Текст книги "Большая Советская Энциклопедия (ХЛ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 8 (всего у книги 9 страниц)
Хлорокись меди
Хлоро'кись ме'ди, 3Cu (OH)2 ×CuCl×H2 O, химический препарат для борьбы с возбудителями болезней (церкоспороз сахарной свёклы, фитофтороз картофеля, септориоз, фитофтороз томата, парша и монилиоз яблони и груши, милдью винограда и др.) растений (фунгицид ).
Хлорококковые водоросли
Хлороко'кковые во'доросли, класс (или порядок) зелёных водорослей .
Хлорокруорины
Хлорокруори'ны (от греч. chlorós – бледно-зелёный и лат. cruor – кровь), зелёные дыхательные пигменты, заменяющие гемоглобины у некоторых представителей многощетинковых червей (семейства Sabellidae, Serpulidae, Chlorhaemidae, Ampharetidae). В крови некоторых из этих червей встречаются одновременно Х. и гемоглобины. У молодых особей рода Serpula преобладают гемоглобины, у взрослых – Х. Выделенная из сосудов кровь, содержащая Х., красного цвета, разбавленная – зелёного. По химическому строению Х. отличаются от гемоглобинов в белковой и небелковой частях молекулы. Х. содержат гем , в котором винильная группа (CH = CH) протопорфирина (см. Порфирины ) в положении 2 замещена формильной группой (CHO). В плазме крови Х. находятся в растворённом состоянии и, подобно эритрокруорину , имеют высокую молекулярную массу (2 800 000). У Х. и гемоглобинов одинаковое сродство к кислороду.
Лит.: Гауровиц Ф., Химия и функции белков, пер. с англ., М., 1965; Сравнительная физиология животных, т. 2, пер. с англ., М., 1977, гл. 8.
Е. П. Феденко.
Хлоропласты
Хлоропла'сты (от греч. chlorós – зелёный и plastós – вылепленный, образованный), внутриклеточные органеллы растительной клетки – пластиды , в которых осуществляется фотосинтез. Окрашены в зелёный цвет благодаря присутствию в них основного пигмента фотосинтеза – хлорофилла . Основная функция Х., состоящая в улавливании и преобразовании световой энергии, нашла отражение и в особенностях их строения. У высших растений Х. – тельца линзообразной формы диаметром 3—10 мкм и толщиной 2—5 мкм, представляют собой систему белково-липидных мембран, погруженных в основное вещество – матрикс, или строму, и отграничены от цитоплазмы наружной мембраной (оболочкой). Внутренние мембраны образуют единую (непрерывную) пластинчатую, или ламеллярную, систему, состоящую из замкнутых уплощённых мешочков (цистерн) – т. н. тилакоидов, которые группируются по 10—30 (стопками) в граны (до 150 в Х.), соединяющиеся между собой крупными тилакоидами. При таком строении значительно увеличивается фотоактивная поверхность Х. и обеспечивается максимальное использование световой энергии. В мембране тилакоидов, состоящей из двух слоев белка, разделённых слоем липидов, осуществляется первичная световая стадия фотосинтеза, ведущая к образованию двух необходимых для ассимиляции CO2 соединений – восстановленного никотинамид-адениндинуклеотидфосфата (НАДФ×Н) и богатого энергией соединения аденозинтрифосфата (АТФ). Источником энергии для образования молекул АТФ является разность потенциалов, которая образуется на мембране в результате векторного (направленного) переноса заряда. Разделение заряда по обеим сторонам мембраны обеспечивается особым расположением компонентов электронно-транспортной цепи в мембране, перешнуровывающих её толщу. Благодаря мембранам, играющим роль «перегородок», осуществляется пространственное разобщение продуктов фотосинтеза, например O2 и восстановителей, без которых эти продукты взаимодействовали бы друг с другом. Наружная поверхность тилакоида покрыта частицами диаметром 14—15 нм, которые представляют собой «факторы сопряжения», участвуют в синтезе АТФ. В строме же сосредоточены ферменты фиксации CO2 ; (темновая стадия фотосинтеза).
У растений, способных к «кооперативному» фотосинтезу, существует 2 типа Х., различающихся по строению и функциям. Одни из них, находящиеся в клетках мезофилла, мелкие с гранами, другие, более крупные, содержатся в клетках обкладки проводящих сосудистых пучков, граны в них лишь зачаточные или совсем отсутствуют. В Х. второго типа функционирует фотосистема 1, которая образует АТФ в ходе циклического фосфорилирования, а НАДФ×Н – за счёт реакции декарбоксилирования яблочной кислоты. Х. клеток обкладки фиксируют CO2 на рибулозодифосфате, т. е. с помощью цикла Калвина, а Х. клеток мезофилла – на фосфоенолпирувате (путь Хетча – Слэка); т. о. взаимодействие Х. обоих типов обеспечивает высокую эффективность фотосинтеза у растений. В строму Х., наряду с ферментами фиксации CO2 , включены нити ДНК, рибосомы, крахмальные зёрна, осмиофильные гранулы.
Наличие в Х. собственного генетического аппарата и специфической белоксинтезирующей системы обусловливает определённую, хотя и относительную, автономию Х. в клетке. При развитии и размножении растения в новых генерациях клеток Х. возникают только путём деления. Происхождение Х. связывают с симбиогенезом , полагая, что современные Х. – потомки сине-зелёных водорослей, вступившие в симбиоз с древними ядерными гетеротрофными клетками бесцветных водорослей или простейших.
Х. занимают 20—30% объёма растительной клетки. У водорослей, например хламидомонады, имеется один Х., в клетке высших растений содержится от 10 до 70 Х. Развиваются Х. из т. н. инициальных частиц, или пропластид, – небольших пузырьков, отделяющихся от ядра. В конце вегетации растения Х. в результате разрушения хлорофилла утрачивают зелёную окраску и превращаются в хромопласты . См. также Фотосинтез .
Лит.: Хлоропласты и митохондрии. Вопросы мембранной биологии, Сб., М., 1969; Лёви А., Сикевиц Ф., Структура и функция клетки, пер. с англ., М., 1971; Хит О., Фотосинтез, пер. с англ., М., 1972; Баславская С. С., Фотосинтез, М., 1974; Насыров Ю. С., Фотосинтез и генетика хлоропластов, М., 1975; Structure and function orchloroplasts, ed. М. Gibbs, B., 1971.
Р. М. Бекина.
Микрофотография хлоропласта.
Модель пластинчатой (ламелярной) системы хлоропластов. Столбики – граны, образованные тилакоидами.
Хлоропрен
Хлоропре'н, 2-хлорбутадиен-1,3, CH2 =CH—CCl=CH2 , бесцветная жидкость с резким запахом; tkип 59,4 °С, плотность 0,9585 г/см3 (20 °С). Нерастворим в воде, смешивается с большинством органических растворителей. Х. присоединяет по двойным связям (обычно в положение 1,4) галогены, галогеноводороды, вступает в реакции диенового синтеза , чрезвычайно легко полимеризуется (поэтому его стабилизируют добавками пирогаллола или пирокатехина ). Получают Х. гидрохлорированием винилацетилена при 0—20 °С в присутствии хлорида меди Cu2 Cl2 и хлорида аммония; применяется для производства хлоропреновых каучуков. Токсичен; предельно допустимая концентрация в воздухе 0,002 мг/л.
Хлоропреновые каучуки
Хлоропре'новые каучу'ки', синтетические каучуки, полимеры хлоропрена общей формулы [—CH2 —CCl=CH—CH2 —] n ; продукты светло-жёлтого цвета. Плотность Х. к. 1,20—1,24 г/см3 , молекулярная масса (100—200)×103 , температура стеклования —40° С, удельное объёмное электрическое сопротивление 4,4×106 ом (м, электрическая прочность 23 Мв/м, диэлектрическая проницаемость 6,4—6,7. Для Х. к. характерен комплекс специфических свойств, обусловленных присутствием в их макромолекулах атомов хлора: масло-, бензо-, озоно– и теплостойкость, негорючесть, а также способность к вулканизации окислами металлов (в промышленности для этой цели применяют смеси ZnO и MgO). Х. к. кристаллизуются при растяжении, благодаря чему ненаполненные резины на их основе имеют высокую прочность. При наполнении Х, к. этот показатель резин в некоторых случаях снижается (см. Резина ), однако др. их ценные свойства, например сопротивление раздиру, бензостойкость, как правило, улучшаются.
Промышленный метод синтеза Х. к. – полимеризация в водной эмульсии. Основные области их применения – производство резино-технических. изделий, главным образом конвейерных лент, ремней, рукавов. Из Х. к. изготовляют также оболочки проводов и кабелей, защитные покрытия. Важное промышленное значение имеют клеи из Х. к. и хлоропреновые латексы . Мировое производство Х. к. ~ 400 тыс. т в год. Наиболее распространённые торговое название – наирит (СССР), неопрен (США).
Лит.: Энциклопедия полимеров, т. 3, М., 1977; см, также лит. при ст. Каучуки синтетические .
Хлорофилл
Хлорофи'лл (от греч. chlorós – зелёный и phýllon – лист), зелёный пигмент растений, с помощью которого они улавливают энергию солнечного света и осуществляют фотосинтез . Локализован в особых клеточных структурах – хлоропластах или хроматофорах и связан с белками и липидами мембран. Основу структуры молекулы Х, составляет магниевый комплекс порфиринового цикла; в IV пиррольном кольце к остатку пропионовой кислоты присоединён высокомолекулярный спирт фитол , который придаёт Х. способность встраиваться в липидный слой мембран хлоропластов.
Высшие растения и зелёные водоросли содержат Х. а и в , бурые и диатомовые водоросли – а и с , красные водоросли – Х. а и d. В фотосинтезирующих бактериях присутствуют близкие аналоги Х. – бактериохлорофиллы . По своему строению Х. близок к др. природным комплексам порфиринов (с железом) – дыхательным пигментам – цитохромам , красящему веществу крови – гему , а также простетическим группам некоторых ферментов – пероксидазы, каталазы.
Название «Х.» было дано французскими химиками П. Пельтье и Ж. Каванту зелёному спиртовому раствору смеси растительных пигментов в 1817. Впервые Х. а и в разделил в начале 20 в. рус. учёный М. С. Цвет с помощью разработанного им хроматографического метода. Химическую структуру Х. выяснили немецкие учёные Р. Вильштеттер , А. Штоль (1913), Х. Фишер (1930—40). Полный синтез Х. осуществил американский химик Р. Вудворд . Роль Х. в фотосинтезе доказана классическими работами К. А. Тимирязева . Пути биосинтеза Х. выяснены в трудах американских учёных Д. Шемина, С. Граника и др.; большой вклад в изучение Х. внесли советские учёные Т. Н. Годнев и А. А. Шлык.
Основной путь биосинтеза Х. определяется конденсацией двух молекул d-аминолевулиновой кислоты с образованием порфобилиногена – производного пиррола, который в результате ряда ферментативных превращений даёт соединение, содержащее порфириновое ядро – протопорфирин IX. Из протопорфирина образуется непосредственный предшественник Х. – протохлорофиллид, уже содержащий атом магния. Путём последующих реакций восстановления и присоединения фитола из этого предшественника образуется Х. Стадия восстановления протохлорофиллида осуществляется у высших растений на свету, у низших растений – в темноте.
В хлоропластах и хроматофорах большая часть Х. (содержание его обычно составляет 0,5—1,5% на сухую массу) находится в виде светособирающей «антенны» и меньшая часть – в реакционных центрах, непосредственно участвующих в работе цепи фотосинтетического переноса электрона. Поглощая квант света, молекула Х. переходит в возбуждённое состояние (длительность жизни синглетного возбуждённого состояния около 10-9сек ), которое может переходить в долгоживущее триплетное возбуждённое состояние с длительностью жизни до 10-3сек. Возбуждённые светом молекулы Х. способны переносить электрон от молекулы-донора к молекуле-акцептору. Механизм этих реакций в модельных системах выяснен в работах советских учёных А. А. Красновского, В. Б. Евстигнеева и др. Способность возбуждённого Х. к переносу электрона обеспечивает функционирование реакционных центров фотосистем цепи фотосинтетического переноса электрона. Применение спектральной техники и низких температур показало, что в первичном фотоакте бактериохлорофилл, а возможно, и Х. активного центра отдают свой электрон молекуле-акцептору (убихинон, ферредоксин). Этот первичный фотопроцесс сопряжён с цепью энзиматических реакций, ведущих к образованию восстановленных пиридиннуклеотидов и аденозинтрифосфата, обеспечивающих работу углеродного цикла. Т. о., свет, поглощённый Х., преобразуется в потенциальную химическую энергию органических продуктов фотосинтеза и молекулярного кислорода. Свет, поглощаемый Х., вызывает в клетках также др. фотобиологические явления: индуцирует генерацию электрического потенциала на мембранах хлоропластов, влияет на движение одноклеточных организмов (фототаксис) и т.д.
Исследованию свойств Х. на разных уровнях молекулярной организации уделяется большое внимание, т.к. эти свойства тесно связаны с фундаментальным явлением преобразования энергии света в химическую энергию при фотосинтезе.
Лит.: Тимирязев К. А., Солнце, жизнь и хлорофилл, Избр. соч., т. 1, М., 1948; Годнев Т. Н., Строение хлорофилла и методы его количественного определения, Минск, 1952; Хлорофилл. Сб. ст., Минск, 1974; Красновский А. А., Преобразование энергии света при фотосинтезе. Молекулярные механизмы, М., 1974 (Баховские чтения, 29); Vernon L. P., Seel у G. R., The chlorophylls, N. Y.– L., 1966.
А. А. Красновский.
Хлорофитум
Хлорофи'тум (Chlorophytum), род растений семейства лилейных. Многолетние травы с укороченным стеблем и утолщёнными, иногда клубневидными корнями. Листья лилейные, ланцетовидные или овальные, в прикорневой розетке. Цветки 3-членные, белые, мелкие, невзрачные, в кистях. Плод – трёхгранная коробочка. У некоторых видов на цветоносе образуются вегетативные почки, из которых развиваются дочерние растения. К таким видам относятся Х. хохлатый (Ch. comosum) – комнатное ампельное растение ; в культуре известны также его формы с белыми полосками на листьях.
Хлороформ
Хлорофо'рм , трихлорметан, CHCl3 , бесцветная жидкость с резким запахом и сладким жгучим вкусом, tкип 61,15° С, плотность 1,488 г/см3 (20 °С). Практически нерастворим в воде, смешивается с большинством органических растворителей. На свету Х. медленно разлагается кислородом воздуха с образованием фосгена, хлора, хлористого водорода и муравьиной кислоты; для стабилизации к нему добавляют 1% этилового спирта. Многие реакции Х. проходят через промежуточное образование дихлоркарбена: CCl2 (см. Карбены ), например получение изонитрилов реакцией Х. с первичными аминами в присутствии щелочей; взаимодействие Х. с алкоголятами RONa, приводящее к образованию ортоэфиров , и др. Получают Х. хлорированием, например, метана, ацетона или спирта. Значительное количество Х. используется в промышленности для получения дифторхлорметана CF2 CIH (см. Фреоны ), а также в качестве растворителя. Х. – препарат из группы наркотических средств . Существует 2 вида его: Х., применяемый наружно для растираний, в гистологической технике как консервант и фиксатор тканей, иногда внутрь в каплях (например, при рвоте), и Х. для наркоза (специально очищенный), обладающий сильным наркотическим действием и относительно высокой токсичностью.
Хлорофос
Хлорофо'с, трихлорфон, диптерекс, [CCl3CH (OH) P (O) (OCH3 )2 ], инсектицид широкого спектра действия, используется для борьбы с вредителями с.-х. растений, эктопаразитами с.-х. животных и вредными насекомыми в быту. Среднетоксичен для человека и животных.
Хлорпикрин
Хлорпикри'н, трихлорнитрометан, CCI3 NO2 , бесцветная маслянистая жидкость с резким запахом; tпл — 64 °С, tкип 112,3 °С, плотность 1,6539 г/см3 (20 °С). Обладает сильным слезоточивым действием (лакриматор). Х. практически нерастворим в воде, хорошо растворим в органических. растворителях, не гидролизуется водой и водными растворами щелочей, может быть перегнан с паром. Спиртовые растворы щелочей и водно-спиртовые растворы Na2 S быстро и количественно разрушают (дегазируют) Х.; при 400 °С он разлагается на фосген и CINO. Получают Х. хлорированием пикриновой кислоты или её солей (отсюда и название).
Минимально действующая концентрация 0,002 мг/л, непереносимая 0,05 мг/л (2 мин ); в больших концентрациях обладает удушающим действием. Применялся как отравляющее вещество в 1-ю мировую войну 1914—18. Употребляется для проверки противогазов и как учебное ОВ.
Р. Н. Стерлин.
Хлорсульфированный полиэтилен
Хлорсульфи'рованный полиэтиле'н, сульфохлорированный полиэтилен, синтетический каучук, продукт химической модификации полиэтилена хлором и сернистым ангидридом. Плотность 1,11—1,26 г/см3 , содержание хлора 27—45%, серы 0,8—2,2%. Благодаря присутствию хлора Х. п. огне– и маслостоек, устойчив к действию микроорганизмов, обладает хорошей адгезией к различным поверхностям. Он нерастворим в алифатических углеводородах и спиртах, малорастворим в кетонах и сложных эфирах, хорошо – в ароматических (толуол, ксилол) и хлорированных углеводородах. Х. п. превосходит др. каучуки по стойкости к действию озона, неорганических кислот (хромовой, азотной, серной, фосфорной), концентрированных щелочей, двуокиси хлора, перекиси водорода, отличается высокой светостойкостью, газонепроницаемостью, хорошими диэлектрическими свойствами. В вулканизации Х. п. участвуют группы —SO2 CI и подвижные атомы хлора (типичная вулканизующая система содержит MgO, 2-меркаптобензтиазол, дифенилгуанидин, канифоль). Прочность при растяжении ненаполненных резин из Х. п. достигает 32 Мн/м2 (320 кгс/см2 ) при относительном удлинении 350—600%. Резины характеризуются высоким сопротивлением истиранию и многократным деформациям. Температурный диапазон их работоспособности от —60 до 180 °С. Х. п. из полиэтилена высокой плотности может применяться и в невулканизованном виде. Х. п. используют в производстве резиновых изделий технического и бытового назначения, для получения антикоррозионных покрытий методом гуммирования , для изоляции кабелей (в т. ч. судовых), как плёнкообразующее лакокрасочных материалов, которыми защищают дерево, металл, железобетон и др., а также как основу клеев и герметиков.
Торговое название Х. п.: ХСПЭ (СССР), хайпалон (США). Мировое производство (1976) около 30 тыс. т.
Лит.: Энциклопедия полимеров, т. 3, М., 1977.
Г. М. Ронкин.
Хлорсульфоновая кислота
Хлорсульфо'новая кислота', SO2 CI (OH), монохлорангидрид серной кислоты. Х. к. – бесцветная подвижная жидкость; tпл — 80 °С, tкип при атмосферном давлении 155 °С (с разложением), плотность 1,75 г/см3 . Химически Х. к. очень активна, с водой бурно реагирует с образованием серной и соляной кислот, во влажном воздухе дымит. Взаимодействует со многими органическими и неорганическими соединениями. Получается взаимодействием хлористого водорода и серного ангидрида: HCl + SO3 = SO2 Cl (OH). В отсутствии влаги может храниться и транспортироваться в стальных ёмкостях. Применяется в производстве некоторых красителей, моющих и лекарственных веществ, как дымообразующее вещество .
Л. М. Якименко.
Хлортетрациклин
Хлортетрацикли'н, то же, что ауреомицин .
Хлоруксусные кислоты
Хлору'ксусные кисло'ты, моно-, ди– и трихлоруксусные кислоты, CH2 ClCOOH, CHCl2 COOH, CCl3 COOH. Моно– и три-Х. к. – бесцветные кристаллы; tпл 61,2 °С и 59,2 °С, tкип 189,3 °С и 197,6 °С соответственно; ди-Х. к. – бесцветная жидкость; tкип 194,5 °С. Растворимы в воде, спирте, ацетоне, эфире. Наибольшее значение имеет моно-Х. к, – промежуточный продукт в синтезе индиго и многих др. кубовых красителей; её применяют также при получении карбоксиметилцеллюлозы , снотворного средства барбитала , гербицидов (например, солей и эфиров 2,4-дихлорфеноксиуксусной кислоты), витамина B6 ; получают моно-Х. к. хлорированием ледяной уксусной кислоты и др. методами. Практическое значение имеет также хлорангидрид ди-Х. к., CHCl2 COCl, синтезируемый окислением трихлорэтилена CCl2 =CClH и используемый в синтезе антибиотика левомицетина . Основной метод производства три-Х. к. – окисление хлораля азотной кислотой; соли три-Х. к. используются как гербициды, сама кислота – в биохимии (растворитель и осадитель) и медицине (прижигающее средство).
Хлорхолинхлорид
Хлорхолинхлори'д, ССС, ТУР, [(CH3 )3 N+ CH2 CH6 ClCl- ], химический препарат. Применяется для опрыскивания некоторых растений в период вегетации: пшеницы – против полегания при повышенной влажности почвы (4—6 кг Х. на 1 га ), земляники, яблони и др. культур – для задержки развития пазушных почек, в результате чего усиливается плодоношение. Малотоксичен.
Хлорэтил
Хлорэти'л, препарат из группы наркотических средств ; то же, что этилхлорид .
Хлотарь II
Хлота'рь II (Chlotar) (584 – 18.10.629), король Нейстрии в 584—613, с 613 – всего Франкского королевства; из династии Меровингов. Объединил всё Франкское королевство после победы над Брунгильдой . Ему пришлось пойти на уступки феодальной знати (усилившейся в малолетство Х. II): издать в 614 эдикт, подтверждавший земельные пожалования и судебно-административные привилегии, полученные крупными землевладельцами от его предшественников; установить порядок назначения графов лишь из числа местной землевладельческой знати. Х. II был вынужден удовлетворить сепаратистские требования знати Австразии, назначив в 623 своего сына Дагоберта её королём.