Текст книги "Большая Советская Энциклопедия (ХЛ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 6 (всего у книги 9 страниц)
Хлорангидриды
Хлорангидри'ды, см. Галогенангидриды .
Хлоратор
Хлора'тор, аппарат (установка) для дозирования газообразного хлора (хлор-газа) и приготовления его водного раствора (хлорной воды), применяемый при обеззараживании (дезинфекции) природных и сточных вод. Различают Х. напорные и вакуумные. Последние (получившие наибольшее распространение) обычно состоят из баллона, в котором осаждаются из хлор-газа капли жидкости, пыль и т. п., регулировочного вентиля, фильтра для окончательной очистки газа, редуктора, понижающего давление, измерителя расхода газа и смесителя хлор-газа с водой. Х. называют также аппараты, используемые в химической технологии для хлорирования органических и неорганических соединений.
Хлорат-хлорид кальция
Хлора'т-хлори'д ка'льция [смесь Ca(ClO3 )2 с CaCl2 ], химический препарат, применяется в виде водного раствора на посевах хлопчатника и др. культур как дефолиант и десикант .
Хлораты
Хлора'ты, хлорноватокислые соли, соли хлорноватой кислоты HClO3 ; кристаллы, устойчивые при обычной температуре, разлагающиеся при нагревании или в присутствии катализаторов с выделением кислорода. Большинство Х. хорошо растворимо в воде и в некоторых органических растворителях; с органическими и легко окисляющимися веществами образуют взрывчатые смеси. В промышленном масштабе производятся Х. натрия, калия, кальция и магния.
Хлорат калия (хлорноватокислый калий, бертоллетова соль), KClO3 ; плотность 2,344 г/см3 , tпл 370°C. Впервые получен в 1786 К. Л. Бертолле (отсюда название бертоллетова соль) при пропускании хлора в концентрированный раствор едкого кали. Растворимость Х. калия в воде (в г/л ): 32,4 (0 °С), 170,5 (50 °С), 437 (100 °С). KClO3 негигроскопичен. Х. калия разлагается с выделением кислорода при температуре около 400 °С, а в присутствии катализаторов (MnO2 , Fe2 O3 и др.) – при температуре около 150—200 °С. Химически чистый KCl3 взрывается при 550—600 °С. В смеси с серой, фосфором, многими органическими веществами взрывается при ударе или трении. Чувствительность к взрыву возрастает в присутствии броматов и аммониевых солей. Получается при обменном разложении Х. кальция или натрия с KCl. Применяется в производстве спичек и пиротехнических составов.
Хлорат натрия, NaClO3 ; плотность 2,49 г/см3 (15°C); tпл 248 °С. Растворимость в воде (в г/л ): 612 (0 °С), 870 (50 °С), 1190 (100 °С). Малогигроскопичен. По химическим свойствам сходен с KClO3 . Получают электролизом водных растворов NaCI в бездиафрагменных электролизёрах. Используется для получения двуокиси хлора (см. Хлора окислы ), в производстве др. хлоратов и перхлоратов .
Хлорат кальция, Ca(ClO3 )2 . Очень гигроскопичен; образует с водой кристаллогидраты Ca(ClO3 )2 ×nH2 O (где n = 1—6); на воздухе расплывается. Х. к. получается хлорированием известкового молока:
6Ca(OH)2 + 6Cl2 = Ca(ClO3 )2 + 5CaCl2 ×6H2 O.
Используется как промежуточный продукт в производстве Х. калия, в сельском хозяйстве служит в качестве гербицида и дефолианта .
Хлорат магния, Mg(ClO3 )2 . Очень гигроскопичен, образует с водой кристаллогидраты, например Mg(ClO3 )2 ×6H2 O; безводный Х. м. не получен. На воздухе расплывается. Кристаллогидрат получают сплавлением Х. натрия с бишофитом: 2NaClO3 + MgCl2 ×6H2 O = Mg(ClO3 )2 ×6H2 O + 2NaCI. Огне– и взрывоопасен. Применяется для предуборочного удаления листьев с хлопчатника и для десикации подсолнечника, риса, семенников зернобобовых культур, высадок сахарной свёклы и др.
Х. малотоксичны; хронические отравления возникают при попадании внутрь и вдыхании пыли.
Лит. см. при ст. Хлор .
Л. М. Якименко.
Хлорацетофенон
Хлорацетофено'н, C6 H5 C(O)CH2 Cl, бесцветные кристаллы, tпл 59 °С, tkип 244—245°C, летучесть (максимальная концентрация) 0,11 мг/л (20°C); обладает очень сильным слезоточивым действием (лакриматор). Х. плохо растворим в воде, хорошо – в органических растворителях, гидролитически устойчив, на холоду практически не гидролизуется даже водными растворами щелочей; энергично реагирует со спиртовыми растворами Na2 S с образованием нетоксичного дифенацилсульфида (C6 H5 COCH2 )2 S. Х. получают хлорированием ацетофенона.
Минимально действующая концентрация 0,0001 мг/л; непереносимая 0,002 мг/л (2 мин ). Защитой служит противогаз . Был предложен как отравляющее вещество в конце 1-й мировой войны 1914—18, но в боевой обстановке испытан не был.
Хлорбензид
Хлорбензи'д, хлорпарацид, 4-хлорфенил-4'-хлорбензилсульфид (4-СlC6 H4 SCH2 C6 H4 Cl-4), химический препарат для борьбы с растительноядными клещами (акарицид ).
Хлорбензилат
Хлорбензила'т [(ClC6 H4 )2 C(OH)COOC2 H5 ], химический препарат для борьбы с растительноядными клещами (акарицид ).
Хлорбензол
Хлорбензо'л, бесцветная жидкость с характерным запахом, tkип 131,7°C; практически нерастворим в воде, смешивается со многими органическими растворителями. В промышленности Х. получают каталитическим хлорированием бензола (75—85 °С, металлическое железо); используют его в производстве фенола , 4,4'-дихлордифенил-трихлорэтана (ДДТ), полупродуктов в синтезе красителей и как растворитель в лабораторной практике.
Хлорбутилкаучук
Хлорбутилкаучу'к, продукт хлорирования бутилкаучука .
Хлорелла
Хлоре'лла (Chlorella), род микроскопических одноклеточных зелёных водорослей из класса протококковых. Клетки шаровидные или эллипсоидные, с целлюлозной оболочкой, содержащие один пристенный хлоропласт с пиреноидом или без него и одно ядро; запасные продукты – крахмал и масло. Размножение автоспорами. В СССР около 10 видов, распространены повсеместно. Объект массового культивирования в качестве возможного источника пищи и корма, для биологической очистки сточных вод, регенерации воздуха в замкнутых экосистемах (на космических кораблях, подводных лодках).
Лит.: Музафаров А. М., Таубаев Т. Т., Селяметов Р. А., Хлорелла и ее использование в животноводстве, Таш., 1974; Андреева В. М., Род Chlorella. Морфология, систематика, принципы классификации, Л., 1975; Fott В., Nováková М., A monograph of the genus Chiorella. The fresh water species, в кн.: Studies in phycology, Prague, 1969.
Хлоридовозгонка
Хлоридовозго'нка, один из процессов хлорирования в цветной металлургии, имеющий целью отогнать образующиеся при обжиге хлориды металлов в газовую фазу и отделить их от непрохлорированной массы материала. Процесс основан на большой летучести хлоридов многих металлов и осуществляется при температурах, обеспечивающих высокое давление паров возгоняемых хлоридов и быстрое их улетучивание. Х. ведут в трубчатых и шахтных печах, электропечах, печах кипящего слоя. В качестве хлоринаторов применяют хлор, хлорид водорода, хлорид кальция, каменную соль и др. хлориды. Отходящие газы из хлоридовозгоночной печи пропускают через аппараты горячего пылеулавливания для отделения пыли от паров хлоридов и затем охлаждают для конденсации хлоридов металлов, которые улавливают в электрофильтрах или конденсаторах (сухой способ) либо в скрубберах (мокрый способ); свободный хлористый водород поглощают известковым молоком или раствором хлорида кальция и возвращают в «голову» процесса.
Достоинства Х.: высокое извлечение металлов, обусловленное большой химической активностью хлора; почти полное отделение цветных металлов от железа за одну операцию; возможность селективной отгонки тех или иных хлоридов металлов путём изменения состава газовой фазы; высокая степень сокращения, обеспечивающая получение из бедного сырья богатого продукта – хлоридов, из которых затем получают товарные металлы. Недостаток процесса: необходимость поддержания высокого парциального давления, достигаемого многократным избытком хлора, который находится в обороте.
Промышленное применение Х. получила в производстве титана, бериллия, циркония и др. редких металлов. Для получения титана брикеты из титановых шлаков с коксом при 700—800 °С продувают хлором в электрических шахтных печах или в хлораторах для хлорирования в расплаве. Восстановительная атмосфера обеспечивает практически полное хлорирование окислов титана и ряда др. металлов. Легковозгоняющиеся TiCl4 и SiCI4 конденсируются в виде жидкости, а AlCl3 , FeCI3 , VOCI3 – в виде твёрдой фазы; малолетучие хлориды кальция, магния, марганца вместе с непрохлорированными окислами остаются в твёрдом остатке. Х. начинает применяться и для извлечения тяжёлых цветных и драгоценных металлов. Так, пиритные огарки окатывают с хлоридом кальция и подвергают Х. при 1100—1200 °С в окислительной атмосфере. При этом возгоняют и улавливают свыше 94% меди, цинка, свинца, золота и серебра, а окислы железа, кремния, кальция и др. не хлорируются; обожжённые окатыши направляют в чёрную металлургию. Процессы Х. разрабатываются для селективного извлечения меди, олова, висмута, свинца, золота, серебра из сложного сульфидного сырья, для извлечения никеля, кобальта и марганца из окисленных никелевых руд и являются перспективными для переработки различных промышленных продуктов.
Лит.: Коршунов Б. Г., Стефанюк С. Л., Введение в хлорную металлургию редких элементов, М., 1970.
И. Д. Резник.
Хлориды
Хлори'ды, соединения хлора со всеми элементами, имеющими меньшее значение электроотрицательности, т. е. со всеми металлами и неметаллами, кроме кислорода и фтора (исключение – Х. азота, которые принято так называть, несмотря на то, что электроотрицательность азота больше, чем хлора).
Х. металлов (или соли соляной кислоты ) — твёрдые вещества, большинство из них плавится или возгоняется без разложения. В основном Х. металлов хорошо растворимы в воде; AgCl, CuCl, HgCl2 , TlCl и PbCl2 – малорастворимы. Х. щелочных и щёлочноземельных металлов имеют нейтральную реакцию. Растворы Х. др. металлов имеют кислую реакцию вследствие гидролиза, например: AlCl3 + 3H2 O = Al (OH)3 + 3HCl.
Х. неметаллов могут быть газообразными (HCl), жидкими (PCl3 ) или твёрдыми (PCl5 ). Они гидролизуются водой, например: PCl5 + 4H2 O = H3 PO4 + 5HCl.
Х. натрия, калия, магния, кальция широко распространены в природе (см. также Хлориды природные ). О свойствах, получении и применении Х. см. Алюминия хлорид , Калия хлорид , Натрия хлорид , Магния хлорид , Кальция хлорид , Титана галогениды и др.
Хлориды азота
Хлори'ды азо'та, хлорпроизводные аммиака (неорганические хлорамины ): монохлорамин NH2 CI, дихлорамин NHCl2 и трихлорамин (трёххлористый азот) MCl3 . Х. а. образуются при взаимодействии аммиака или солей аммония с хлором или хлорноватистой кислотой. NH2 CI – бесцветная маслянистая жидкость с резким запахом; tпл — 60 °С. При нагревании разлагается.
NHCl2 в свободном состоянии не выделен. NCl3 – ярко-жёлтая маслянистая жидкость с острым раздражающим запахом; плотность 1,653 г /см3, tпл — 40 °С,
tkип 71 °С. Под действием света медленно разлагается с выделением азота и хлора. NCl3 растворим в бензоле, сероуглероде, хлороформе; в воде нерастворим. Чувствителен к удару, взрывается при соприкосновении с органическими веществами, способными хлорироваться, например с каучуком, пробкой, жирами, скипидаром. Х. а. гидролизуются с образованием аммиака и хлорноватистой кислоты .
Лит. см. при ст. Хлор .
Хлориды природные
Хлори'ды приро'дные, класс минералов, солей соляной кислоты HCl. По составу, свойствам и условиям образования выделяют две группы Х. п. В первой группе (28 минералов) – растворимые водные и безводные хлориды Na, К, NH4 , Mg, Ca, Al, Mn и Fe. Главные минералы: галит NaCI, сильвин KCl, нашатырь NH4 CI, бишофит MgCl2 ×6H2 O, карналлит KMgCl3 ×6H2 O, тахгидрит CaMgCl4 ×12H2 O, риннеит NaK3 FeCl6 и др. Содержат 20—70% Cl. В основе кристаллических структур лежит плотнейшая кубическая упаковка атомов Cl. Атомы металлов расположены в октаэдрических пустотах. Химические связи в основном ионные. Кристаллизуются в кубической или тригональной системах. Обычно бесцветны; твердость по минералогической шкале 1—2, плотность 1600—3200 кг/м3. Гигроскопичны, хорошо растворяются в воде, частично в спирте; на вкус солёные или горькие. Слагают зернистые и плотные массы, прожилки и желваки в осадочных толщах; сростки кристаллов, налёты и корочки образуются в осадках озёр, солончаках и продуктах вулканической и фумарольной деятельности. Многие Х. п. широко используются в химической и пищевой промышленности, сельском хозяйстве. См. также ст. Калийные соли , Каменная соль .
Ко второй группе (49 минералов) относят нерастворимые хлориды Cu, Pb, Ag, Hg, As, Sb и Bi, часто с дополнительными анионами О- , OH- ; иногда с [NO3 ]- , Fe- , [SO4 ]2+ ; главные: нантокит CuCl, атакамит Cu2 CI (OH)3 , коннелит Cu19 Cl (OH)32 SO4 ×4H2 O, лаурионит PbCl (OH), матлокит PbFCl, мендипит Pb3 Cl2 O2 , хлорарнирит AgCl, каломель Hg2 Cl2 , диаболейт PbCuCl2 (OH)4 , болеит Pb3 Cu3 AgCl7 (OH)6 и др. Содержат 6—35% Cl. Кристаллизуются в основном в ромбической и тетрагональной системах; нередки слоистые структуры с относительно высокой ковалентностью химических связей. Бесцветные, синие, зелёные, жёлтые. Образуют корочки, агрегаты кристаллов, налёты, землистые массы. Твердость по минералогической. шкале до 4, плотность 3700—8300 кг/м3. В воде нерастворимы. Образуются в зоне окисления рудных месторождений в условиях сухого климата; при воздействии солёных вод на рудные минералы и промышленные шлаки; в процессе вулканической деятельности. В составе окисленных руд используются как сырьё для получения Cu, Pb, Ag.
Лит.: Минералы. Справочник, т. 2, в. 1, М., 1963.
И. В. Островская.
Хлорин
Хлори'н, торговое название поливинилхлоридного волокна , выпускаемого в СССР.
Хлорирование (в цветной металлургии)
Хлори'рование в цветной металлургии, технологический процесс нагрева материалов, содержащих цветные металлы, в атмосфере хлора, хлорсодержащих газов или в присутствии хлористых солей с целью извлечения и разделения цветных металлов.
В основе процесса лежит взаимодействие окислов или сульфидов металлов с хлором или хлоридом водорода по обратимым реакциям. Окислы, у которых гиббсова энергия этих реакций имеет большие отрицательные значения (PbO, ZnO, Ag2 O и др.), хлорируются при малых концентрациях хлора в газовой среде и в присутствии кислорода; окислы с большими положительными значениями гиббсовой энергии (SiO2 , TiO2 , Al2 O3 ) практически не взаимодействуют с газообразным хлором, т.к. даже следы кислорода в газовой среде препятствуют образованию хлоридов. Х. окислов облегчается в присутствии веществ, связывающих свободный кислород и уменьшающих его концентрацию в газовой фазе, например углерода, водорода, сернистого ангидрида. Таким образом, изменяя состав газовой фазы и температуру процесса, можно подобрать условия селективного Х.; в частности, в присутствии кислорода и паров воды можно прохлорировать ряд цветных металлов, оставив в окисленной форме железо, а в восстановительной атмосфере перевести в форму хлоридов окислы железа. В качестве хлорирующих агентов, кроме элементарного хлора и HCl, применяют дешёвые соли – каменную соль (NaCl), сильвинит (KCl×2NaCl), хлорид кальция (CaCl2 ) и др. При этом Х., в особенности при использовании малолетучего CaCl2 , идёт преимущественно через разложение соли парами воды с образованием HCl; разложению соли-хлоринатора способствует присутствие SO2 или SO2 , образующих CaSO4 , CaSiO3 и т.п.
Разновидности Х.: хлорирующий обжиг, хлоридовозгонка и сегрегация . Хлорирующий обжиг проводят при относительно низкой температуре, при которой образующиеся хлориды ещё нелетучи. Х. осуществляют в электропечах, печах кипящего слоя, трубчатых или многоподовых обжиговых печах. Процесс применяется в производстве магния для перевода окиси магния в хлорид, который затем подвергают электролизу, а также для извлечения кобальта и меди из бедных материалов, чаще всего из пиритных огарков и кобальт-никелевых штейнов; кобальт, медь, цинк переходят в форму хлоридов и выщелачиваются водой или слабой кислотой, а железо не хлорируется и остаётся в форме окислов в твёрдом остатке. Хлоридовозгонка, в отличие от хлорирующего обжига, ведётся при более высоких температурах, обеспечивающих улетучивание хлоридов металлов; процесс более универсален: позволяет извлекать больше различных цветных и редких металлов, а также золото и серебро. Сегрегация, в отличие от хлоридовозгонки, требует меньшего расхода хлоринаторов и ведётся при более низкой температуре, но для получения концентрата необходима дополнительная операция – флотация или магнитная сепарация.
Х. применяется также для рафинирования расплавленных металлов от примесей: алюминия – от натрия и кальция, свинца – от цинка, олова – от свинца. Разрабатываются процессы удаления меди и кобальта из никелевого файнштейна хлоридными расплавами.
Лит.: Смирнов В. И., Тихонов А. И., Обжиг медных руд и концентратов, 2 изд., М., 1966; Морозов И. С., Применение хлора в металлургии редких и цветных металлов, М., 1966; Гудима Н. В., Шейн Я. П., Краткий справочник по металлургии цветных металлов, М., 1975.
И. Д. Резник.
Хлорирование воды
Хлори'рование воды', обработка воды хлором и его соединениями. Наиболее распространённый способ обеззараживания питьевой воды ; основан на способности свободного хлора и его соединений угнетать ферментные системы микробов, катализирующие окислительно-восстановительные процессы. Для обеззараживания питьевой воды применяют хлор, двуокись хлора, хлорамин (см. Хлорамины ) и хлорную известь. Необходимая доза препарата устанавливается пробным Х. в.: она определяется хлор-поглощаемостью воды (количество хлора, необходимое для связывания главным образом содержащихся в воде органических соединений). Хлор вводят с избытком (остаточный хлор) с целью уничтожения микробов, попадающих в воду после её хлорирования. Содержание остаточного свободного хлора через 30 мин после Х. в. должно быть не менее 0,3 мг/л. В некоторых случаях проводят двойное Х. в. – до очистки (предварительное Х. в.) и после неё (заключительное Х. в.); при наличии в воде веществ, которые после Х. в. могут придать ей неприятные запах и привкус, воду до хлорирования обрабатывают аммиаком или аммонийными солями.
Х. в. применяют и для обеззараживания питьевой воды в полевых условиях; наиболее надёжен метод суперхлорирования, обеспечивающий избыток активного хлора не менее 10 мг/л при экспозиции не менее 30 мин. Суперхлорирование применяется и для обеззараживания воды в системах централизованного водоснабжения при эпидемиологических показаниях. После суперхлорирования проводится дехлорирование – устранение избыточного хлора физическими или химическими методами.
Х. в. применяют также для обеззараживания сточных вод , воды плавательных бассейнов, обесцвечивания, обезжелезивания производственных вод и пр.
Лит.: Руководство по гигиене водоснабжения, под ред. С. Н. Черкинского, М., 1975.
Хлорирование (химич.)
Хлори'рование органических соединений, процесс прямого замещения в органических соединениях атомов водорода атомами хлора. Х. может быть осуществлено действием свободного хлора или веществами, его генерирующими, например хлористым сульфурилом SO2 Cl2 (см. Сульфурила галогениды ). Механизм Х. определяется природой органического соединения и условиями реакции. Так, насыщенные углеводороды взаимодействуют с хлором при облучении ультрафиолетовым светом (УФ-облучении) по радикально-цепному механизму:
; ;
и т. д.
Эта реакция лежит в основе промышленного способа получения из метана метилхлорида, метиленхдорида, хлороформа, четырёххлористого углерода, из пентановых фракций бензина – амилхлоридов. Х. органических соединений ароматического ряда протекает по ионному механизму в присутствии кислотного катализатора, например AlCl3 или FeCl3 . Т. о. в промышленности получают, например, хлорбензол :
Cl2 + FeCl3 ® С+ + [FeCl4 ]- ;
C6 H6 + Cl+ ® C6 H5 Cl + Н+ ;
[FeCl4 ]– + H+ ® FeCl3 + HCl.
Принимая во внимание различия в механизмах Х. органических соединений алифатических и ароматических рядов, регулируют Х. жирно-ароматических углеводородов: прибавление FeCl3 ведёт к замещению атомов водорода в ароматическом ядре, тогда как УФ-облучение и повышение температуры способствуют Х. боковых алифатических групп. Так, в промышленности Х. толуола получают хлортолуолы (в присутствии FeCl3 ) или бензилхлорид C6 H5 CH2 Cl (под действием УФ-облучения). При высокой температуре удаётся осуществить прямое замещение атомов водорода на хлор и в алкильных группах олефинов (с сохранением кратной связи), например:
Эта реакция используется в промышленности для получения аллилхлорида — исходного продукта в производстве глицерина .
Иногда под Х. в более широком смысле понимают создание связи С—Cl любым способом, например присоединением по кратным связям хлора, хлористого водорода, хлорноватистой кислоты, хлористого нитрозила, замещением на хлор др. функциональных групп (гидроксильной в спиртах и карбоновых в кислотах, аминогруппы в ароматических аминах после предварительного их диазотирования и др.). Так, в промышленности присоединением хлора к этилену получают дихлорэтан , являющийся сырьём в одном из способов производства винилхлорида ; хлорированием ацетилена – тетрахлорэтан , применяемый для получения трихлорэтилена , хлорированием некоторых каучуков – хлор-каучуки. Реакцией ненасыщенных соединений с хлористым водородом в промышленности производят винилхлорид, этилхлорид , хлоропрен . Х. используется также для получения инсектицидов (гексахлорана, полихлорпинена, полихлоркамфена), гербицидов , например эфиров 2,4-дихлор-феноксиуксусной кислоты, гексахлорэтана (заменителя камфары ) и др. важных продуктов.