355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ЛО) » Текст книги (страница 5)
Большая Советская Энциклопедия (ЛО)
  • Текст добавлен: 5 октября 2016, 05:24

Текст книги "Большая Советская Энциклопедия (ЛО)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 5 (всего у книги 28 страниц)

Логарифмическая линейка

Логарифми'ческая лине'йка, счётная линейка, инструмент для несложных вычислений, с помощью которого операции над числами (умножение, деление, возведение в степень, извлечение корня и др.) заменяются операциями над логарифмами этих чисел. Л. л. состоит из корпуса, движка и бегунка (из стекла или плексигласа), имеющего визирную линию (рис. 1). На корпусе и движке нанесены основные шкалы С и D, размеченные так, что положение любого числа Х (целого или дробного от 1 до 10) определяется длиной отрезка, равного mlg Х, отложенного от начала шкалы (m – масштабный коэффициент, так называемый модуль шкалы). Геометрическое сложение (вычитание) отрезков шкал С и D посредством перемещения движка относительно корпуса на Л. л. заменяет операцию умножения (деления) соответствующих чисел. Кроме указанных шкал С и D, на Л. л. наносят шкалы 1/X(R), Х2(А, В), Х3(К),, ех, lgX(L), шкалы значений тригонометрических функций и др.

  Л. л., прообразом которой явилась так называемая гантерова линейка (Gunter's line), была изобретена английским математиком Э. Гантером вскоре после открытия логарифмов и описана им в 1623. Это была логарифмическая шкала (линейка), на которой сложение отрезков производилось с помощью циркуля. В 1630 английский математик У. Отред заменил циркуль второй линейкой (движком). В дальнейшем усовершенствовались лишь детали: в 1650 была осуществлена идея нанесения шкалы по спирали на цилиндрической поверхности; в 30-х гг. 19 в. появился прибор, действующий по принципу линейки Гантера, выполненной в виде часов с вращающимся циферблатом (логарифмическая шкала) и подвижной стрелкой, – прообраз современных круглых Л. л. (рис. 2); в 1850 к Л. л. был добавлен бегунок, что значительно упростило работу с ней; в начале 20 в. для расчётов с повышенной точностью использовались т. н. счётные вальцы (рис. 3) – вид Л. л., шкалы которой нанесены по образующим цилиндрических вальцов; движком служил полый цилиндр с окнами, прорезанными против основных шкал; деление движка нанесено по краям этих прорезей. Современная Л. л. – простой и удобный счётный инструмент; применяется при инженерных и прочих расчётах, когда точность вычислений ограничивается 2—3 знаками (для обычной Л. л. длиной 25 см с m = 250 мм). Л. л. с m = 500—750 мм дают точность 4—5 знаков.

  Лит.: Панов Д. Ю., Счетная линейка, 21 изд., М., 1973.

Рис. 3. Счётные вальцы.

Рис. 2. Круглая логарифмическая линейка.

Рис. 1. Логарифмическая линейка.

Логарифмическая спираль

Логарифми'ческая спира'ль, плоская спиральная кривая (см. Линия).

Логарифмическая функция

Логарифми'ческая фу'нкция, функция, обратная к показательной функции. Л. ф. обозначается

  y = lnx; (1)

  её значение y, соответствующее значению аргумента х, называется натуральным логарифмом числа х. В силу определения соотношение (1) равносильно

  х = еу (2)

  (енеперово число). Т. к. ey > 0 при любом действительном у, то Л. ф. определена только при х > 0. В более общем смысле Л. ф. называют функцию

  y = logaX,

  где а > 0 (а ¹ 1) – произвольное основание логарифмов. Однако в математическом анализе особое значение имеет функция InX; функция logaX приводится к ней по формуле:

  logax = MInX,

  где М = 1/In а. Л. ф. – одна из основных элементарных функций; её график (рис. 1) носит название логарифмики. Основные свойства Л. ф. вытекают из соответствующих свойств показательной функции и логарифмов; например, Л. ф. удовлетворяет функциональному уравнению

  Inx+lny = lnxy.

  Для – 1 < х , 1 справедливо разложение Л. ф. в степенной ряд:

  ln(1 + x) = x

  Многие интегралы выражаются через Л. ф.; например

  ,

  .

  Л. ф. постоянно встречается в математическом анализе и его приложениях.

  Л. ф. была хорошо известна математикам 17 в. Впервые зависимость между переменными величинами, выражаемая Л. ф., рассматривалась Дж. Непером(1614). Он представил зависимость между числами и их логарифмами с помощью двух точек, движущихся по параллельным прямым (рис. 2). Одна из них (У) движется равномерно, исходя из С, а другая (X), начиная движение из А, перемещается со скоростью, пропорциональной её расстоянию до В. Если положить СУ = у, ХВ = х, то, согласно этому определению, dx/dy = – kx, откуда .

  Л. ф. на комплексной плоскости является многозначной (бесконечнозначной) функцией, определённой при всех значениях аргумента z ¹ 0 обозначается Lnz. Однозначная ветвь этой функции, определяемая как

  Inz = In½z½+ i arg z,

  где arg z – аргумент комплексного числа z, носит название главного значения Л. ф. Имеем

  Lnz = lnz + 2kpi, k = 0, ±1, ±2, ...

  Все значения Л. ф. для отрицательных: действительных z являются комплексными числами. Первая удовлетворительная теория Л. ф. в комплексной плоскости была дана Л. Эйлером (1749), который исходил из определения

  .

Рис. 1 к ст. Логарифмическая функция.

Рис. 2 к ст. Логарифмическая функция.

Логарифмические таблицы

Логарифми'ческие табли'цы, таблицы логарифмов чисел; применяются для упрощения вычислений. Наиболее распространены таблицы десятичных логарифмов. Т. к. десятичные логарифмы чисел N и 10kN (при k целом) различаются только характеристиками и имеют одинаковые мантиссы (lg10kN = k + lg N), то в таблицах десятичных логарифмов приводятся только мантиссы логарифмов целых чисел. Для отыскания характеристики служат правила: 1) характеристика числа, большего 1, на единицу меньше числа цифр в целой части этого числа (так, lg 20 000 = 4,30103) и 2) характеристика десятичной дроби, меньшей 1, равна взятому со знаком минус числу нулей, предшествующих первой в дроби цифре, отличной от нуля (так, lg 0,0002 = – 4,30103, т. о., десятичные логарифмы дробей записываются в виде суммы положительной мантиссы и отрицательной характеристики).

  Существуют таблицы десятичных логарифмов с различным числом знаков мантисс. Наиболее распространены 4-значные и 5-значные таблицы. Иногда употребляют 7-значные таблицы, а в редких случаях – таблицы, позволяющие без большого труда вычислять логарифмы с большим числом знаков. В Л. т. часто приводятся таблицы антилогарифмов – чисел, логарифмы которых суть данные числа, и таблицы так называемых гауссовых логарифмов, служащих для определения логарифмов суммы или разности двух чисел по известным логарифмам этих чисел (без промежуточного нахождения самих чисел). Кроме логарифмов чисел, Л. т. содержат обычно логарифмы тригонометрических величин.

  Первые Л. т. были составлены независимо друг от друга Дж. Непером и швейцарским математиком И. Бюрги. Таблицы Непера «Описание удивительной таблицы логарифмов» (1614) и «Устройство удивительной таблицы логарифмов» (1619) содержали 8-значные логарифмы синусов, косинусов и тангенсов для углов от 0° до 90°, следующих через одну минуту. Т. к. синус 90° тогда принимали равным 107, а на него часто приходилось умножать, то Непер определил свои Л. так, что логарифм 107 был равен нулю. Логарифмы остальных синусов, меньших 107, у него положительны. Непер не ввёл понятия об основании системы логарифмов. Его логарифм числа N в современных обозначениях приблизительно равен . Свойства логарифмов Непера несколько сложнее обычных, т. к. у него логарифм единицы отличен от нуля.

  «Арифметические и геометрические таблицы прогрессий» (1620) Бюрги представляют собой первую таблицу антилогарифмов («чёрные числа») и дают значения чисел, соответствующих равноотстоящим логарифмам («красным числам»). «Красные числа» Бюрги суть логарифмы поделенных на 108 «чёрных чисел» при основании, равном . Таблицы Бюрги и особенно Непера немедленно привлекли внимание математиков к теории и вычислению логарифмов. По совету Непера английский математик Г. Бриге вычислил 8-значные десятичные логарифмы (1617) от 1 до 1000 и затем 14-значные (1624) от 1 до 20 000 и от 90 000 до 100 000 (по его имени десятичные логарифмы иногда называют бриговыми). 10-значные таблицы от 1 до 100 000 издал голландский математик А. Влакк (1628). Таблицы Влакка легли в основу большинства последующих таблиц, причём их авторы внесли много изменений в структуру Л. т. и поправок в выкладки (у самого Влакка было 173 ошибки, у австрийского математика Г. Вега в 1783 – пять; первые безошибочные таблицы выпустил в 1857 немецкий математик К. Бремикер). В России таблицы логарифмов впервые были изданы в 1703 при участии Л. Ф. Магницкого. Таблицы т. н. гауссовых логарифмов были опубликованы в 1802 итальянским математиком З. Леонелли; К. Ф.Гаусс ввёл (1812) эти логарифмы в общее употребление.

  Лит.: Брадис В. М., Четырехзначные математические таблицы, М. – Л., 1928, посл., 44 изд., М., 1973; Милн-Томсон Л.-М., Комри Л.-Дж., Четырехзначные математические таблицы, пер. с англ., М., 1961; Пятизначные таблицы натуральных значений тригонометрических величин, их логарифмов и логарифмов чисел, 6 изд., М., 1972; Вега Г., Таблицы семизначных логарифмов, 4 изд., М., 1971; Субботин М. Ф., Многозначные таблицы логарифмов, М. – Л., 1940; Десятизначные таблицы логарифмов комплексных чисел..., М., 1952; Таблицы натуральных логарифмов, 2 изд., т. 1—2, М., 1971.

Логарифмический приёмник

Логарифми'ческий приёмник, транзисторный или ламповый радиоприёмник, в котором амплитудная характеристика усилителя промежуточной или видеочастоты представляется логарифмическим законом. Л. п. позволяет принимать сигналы с динамическим диапазоном до 100 дб и уменьшает действие электрических помех некоторых видов. Логарифмическая амплитудная характеристика может быть получена, например, посредством включения нелинейного элемента (диода) параллельно коллекторной или анодной нагрузке в каждом каскаде усилителя или последовательным сложением напряжений от каждого каскада усилителя на общей нагрузке. В первом случае при малых входных сигналах амплитудная характеристика усилителя линейна (так называемый линейно-логарифмический приёмник). С ростом входного сигнала диод начинает проводить электрический ток; его внутреннее сопротивление падает и шунтирует сопротивление нагрузки. Общее сопротивление нагрузки изменяется так, что амплитуда на выходе усилителя пропорциональна логарифму амплитуды на входе. Во втором случае при возрастании входного сигнала каскады усилителя, начиная с последнего, поочерёдно выходят из линейного режима и до перехода в режим насыщения (ограничения) обеспечивают получение логарифмической амплитудной характеристики.

  Лит.: Волков В. М., Логарифмические усилители на транзисторах, К., 1965.

  А. С. Афромеев.

Логарифмически-нормальное распределение

Логарифми'чески-норма'льное распределе'ние, специальный вид распределения вероятностей случайных величин. Если Х имеет нормальное распределение и Y = ех, то Y имеет Л.-н. р., характеризуемое плотностью:

  .

  Здесь m и s – параметры распределения величины X. Математическое ожидание Y:

  ,

  дисперсия:

  .

  Этому распределению с хорошим приближением подчиняется, например, размер частиц при дроблении какого-либо материала (камня и т. п.), содержание многих минералов в породах.

  Лит.: Колмогоров А. Н., О логарифмически-нормальном законе распределения размеров частиц при дроблении, «Докл. АН СССР», 1941, т. 31, в. 2, с. 99—101; Крамер Г., Математические методы статистики, пер. с англ., М., 1948; Aitchison J., Brown J. A. C., The lognormal distribution, Camb., 1957.

  В. И. Битюцков.

Логата

Лога'та, река в Таймырском (Долгано-Ненецком) национальном округе Красноярского края РСФСР, правый приток р. Верхнего Таймыра (бассейн Карского моря). Длина 393 км, площадь бассейна 10900 км2. Течёт по Северо-Сибирской низменности; извилиста. В бассейне Л. свыше 3200 мелких озёр общей площадью 926 км2. Питание снеговое и дождевое. Замерзает в конце сентября, вскрывается в начале июня.

Логау Фридрих фон

Ло'гау (Logau) Фридрих фон (июнь 1604, Брокрут, – 24.7.1655, Лигниц), немецкий поэт-сатирик. В своих эпиграммах (сборники 1638 и 1654) Л. проклинает Тридцатилетнюю войну, опустошившую страну и принёсшую выгоду лишь иноземцам, бичует пороки господствующих сословий, с насмешкой пишет о церкви и религиозных суевериях. Стихи Л. вобрали в себя народные пословицы и поговорки.

  Соч.: Sinngedichte. Eine Auswahl, В., 1967; в рус. пер. в кн.: Хрестоматия по западноевропейской литературе XVII в. Сост. Б. И. Пуришев, 2 изд., М., 1949; в кн.: Слово скорби и утешения. Немецкая поэзия времен 30-летней войны 1618—1648, пер Л. Гинзбурга, М., 1963.

  Лит.: Пуришев Б. И., Очерки немецкой литературы XV—XVII вв., М., 1955; Berger U., Der Unerbittliche, Friedrich von Logau, в его кн.: Die Chance der Lyrik, B. – Weimar, 1971, S. 66—72.

Логаэды

Логаэ'ды (от греч. logaoidikós – прозаически-стихотворный), 1) в метрическом стихосложении – стихи, образованные сочетанием 3-сложных стоп (дактиль, анапест) с 2-сложными (ямб, хорей); их ритм менее ровный, чем в стихах из однородных стоп (отсюда название). Широко употреблялись в лирике (например, в сапфической строфе) и хоровых частях трагедий. 2) В тоническом стихосложении – стихи, внутри которых ударения располагаются с неравномерными слоговыми промежутками, повторяющимися из стиха в стих.

  Бу'дем жи'ть и люби'ть, моя подру'га,

  Воркотню' старико'в ожесточённых

  Бу'дем в ло'маный гро'ш с тобо'ю ста'вить...

  (А. Пиотровский; пер. из Катулла).

Логен (приток р. Гломма)

Ло'ген (Lagen), Гудбрансдальс-Логен, крупнейший (правый) приток р. Гломма в Норвегии. Длина 203 км, площадь бассейна свыше 12 тыс. км2. Берёт начало на водоразделе Скандинавских гор из оз. Лешаскугсвати, течёт по глубокой долине Гудбрансдаль, протекает через оз. Мьёса, ниже которого носит название Ворма. Средний расход воды в нижнем течении 247 м3/сек. ГЭС.

Логен (река в Норвегии)

Ло'ген (Lagen), Нумедальс-Логен, река на Ю. Норвегии. Длина 342 км, площадь бассейна 5,6 тыс. км2. Берёт начало в Скандинавских горах, на плоскогорье Хардангервидда, протекает по долине Нумедаль, впадает в пролив Скагеррак. Средний расход воды в нижнем течении 123 м3/сек. Половодье в мае – июне (главным образом от таяния сезонных снегов); с декабря по март покрыта льдом. ГЭС. Вблизи устья – г. Ларвик.

Логика

Логика (греч. logik), наука о приемлемых способах рассуждения. Слово «Л.» в его современном употреблении многозначно, хотя и не столь богато смысловыми оттенками, как древнегреч. lógos, от которого оно происходит. В духе традиции с понятием Л. связываются три основных аспекта: онтологический – «Л. вещей», т. е. необходимая связь явлений объективного мира (Демокрит); гносеологический – «Л. знания», т. е. необходимая связь понятий, посредством которой познаётся «сущность и истина» (Платон), и демонстративный (доказательный), или собственно логический, – «Л. доказательств и опровержений», т. е. необходимая связь суждений (высказываний) в рассуждениях (умозаключениях), принудительная убедительность («общезначимость») которых вытекает только из формы этой связи безотносительно к тому, выражают эти суждения «сущность и истину» или нет (Аристотель). Первые два аспекта относятся к философии и диалектической логике, последний же аспект составляет собственно логику, или современную Л. (которую вслед за И. Кантоминогда называют формальной Л.).

  Исторически предмет (собственно) Л. ограничивался своего рода «каталогизацией» правильных аргументов, т. е. таких способов рассуждений, которые позволяли бы из истинных суждений-посылок всегда получать истинные суждения-заключения. Известным со времён античности набором таких аргументов однозначно определялся процесс дедукции, характерный для т. н. традиционной Л., ядро которой составляла силлогистика, созданная Аристотелем. По мере изучения особенностей демонстративного мышления предмет традиционной Л. постепенно расширялся за счёт несиллогистических, хотя и дедуктивных способов рассуждений, а также за счёт индукции. Поскольку последняя выпадала из рамок Л. как дедуктивной теории (или совокупности таких теорий), она в конце концов сделалась предметом особой теории, названной индуктивной Л.

  Современная Л. является историческим преемником традиционной Л. и в некотором смысле её прямым продолжением. Но в отличие от традиционной, для современной Л. характерно построение различного рода формализованных теорий логического рассуждения – т. н. логических «формализмов», или логических исчислений, позволяющих сделать логические рассуждения предметом строгого анализа и тем самым полнее описать их свойства (см. раздел Предмет и метод современной логики). Отображение логического мышления в логических исчислениях привело к более адекватному выражению идеи «логоса» как единства языка и мышления, чем это было в эпоху античности и во все эпохи, предшествовавшие 20 в.; в современной Л. это выражение столь очевидно, что, исходя из различных «формализмов», приходится порой говорить о различных «стилях логического мышления».

  М. М. Новосёлов.

  История логики. Историческую основу современной Л. образуют две теории дедукции, созданные в 4 в. до н. э. древнегреческими мыслителями: одна – Аристотелем, другая – его современниками и философскими противниками, диалектиками мегарской школы. Преследуя одну цель – найти «общезначимые» законы логоса, о которых говорил Платон, они, столкнувшись, как бы поменяли исходные пути к этой цели. Известно, что основатель мегарской философской школы Евклид из Мегары широко использовал не только доказательства от противного, но и аргументы, по форме близкие к силлогическим, и таковы многие дошедшие до нас софизмы мегариков. В свою очередь, Аристотель в сочинении «Топика» в качестве доказывающего сформулировал основное правило исчисления высказываний – правило «отделения заключения» (разрешающее при истинности высказываний «если А, то В» и «А» как истинное заключение «отделить» высказывание «В»). И если затем он оставил в стороне Л. высказываний, то в этом «повинны» в немалой степени софизмы мегариков, которые привели Аристотеля к поискам логических элементов речи в элементарной сё единице – предложении. Именно на этом пути он ввёл понятие высказывания как истинной или ложной речи, открыл, в отличие от грамматической, атрибутивную форму речи – как утверждения или отрицания «чего-либо о чём-то», определил «простое» высказывание как атрибутивное отношение двух терминов, открыл изоморфизм атрибутивных и объёмных отношений, аксиому и правила силлогизма. Аристотель создал весьма ограниченную по своим возможностям, но зато законченную теорию – силлогистику, реализующую в рамках Л. классов идею алгорифмизации вывода заключений. Аристотелевская силлогистика положила конец «силлогистике» мегариков, последним представителем которой был Евбулид из Милета, писавший против Аристотеля, автор известных парадоксов «лжец», «лысый», «куча» и нескольких софизмов. Др. последователи Евклида обратились к анализу условных высказываний, считая, что заключения «о присущем», выражаемые фигурами силлогизма, нуждаются в более общей основе. Диодор Крон из Иаса и его ученик Филон из Мегары ввели понятие импликации и изучали связь импликации и отношения следования, предвосхитив идею теоремы о дедукции. Соглашаясь в том, что условное высказывание – импликация – истинно, когда заключение следует из посылки, они расходились, однако, в толковании понятия «следует». Согласно Диодору, В следует из А, когда импликация А É В («если А, то В») необходима, так что нельзя утверждать в зависимости от случая, что иной раз она истинна, а иной раз нет, если А и В одни и те же высказывания. Филон же полагал, что понятие «В следует из А» полностью определяется понятием материальной импликации, которую он ввёл, дав свод её истинностных значений. Так возникла теория критериев логического следования, впоследствии сделавшаяся частью учения стоиков. Неизвестно, обсуждался ли в мегарской школе вопрос об аксиоматизации Л., но Диоген Лаэрций свидетельствует, что Клитомах из школы Евклида был первым, кто написал не дошедший до нас трактат об аксиомах и предикатах.

    Логические идеи мегариков были ассимилированы в философской школе стоиков, основанной около 300 до н. э. Гл. фигурой этой школы был Хрисипп, принявший критерий Филона для импликации и двузначности принцип как онтологическую предпосылку Л. В сочинениях стоиков Л. высказываний предшествует аристотелевской силлогистике, оформляясь в систему правил построения и правил вывода высказываний. Последние по примеру Аристотеля тоже называются силлогизмами. Идея дедукции формулируется более четко, чем у мегариков, в виде след. предписания: условием формальной правильности заключения В из посылок А1, А2,..., An является истинность импликации (A1 & A2 &... & An) É В. Аргументы, основанные на понимании высказываний только как функций истинности, стоики называли формальными; они могут вести от ложных посылок к истинным следствиям. Если же во внимание принималась содержательная истинность посылок, формальные аргументы назывались истинными. Если посылки и заключения в истинных аргументах относились соответственно как причины и следствия, аргументы называются доказывающими. В общем случае «доказывающие аргументы» стоиков предполагали понятие о естественных законах. Стоики считали их аналитическими и возможность их доказательства посредством аналогии и индукции отрицали. Т. о., развитое стоиками учение о доказательстве шло за пределы Л. в область теории познания, и именно здесь «дедуктивизм» стоиков нашёл себе философского противника в лице радикального эмпиризма школы Эпикура – последней наиболее важной для истории Л. школы античности. В споре со стоиками эпикурейцы защищали опыт, аналогию, индукцию. Они положили начало индуктивной Л., указав, в частности, на роль противоречащего примера в проблеме обоснования индукции и сформулировав ряд правил индуктивного обобщения.

  Эпикурейской «каноникой» заканчивается история логической мысли ранней античности. На смену приходит поздняя античность, эклектически сочетающая аристотелизм и стоицизм. Её вклад в Л. ограничивается по существу переводческой и комментаторской деятельностью поздних перипатетиков (Боэт Сидонский, Александр Эгский, Адраст, Гермин, Александр Афродизийский, Гален и др.) и неоплатоников (Порфирий, Прокл, Симпликий, Марий Викторин, Апулей, Августин, Боэций, Кассиодор и др.). Из нововведений эллино-римских логиков заслуживают внимания логический квадрат Апулея, дихотомическое делениеи объёмная трактовка терминов силлогизма у Порфирия, идеи аксиоматизации Л. и Л. отношений у Галена, зачатки истории Л. у Секста Эмпирика и Диогена Лаэрция, наконец, подготовившие терминологию средневековой Л. переводы греческих текстов на латинский язык, в частности «Введения» Порфирия Марием Викторином и сочинений Аристотеля, входящих в «Органон», Боэцием. (Именно в логическом словаре Боэция впервые, по-видимому, появляются понятия «субъект», «предикат», «связка», в терминах которых на протяжении многих последующих столетий логики анализировали высказывания.) Под влиянием доктрины стоиков, заимствованной неоплатонизмом, Л. постепенно сближается с грамматикой. В энциклопедии той эпохи – «Сатириконе» Марциана Капеллы – в качестве одного из семи свободных искусств Л. объявляется необходимым элементом гуманитарного образования.

  Логическая мысль раннего европейского средневековья (7—11 вв.), усваивавшего научное наследие античного мира сквозь призму христианского сознания, в творческом отношении значительно беднее эллиноримской. Как самостоятельная наука Л. развивается лишь в странах арабской культуры, где философия остаётся относительно независимой от религии. В Европе же складывается в основном схоластическая Л. в собственном смысле – церковно-школьная дисциплина, приспособившая элементы перипатетической Л. к нуждам обоснования и систематизации христианского вероучения. Лишь в 12—13 вв., после того как все произведения Аристотеля канонизируются церковной ортодоксией, возникает оригинальная средневековая («несхоластическая») Л., известная под назв. logica modernorum. Контуры её намечены уже «Диалектикой» Абеляра, но окончательное оформление она получает к конце 13 – середине 14 вв. в работах Уильяма Шервуда, Петра Испанского, Иоанна Дунса Скота, Вальтера Бурлея (Бёрли), Уильяма Оккама, Жана Буридана и Альберта Саксонского. В сочинениях этих авторов впервые прослеживаются прообраз «универсума речи» и представление о двояком использовании языка: для выражения мысли о внеязыковых фактах, когда термины «употребляются», и для выражения мысли о самом языке, когда термины «упоминаются» (употребляются автонимно). Учение о пропозициональных связках и кванторах, символизирующих характер логической связи, служит им естественным основанием для различения между «формой» и «содержанием» суждений. А в связи с задачей однозначного «прочтения» синтаксической структуры суждения средневековой логики неявно используют и понятие «области действия» логических операций. Их учение о «следовании» основывается на различии между материальной импликацией и формальной, или тавтологичной, импликацией: для первой можно указать контрпример, для второй – нет. Поэтому материальная импликация рассматривается как выражение содержательного, или фактического, следования, а формальная – логического. Средневековые логики открыли многие известные теперь законы Л. высказываний, которая составляла основу их теории дедукции и которая, как и у стоиков, считалась более общей, чем аристотелевская силлогистика. В этот же период впервые зародилась идея машинизации процесса логического вывода и были предприняты первые попытки её реализации (Р. Луллий).

  Последующие два столетия – эпоха Возрождения – для дедуктивной Л. были эпохой кризиса. Её воспринимали как опору мыслительных привычек схоластики, как Л. «искусственного мышления», освящающую схематизм умозаключений, в которых посылки устанавливаются авторитетом веры, а не познания. Руководствуясь общим лозунгом эпохи: «вместо абстракций – опыт», дедуктивной Л. стали противопоставлять Л. «естественного мышления», под которой обычно подразумевались интуиция и воображение. Леонардо да Винчи и Ф. Бэкон переоткрывают античную идею индукции и индуктивного метода, выступая с резкой критикой силлогизма. И лишь немногие, подобно падуанцу Я. Дзабарелле (16 в.), пробуют вернуть в методологию научной мысли традиционную логическую дедукцию, предварительно освободив её от схоластической философской интерпретации.

  Книги Дзабареллы оказали заметное влияние на положение Л. в 17 в. Уже у Т. Гоббса и П. Гассенди дедуктивная Л. полностью освобождается от связи с теологией и перипатетической философией. Несколько раньше основатель точного естествознания Г. Галилей восстанавливает права абстракции. Он обосновывает потребность в абстракциях, которые бы «восполняли» данные опытных наблюдений, и указывает на необходимость введения этих абстракций в систему дедукции в качестве гипотез, или постулатов, или аксиом, с последующим сравнением результатов дедукции с результатами наблюдений. Критицизм в отношении схоластики и одновременная реабилитация дедукции, правда, при некотором снижении интереса к формальной стороне доказательств, характерны для картезианской, т. е. опирающейся на методологические идеи Р. Декарта, логики, систематически изложенной в сочинении А. Арно и П. Николя «Логика, или Искусство мыслить» (1662), вошедшей в историю под названием логики Пор-Рояля. В этой книге Л. представлена как рабочий инструмент всех др. наук и практики, поскольку она принуждает к строгим формулировкам мысли.

  Картезианская идея mathesis universalis стала ведущей в Л. середины 17 – начале 18 вв. Особое место в её развитии принадлежит Г. В. Лейбницу. Вслед за Р. Декартом, Т. Гоббсом и логиками Пор-Рояля Лейбниц считал возможным создать «всеобщую символику», своеобразный искусственный язык, который был бы свободен от многозначностей, присущих естественным разговорным языкам, понимался без словаря и был бы способен точно и однозначно выражать мысли. Такой язык мог бы играть роль вспомогательного международного языка, а также служить орудием открытия новых истин из известных. Анализируя категории Аристотеля, Лейбниц пришёл к идее выделения простейших исходных понятий и суждений, которые могли бы составить «алфавит человеческих мыслей»; эти первичные неопределяемые понятия, скомбинированные по определённым правилам, должны давать все остальные точно определимые понятия. Лейбниц полагал, что одновременно с таким анализом понятий можно создать универсальный алгоритм, который позволит провести доказательство всех известных истин и составить тем самым «доказательную энциклопедию».

  С целью реализации этого замысла Лейбниц дал несколько вариантов арифметизации логики. В одном из них каждому исходному понятию сопоставляется простое число, каждому составному – произведение простых чисел, сопоставленных исходным понятиям, образующим данное составное (эта замечательная по своей простоте идея сыграла впоследствии исключительно важную роль в математике и логике благодаря работам Г. Кантора и К. Гёделя).

 К Лейбницу же восходят многие методологически важные фрагменты современной Л. Так, большое значение он придавал проблеме тождества. Принимая схоластический принцип индивидуации (принцип «внутреннего различия»), положенный им в основу монадологии, Лейбниц отказался от онтологизации тождества, определяя тождество через сохраняющую истинность взаимозаменимость в контексте и намечая тем самым путь к построению теорий тождества, основанных на абстракции отождествления.

  Хотя Лейбниц непосредственно не занимался индуктивной Л., соответствующая проблематика вполне им учитывалась. В частности, она нашла отражение в проводившемся им различении «истин разума» и «истин факта»; для проверки истин разума, по Лейбницу, достаточно законов аристотелевской Л.; для проверки истин факта, т. е. эмпирических истин, нужен ещё (сформулированный Лейбницем) достаточного основания принцип. В связи с этим Лейбниц рассматривал поставленную Галилеем проблему подтверждения общих суждений о действительности эмпирическими фактами, явившись тем самым одним из создателей теории т. н. гипотетико-дедуктивного метода.

  Исходным пунктом индуктивной Л. нового времени служили методологические идеи Бэкона, но систематически эта логика – Л., исследующая «обобщающие выводы» как заключения, основанные на установлении причинной связи (см. Причинность) между явлениями, – была разработана Дж. С. Миллем (1843), который опирался, в свою очередь, на идеи Дж. Гершеля. Развитая Миллем теория индуктивных умозаключений стала предметом разработки и критики как в Л. 19 в., так и в Л. 20 в. (в частности, в работах русских логиков М. И. Каринского и Л. Б. Рутковского и статистика А. А. Чупрова). При этом она была поставлена в связь с проблематикой теории вероятностей, с одной стороны, и алгебры логики – с другой (начиная уже с работ У. С. Джевонса). Индуктивная Л. 19 в., центральным вопросом которой был вопрос о способах обоснования эмпирических заключений о закономерных (регулярных) связях явлений, в 20 в., с одной стороны, трансформировалась в вероятностную логику, а с другой – вышла за пределы Л. в собственном смысле, приобретя в существенно обогащённом виде новую жизнь в современной математической статистике и теории планирования эксперимента.


    Ваша оценка произведения:

Популярные книги за неделю