнители (вспученный перлит, вермикулит, пемза) и белые или цветные портландцементы. Применяются также звукопоглощающие плиты, в которых древесная шерсть связана цементным раствором (т. н. акустический фибролит). Выбор материала зависит от акустического режима, назначения и архитектурных особенностей помещения.

  Звукоизоляционные прокладочные материалы применяются в виде рулонов или плит в конструкциях междуэтажных перекрытий, во внутренних стенах и перегородках, а также как виброизоляционные прокладки под машины и оборудование. Характеризуются малым значением динамического модуля упругости, как правило, не превышающим 1,2 Мн/м2 (12 кгс/см2), при нагрузке 20 Мн/м2 (200 кгс/м2). Упругие свойства скелета материала и наличие воздуха, заключённого в его порах, обусловливают гашение энергии удара и вибрации, что способствует снижению структурного и ударного шума. Различают звукоизоляционные прокладочные материалы, изготовляемые из волокон органического или минерального происхождения (древесноволокнистые плиты, минераловатные и стекловолокнистые рулоны и плиты толщиной от 10 до 40 мм, объёмная масса 30—120 кг/м3), а также из эластичных газонаполненных пластмасс (пенополиуретан, пенополивинилхлорид, латексы синтетических каучуков), выпускаемых в виде плит толщиной от 5 до 30 мм; объёмная масса эластичного пенополиуретана 40—70 кг/м3, пенополивинилхлорида 70—270 кг/м3. В ряде случаев для целей звукоизоляции применяются штучные прокладки из литой или губчатой резины.

  Лит.: Цвиккер К. и Костен К., Звукопоглощающие материалы, пер. с англ., М., 1952; Борьба с шумом, под ред. Е. Я. Юдина, М., 1964; Звукопоглощающие и звукоизоляционные материалы, под ред. Е. Я. Юдина, М., 1966.

  Г. А. Исакович, Г. Л. Осипов.

Акустический ветер

Акусти'ческий ве'тер, звуковой ветер, регулярные течения среды, образующиеся при распространении интенсивного звука. Например, при интенсивностях звука около 1 Мвт/м2 (100 вт/см2) скорость А. в. в воде может составлять десятки см/сек.

Акустический излучатель

Акусти'ческий излуча'тель, устройство для возбуждения звуковых волн в упругой среде (см. Звук). А. и. могут строиться на различных механизмах звукообразования, например на колебаниях твёрдых тел и поверхностей в упругой среде (струна с декой, пластина, мембрана и др.), на возбуждении колебаний самого воздуха (свистки, сирены, органные трубы, голосовой аппарат человека и др.), на периодическом изменении температуры среды (термофон, ионофон) и т. д.

  Важнейшие характеристики А. и.: диапазон излучаемых частот, излучаемая мощность, направленность (распределение излучаемой энергии в пространстве). В зависимости от назначения А. и. требования к этим характеристикам различны, например громкоговоритель должен излучать звук в широком диапазоне частот от 30 гц до 16 кгц и равномерно по всем направлениям, а А. и. ультразвуковой дефектоскопии должны давать узконаправленный пучок ультразвуковых волн с одной частотой в несколько Мгц. Чтобы получить А. и. с требуемыми характеристиками, производят расчёт звукового поля, создаваемого этим А. и. Однако точные решения удаётся получить лишь для А. и. простейших форм (пульсирующий шар, колеблющийся шар и др.) при условии малой амплитуды колебаний излучающей поверхности, поэтому всё многообразие А. и. сводят к простейшим типам излучателей или их комбинациям.

  Лит.: Красильников В. А., Звуковые и ультразвуковые волны в воздухе, воде и твердых телах, 3 изд., М.,1960.

Акустический импеданс

Акусти'ческий импеда'нс, см. Импеданс акустический.

Акустический институт

Акусти'ческий институ'т Академии наук СССР (АКИН), научно-исследовательское учреждение, в котором ведутся работы в области акустики. Создан в Москве в 1953 на базе Акустической лаборатории Физического института им. П. Н. Лебедева АН СССР. Основные направления работ института (1968): исследования по распространению и дифракции звука, физиологической акустике, нелинейной акустике, ультразвуку, физической акустике жидкости и газов, акустике твёрдого тела и квантовой акустике, акустике океана; изыскание новых материалов, применяемых в акустических преобразователях; изыскание новых вибропоглощающих материалов и методов борьбы с шумами и вибрациями.

  За последние 15 лет выполнены работы по исследованию распространения звука, изучению процесса воздействия ультразвука на вещество, исследованию вибраций и способов их уменьшения, установлению закономерностей, сопутствующих истечению высокоскоростных струй, разработке физических основ ультразвуковой технологии и др.

  Наряду с экспериментальными лабораториями в А. и. имеется теоретический отдел. Большой объём исследований проводится и на научно-исследовательских судах «Петр Лебедев» и «Сергей Вавилов».

  Институт имеет очную и заочную аспирантуру. Учёному совету предоставлено право присуждать учёные степени доктора и кандидата физико-математических и технических наук.

  Работы А. и. публикуются в «Акустическом журнале» и др. периодич. изданиях.

  Н. А. Грубник.

Акустический канал

Акусти'ческий кана'л, совокупность устройств и физических сред, передающих сигналы с помощью звуковых и ультразвуковых явлений. В А. к. для управления или контроля применяются пассивные сигналы, т. е. акустические явления, возникающие в контролируемом, например технологическом, процессе, или активные, специально созданные звуковые сигналы. А. к. с пассивным сигналом применяются в промышленности для отбраковки изделий или агрегатов по признаку их шумности (например, контроль качества агрегатов, содержащих зубчатые передачи); в медицине – при изучении шумов в организме. С помощью активных сигналов звукового или ультразвукового диапазона передают сообщения, производят дистанционные измерения, определяют параметры контролируемой среды, обнаруживают какие-либо нежелательные включения.

Акустический пылемер

Акусти'ческий пылеме'р, прибор для определения запылённости воздуха без предварительного выделения из него пыли. Действие А. п. основано на свойстве акустического поля изменять свои параметры в зависимости от состава исследуемой атмосферы. Запылённый воздух поступает в камеру, в которой установлен генератор звуковых или ультразвуковых колебаний. Изменение энергии этих колебаний, зависящее от концентрации пыли в воздухе, воспринимается приёмником, помещенным в той же камере, и фиксируется на шкале А. п. в единицах запылённости (мг/м3). А. п. предназначен для шахт, рудников, обогатительных фабрик и т. д.


    Ваша оценка произведения:

Популярные книги за неделю